mirror of
https://github.com/Z3Prover/z3
synced 2025-04-25 01:55:32 +00:00
Merge branch 'master' of https://github.com/NikolajBjorner/z3 into opt
This commit is contained in:
commit
f90ae40480
125 changed files with 23210 additions and 25 deletions
|
@ -305,6 +305,7 @@ public:
|
|||
MATCH_UNARY(is_uminus);
|
||||
MATCH_UNARY(is_to_real);
|
||||
MATCH_UNARY(is_to_int);
|
||||
MATCH_UNARY(is_is_int);
|
||||
MATCH_BINARY(is_sub);
|
||||
MATCH_BINARY(is_add);
|
||||
MATCH_BINARY(is_mul);
|
||||
|
@ -377,6 +378,9 @@ public:
|
|||
app * mk_real(int i) {
|
||||
return mk_numeral(rational(i), false);
|
||||
}
|
||||
app * mk_real(rational const& r) {
|
||||
return mk_numeral(r, false);
|
||||
}
|
||||
app * mk_le(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LE, arg1, arg2); }
|
||||
app * mk_ge(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_GE, arg1, arg2); }
|
||||
app * mk_lt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LT, arg1, arg2); }
|
||||
|
|
|
@ -26,6 +26,7 @@ Notes:
|
|||
#include "theory_diff_logic.h"
|
||||
#include "theory_dense_diff_logic.h"
|
||||
#include "theory_pb.h"
|
||||
#include "theory_lra.h"
|
||||
#include "ast_pp.h"
|
||||
#include "ast_smt_pp.h"
|
||||
#include "pp_params.hpp"
|
||||
|
@ -143,6 +144,9 @@ namespace opt {
|
|||
else if (typeid(smt::theory_dense_si&) == typeid(*arith_theory)) {
|
||||
return dynamic_cast<smt::theory_dense_si&>(*arith_theory);
|
||||
}
|
||||
else if (typeid(smt::theory_lra&) == typeid(*arith_theory)) {
|
||||
return dynamic_cast<smt::theory_lra&>(*arith_theory);
|
||||
}
|
||||
else {
|
||||
UNREACHABLE();
|
||||
return dynamic_cast<smt::theory_mi_arith&>(*arith_theory);
|
||||
|
@ -401,6 +405,14 @@ namespace opt {
|
|||
return th.mk_ge(m_fm, v, val);
|
||||
}
|
||||
|
||||
|
||||
if (typeid(smt::theory_lra) == typeid(opt)) {
|
||||
smt::theory_lra& th = dynamic_cast<smt::theory_lra&>(opt);
|
||||
SASSERT(val.is_finite());
|
||||
return th.mk_ge(m_fm, v, val.get_numeral());
|
||||
}
|
||||
|
||||
// difference logic?
|
||||
if (typeid(smt::theory_dense_si) == typeid(opt) &&
|
||||
val.get_infinitesimal().is_zero()) {
|
||||
smt::theory_dense_si& th = dynamic_cast<smt::theory_dense_si&>(opt);
|
||||
|
|
|
@ -35,8 +35,9 @@ Revision History:
|
|||
#include"error_codes.h"
|
||||
#include"gparams.h"
|
||||
#include"env_params.h"
|
||||
#include "lp_frontend.h"
|
||||
|
||||
typedef enum { IN_UNSPECIFIED, IN_SMTLIB, IN_SMTLIB_2, IN_DATALOG, IN_DIMACS, IN_WCNF, IN_OPB, IN_Z3_LOG } input_kind;
|
||||
typedef enum { IN_UNSPECIFIED, IN_SMTLIB, IN_SMTLIB_2, IN_DATALOG, IN_DIMACS, IN_WCNF, IN_OPB, IN_Z3_LOG, IN_MPS } input_kind;
|
||||
|
||||
std::string g_aux_input_file;
|
||||
char const * g_input_file = 0;
|
||||
|
@ -342,6 +343,10 @@ int STD_CALL main(int argc, char ** argv) {
|
|||
else if (strcmp(ext, "smt") == 0) {
|
||||
g_input_kind = IN_SMTLIB;
|
||||
}
|
||||
else if (strcmp(ext, "mps") == 0 || strcmp(ext, "sif") == 0 ||
|
||||
strcmp(ext, "MPS") == 0 || strcmp(ext, "SIF") == 0) {
|
||||
g_input_kind = IN_MPS;
|
||||
}
|
||||
}
|
||||
}
|
||||
switch (g_input_kind) {
|
||||
|
@ -367,6 +372,9 @@ int STD_CALL main(int argc, char ** argv) {
|
|||
case IN_Z3_LOG:
|
||||
replay_z3_log(g_input_file);
|
||||
break;
|
||||
case IN_MPS:
|
||||
return_value = read_mps_file(g_input_file);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
|
|
@ -20,6 +20,7 @@ Revision History:
|
|||
#include"smt_setup.h"
|
||||
#include"static_features.h"
|
||||
#include"theory_arith.h"
|
||||
#include"theory_lra.h"
|
||||
#include"theory_dense_diff_logic.h"
|
||||
#include"theory_diff_logic.h"
|
||||
#include"theory_utvpi.h"
|
||||
|
@ -442,7 +443,7 @@ namespace smt {
|
|||
m_params.m_arith_propagate_eqs = false;
|
||||
m_params.m_eliminate_term_ite = true;
|
||||
m_params.m_nnf_cnf = false;
|
||||
setup_mi_arith();
|
||||
setup_r_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_LRA(static_features const & st) {
|
||||
|
@ -467,7 +468,7 @@ namespace smt {
|
|||
m_params.m_restart_adaptive = false;
|
||||
}
|
||||
m_params.m_arith_small_lemma_size = 32;
|
||||
setup_mi_arith();
|
||||
setup_r_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_LIA() {
|
||||
|
@ -539,7 +540,7 @@ namespace smt {
|
|||
m_params.m_relevancy_lvl = 0;
|
||||
m_params.m_arith_reflect = false;
|
||||
m_params.m_nnf_cnf = false;
|
||||
setup_mi_arith();
|
||||
setup_r_arith();
|
||||
}
|
||||
|
||||
void setup::setup_QF_BV() {
|
||||
|
@ -718,6 +719,13 @@ namespace smt {
|
|||
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
|
||||
}
|
||||
|
||||
void setup::setup_r_arith() {
|
||||
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
|
||||
|
||||
// Disabled in initial commit of LRA additions
|
||||
// m_context.register_plugin(alloc(smt::theory_lra, m_manager, m_params));
|
||||
}
|
||||
|
||||
void setup::setup_mi_arith() {
|
||||
if (m_params.m_arith_mode == AS_OPTINF) {
|
||||
m_context.register_plugin(alloc(smt::theory_inf_arith, m_manager, m_params));
|
||||
|
|
|
@ -99,6 +99,7 @@ namespace smt {
|
|||
void setup_card();
|
||||
void setup_i_arith();
|
||||
void setup_mi_arith();
|
||||
void setup_r_arith();
|
||||
void setup_fpa();
|
||||
void setup_str();
|
||||
|
||||
|
|
|
@ -54,7 +54,7 @@ namespace smt {
|
|||
}
|
||||
}
|
||||
|
||||
void theory::display_app(std::ostream & out, app * n) const {
|
||||
std::ostream& theory::display_app(std::ostream & out, app * n) const {
|
||||
func_decl * d = n->get_decl();
|
||||
if (n->get_num_args() == 0) {
|
||||
out << d->get_name();
|
||||
|
@ -73,9 +73,10 @@ namespace smt {
|
|||
else {
|
||||
out << "#" << n->get_id();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void theory::display_flat_app(std::ostream & out, app * n) const {
|
||||
std::ostream& theory::display_flat_app(std::ostream & out, app * n) const {
|
||||
func_decl * d = n->get_decl();
|
||||
if (n->get_num_args() == 0) {
|
||||
out << d->get_name();
|
||||
|
@ -106,6 +107,7 @@ namespace smt {
|
|||
else {
|
||||
out << "#" << n->get_id();
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
bool theory::is_relevant_and_shared(enode * n) const {
|
||||
|
|
|
@ -337,14 +337,14 @@ namespace smt {
|
|||
|
||||
virtual void collect_statistics(::statistics & st) const {
|
||||
}
|
||||
|
||||
void display_app(std::ostream & out, app * n) const;
|
||||
|
||||
void display_flat_app(std::ostream & out, app * n) const;
|
||||
|
||||
void display_var_def(std::ostream & out, theory_var v) const { return display_app(out, get_enode(v)->get_owner()); }
|
||||
std::ostream& display_app(std::ostream & out, app * n) const;
|
||||
|
||||
void display_var_flat_def(std::ostream & out, theory_var v) const { return display_flat_app(out, get_enode(v)->get_owner()); }
|
||||
std::ostream& display_flat_app(std::ostream & out, app * n) const;
|
||||
|
||||
std::ostream& display_var_def(std::ostream & out, theory_var v) const { return display_app(out, get_enode(v)->get_owner()); }
|
||||
|
||||
std::ostream& display_var_flat_def(std::ostream & out, theory_var v) const { return display_flat_app(out, get_enode(v)->get_owner()); }
|
||||
|
||||
/**
|
||||
\brief Assume eqs between variable that are equal with respect to the given table.
|
||||
|
|
|
@ -10059,7 +10059,7 @@ namespace smt {
|
|||
}
|
||||
TRACE("str", tout << "last bounds are [" << lastBounds.lowerBound << " | " << lastBounds.midPoint << " | " << lastBounds.upperBound << "]!" << lastBounds.windowSize << std::endl;);
|
||||
binary_search_info newBounds;
|
||||
expr * newTester;
|
||||
expr * newTester = 0;
|
||||
if (lastTesterConstant == "more") {
|
||||
// special case: if the midpoint, upper bound, and window size are all equal,
|
||||
// we double the window size and adjust the bounds
|
||||
|
|
|
@ -240,6 +240,7 @@ int main(int argc, char ** argv) {
|
|||
TST(pdr);
|
||||
TST_ARGV(ddnf);
|
||||
TST(model_evaluator);
|
||||
TST_ARGV(lp);
|
||||
TST(get_consequences);
|
||||
TST(pb2bv);
|
||||
TST_ARGV(sat_lookahead);
|
||||
|
|
71
src/util/lp/binary_heap_priority_queue.h
Normal file
71
src/util/lp/binary_heap_priority_queue.h
Normal file
|
@ -0,0 +1,71 @@
|
|||
|
||||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include "util/lp/lp_utils.h"
|
||||
namespace lean {
|
||||
// the elements with the smallest priority are dequeued first
|
||||
template <typename T>
|
||||
class binary_heap_priority_queue {
|
||||
vector<T> m_priorities;
|
||||
|
||||
// indexing for A starts from 1
|
||||
vector<unsigned> m_heap; // keeps the elements of the queue
|
||||
vector<int> m_heap_inverse; // o = m_heap[m_heap_inverse[o]]
|
||||
unsigned m_heap_size = 0;
|
||||
|
||||
// is is the child place in heap
|
||||
void swap_with_parent(unsigned i);
|
||||
void put_at(unsigned i, unsigned h);
|
||||
void decrease_priority(unsigned o, T newPriority);
|
||||
public:
|
||||
#ifdef LEAN_DEBUG
|
||||
bool is_consistent() const;
|
||||
#endif
|
||||
public:
|
||||
void remove(unsigned o);
|
||||
unsigned size() const { return m_heap_size; }
|
||||
binary_heap_priority_queue(): m_heap(1) {} // the empty constructror
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
binary_heap_priority_queue(unsigned n);
|
||||
|
||||
void clear() {
|
||||
for (unsigned i = 0; i < m_heap_size; i++) {
|
||||
unsigned o = m_heap[i+1];
|
||||
m_heap_inverse[o] = -1;
|
||||
}
|
||||
m_heap_size = 0;
|
||||
}
|
||||
|
||||
void resize(unsigned n);
|
||||
void put_to_heap(unsigned i, unsigned o);
|
||||
|
||||
void enqueue_new(unsigned o, const T& priority);
|
||||
|
||||
// This method can work with an element that is already in the queue.
|
||||
// In this case the priority will be changed and the queue adjusted.
|
||||
void enqueue(unsigned o, const T & priority);
|
||||
void change_priority_for_existing(unsigned o, const T & priority);
|
||||
T get_priority(unsigned o) const { return m_priorities[o]; }
|
||||
bool is_empty() const { return m_heap_size == 0; }
|
||||
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
unsigned dequeue_and_get_priority(T & priority);
|
||||
void fix_heap_under(unsigned i);
|
||||
void put_the_last_at_the_top_and_fix_the_heap();
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
unsigned dequeue();
|
||||
unsigned peek() const {
|
||||
lean_assert(m_heap_size > 0);
|
||||
return m_heap[1];
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
void print(std::ostream & out);
|
||||
#endif
|
||||
};
|
||||
}
|
193
src/util/lp/binary_heap_priority_queue.hpp
Normal file
193
src/util/lp/binary_heap_priority_queue.hpp
Normal file
|
@ -0,0 +1,193 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
namespace lean {
|
||||
// is is the child place in heap
|
||||
template <typename T> void binary_heap_priority_queue<T>::swap_with_parent(unsigned i) {
|
||||
unsigned parent = m_heap[i >> 1];
|
||||
put_at(i >> 1, m_heap[i]);
|
||||
put_at(i, parent);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::put_at(unsigned i, unsigned h) {
|
||||
m_heap[i] = h;
|
||||
m_heap_inverse[h] = i;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::decrease_priority(unsigned o, T newPriority) {
|
||||
m_priorities[o] = newPriority;
|
||||
int i = m_heap_inverse[o];
|
||||
while (i > 1) {
|
||||
if (m_priorities[m_heap[i]] < m_priorities[m_heap[i >> 1]])
|
||||
swap_with_parent(i);
|
||||
else
|
||||
break;
|
||||
i >>= 1;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T> bool binary_heap_priority_queue<T>::is_consistent() const {
|
||||
for (int i = 0; i < m_heap_inverse.size(); i++) {
|
||||
int i_index = m_heap_inverse[i];
|
||||
lean_assert(i_index <= static_cast<int>(m_heap_size));
|
||||
lean_assert(i_index == -1 || m_heap[i_index] == i);
|
||||
}
|
||||
for (unsigned i = 1; i < m_heap_size; i++) {
|
||||
unsigned ch = i << 1;
|
||||
for (int k = 0; k < 2; k++) {
|
||||
if (ch > m_heap_size) break;
|
||||
if (!(m_priorities[m_heap[i]] <= m_priorities[m_heap[ch]])){
|
||||
return false;
|
||||
}
|
||||
ch++;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
template <typename T> void binary_heap_priority_queue<T>::remove(unsigned o) {
|
||||
T priority_of_o = m_priorities[o];
|
||||
int o_in_heap = m_heap_inverse[o];
|
||||
if (o_in_heap == -1) {
|
||||
return; // nothing to do
|
||||
}
|
||||
lean_assert(static_cast<unsigned>(o_in_heap) <= m_heap_size);
|
||||
if (static_cast<unsigned>(o_in_heap) < m_heap_size) {
|
||||
put_at(o_in_heap, m_heap[m_heap_size--]);
|
||||
if (m_priorities[m_heap[o_in_heap]] > priority_of_o) {
|
||||
fix_heap_under(o_in_heap);
|
||||
} else { // we need to propogate the m_heap[o_in_heap] up
|
||||
unsigned i = o_in_heap;
|
||||
while (i > 1) {
|
||||
unsigned ip = i >> 1;
|
||||
if (m_priorities[m_heap[i]] < m_priorities[m_heap[ip]])
|
||||
swap_with_parent(i);
|
||||
else
|
||||
break;
|
||||
i = ip;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
lean_assert(static_cast<unsigned>(o_in_heap) == m_heap_size);
|
||||
m_heap_size--;
|
||||
}
|
||||
m_heap_inverse[o] = -1;
|
||||
// lean_assert(is_consistent());
|
||||
}
|
||||
// n is the initial queue capacity.
|
||||
// The capacity will be enlarged two times automatically if needed
|
||||
template <typename T> binary_heap_priority_queue<T>::binary_heap_priority_queue(unsigned n) :
|
||||
m_priorities(n),
|
||||
m_heap(n + 1), // because the indexing for A starts from 1
|
||||
m_heap_inverse(n, -1)
|
||||
{ }
|
||||
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::resize(unsigned n) {
|
||||
m_priorities.resize(n);
|
||||
m_heap.resize(n + 1);
|
||||
m_heap_inverse.resize(n, -1);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::put_to_heap(unsigned i, unsigned o) {
|
||||
m_heap[i] = o;
|
||||
m_heap_inverse[o] = i;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::enqueue_new(unsigned o, const T& priority) {
|
||||
m_heap_size++;
|
||||
int i = m_heap_size;
|
||||
lean_assert(o < m_priorities.size());
|
||||
m_priorities[o] = priority;
|
||||
put_at(i, o);
|
||||
while (i > 1 && m_priorities[m_heap[i >> 1]] > priority) {
|
||||
swap_with_parent(i);
|
||||
i >>= 1;
|
||||
}
|
||||
}
|
||||
// This method can work with an element that is already in the queue.
|
||||
// In this case the priority will be changed and the queue adjusted.
|
||||
template <typename T> void binary_heap_priority_queue<T>::enqueue(unsigned o, const T & priority) {
|
||||
if (o >= m_priorities.size()) {
|
||||
resize(o << 1); // make the size twice larger
|
||||
}
|
||||
if (m_heap_inverse[o] == -1)
|
||||
enqueue_new(o, priority);
|
||||
else
|
||||
change_priority_for_existing(o, priority);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::change_priority_for_existing(unsigned o, const T & priority) {
|
||||
if (m_priorities[o] > priority) {
|
||||
decrease_priority(o, priority);
|
||||
} else {
|
||||
m_priorities[o] = priority;
|
||||
fix_heap_under(m_heap_inverse[o]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue_and_get_priority(T & priority) {
|
||||
lean_assert(m_heap_size != 0);
|
||||
int ret = m_heap[1];
|
||||
priority = m_priorities[ret];
|
||||
put_the_last_at_the_top_and_fix_the_heap();
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::fix_heap_under(unsigned i) {
|
||||
while (true) {
|
||||
unsigned smallest = i;
|
||||
unsigned l = i << 1;
|
||||
if (l <= m_heap_size && m_priorities[m_heap[l]] < m_priorities[m_heap[i]])
|
||||
smallest = l;
|
||||
unsigned r = l + 1;
|
||||
if (r <= m_heap_size && m_priorities[m_heap[r]] < m_priorities[m_heap[smallest]])
|
||||
smallest = r;
|
||||
if (smallest != i)
|
||||
swap_with_parent(smallest);
|
||||
else
|
||||
break;
|
||||
i = smallest;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_priority_queue<T>::put_the_last_at_the_top_and_fix_the_heap() {
|
||||
if (m_heap_size > 1) {
|
||||
put_at(1, m_heap[m_heap_size--]);
|
||||
fix_heap_under(1);
|
||||
} else {
|
||||
m_heap_size--;
|
||||
}
|
||||
}
|
||||
/// return the first element of the queue and removes it from the queue
|
||||
template <typename T> unsigned binary_heap_priority_queue<T>::dequeue() {
|
||||
lean_assert(m_heap_size > 0);
|
||||
int ret = m_heap[1];
|
||||
put_the_last_at_the_top_and_fix_the_heap();
|
||||
m_heap_inverse[ret] = -1;
|
||||
return ret;
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T> void binary_heap_priority_queue<T>::print(std::ostream & out) {
|
||||
vector<int> index;
|
||||
vector<T> prs;
|
||||
while (size()) {
|
||||
T prior;
|
||||
int j = dequeue_and_get_priority(prior);
|
||||
index.push_back(j);
|
||||
prs.push_back(prior);
|
||||
out << "(" << j << ", " << prior << ")";
|
||||
}
|
||||
out << std::endl;
|
||||
// restore the queue
|
||||
for (int i = 0; i < index.size(); i++)
|
||||
enqueue(index[i], prs[i]);
|
||||
}
|
||||
#endif
|
||||
}
|
26
src/util/lp/binary_heap_priority_queue_instances.cpp
Normal file
26
src/util/lp/binary_heap_priority_queue_instances.cpp
Normal file
|
@ -0,0 +1,26 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/binary_heap_priority_queue.hpp"
|
||||
namespace lean {
|
||||
template binary_heap_priority_queue<int>::binary_heap_priority_queue(unsigned int);
|
||||
template unsigned binary_heap_priority_queue<int>::dequeue();
|
||||
template void binary_heap_priority_queue<int>::enqueue(unsigned int, int const&);
|
||||
template void binary_heap_priority_queue<double>::enqueue(unsigned int, double const&);
|
||||
template void binary_heap_priority_queue<mpq>::enqueue(unsigned int, mpq const&);
|
||||
template void binary_heap_priority_queue<int>::remove(unsigned int);
|
||||
template unsigned binary_heap_priority_queue<numeric_pair<mpq> >::dequeue();
|
||||
template unsigned binary_heap_priority_queue<double>::dequeue();
|
||||
template unsigned binary_heap_priority_queue<mpq>::dequeue();
|
||||
template void binary_heap_priority_queue<numeric_pair<mpq> >::enqueue(unsigned int, numeric_pair<mpq> const&);
|
||||
template void binary_heap_priority_queue<numeric_pair<mpq> >::resize(unsigned int);
|
||||
template void lean::binary_heap_priority_queue<double>::resize(unsigned int);
|
||||
template binary_heap_priority_queue<unsigned int>::binary_heap_priority_queue(unsigned int);
|
||||
template void binary_heap_priority_queue<unsigned>::resize(unsigned int);
|
||||
template unsigned binary_heap_priority_queue<unsigned int>::dequeue();
|
||||
template void binary_heap_priority_queue<unsigned int>::enqueue(unsigned int, unsigned int const&);
|
||||
template void binary_heap_priority_queue<unsigned int>::remove(unsigned int);
|
||||
template void lean::binary_heap_priority_queue<mpq>::resize(unsigned int);
|
||||
}
|
50
src/util/lp/binary_heap_upair_queue.h
Normal file
50
src/util/lp/binary_heap_upair_queue.h
Normal file
|
@ -0,0 +1,50 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <unordered_set>
|
||||
#include <unordered_map>
|
||||
#include <queue>
|
||||
#include "util/vector.h"
|
||||
#include <set>
|
||||
#include <utility>
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
|
||||
|
||||
typedef std::pair<unsigned, unsigned> upair;
|
||||
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
class binary_heap_upair_queue {
|
||||
binary_heap_priority_queue<T> m_q;
|
||||
std::unordered_map<upair, unsigned> m_pairs_to_index;
|
||||
vector<upair> m_pairs; // inverse to index
|
||||
vector<unsigned> m_available_spots;
|
||||
public:
|
||||
binary_heap_upair_queue(unsigned size);
|
||||
|
||||
unsigned dequeue_available_spot();
|
||||
bool is_empty() const { return m_q.is_empty(); }
|
||||
|
||||
unsigned size() const {return m_q.size(); }
|
||||
|
||||
bool contains(unsigned i, unsigned j) const { return m_pairs_to_index.find(std::make_pair(i, j)) != m_pairs_to_index.end();
|
||||
}
|
||||
|
||||
void remove(unsigned i, unsigned j);
|
||||
bool ij_index_is_new(unsigned ij_index) const;
|
||||
void enqueue(unsigned i, unsigned j, const T & priority);
|
||||
void dequeue(unsigned & i, unsigned &j);
|
||||
T get_priority(unsigned i, unsigned j) const;
|
||||
#ifdef LEAN_DEBUG
|
||||
bool pair_to_index_is_a_bijection() const;
|
||||
bool available_spots_are_correct() const;
|
||||
bool is_correct() const {
|
||||
return m_q.is_consistent() && pair_to_index_is_a_bijection() && available_spots_are_correct();
|
||||
}
|
||||
#endif
|
||||
void resize(unsigned size) { m_q.resize(size); }
|
||||
};
|
||||
}
|
110
src/util/lp/binary_heap_upair_queue.hpp
Normal file
110
src/util/lp/binary_heap_upair_queue.hpp
Normal file
|
@ -0,0 +1,110 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#include <set>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/binary_heap_upair_queue.h"
|
||||
namespace lean {
|
||||
template <typename T> binary_heap_upair_queue<T>::binary_heap_upair_queue(unsigned size) : m_q(size), m_pairs(size) {
|
||||
for (unsigned i = 0; i < size; i++)
|
||||
m_available_spots.push_back(i);
|
||||
}
|
||||
|
||||
template <typename T> unsigned
|
||||
binary_heap_upair_queue<T>::dequeue_available_spot() {
|
||||
lean_assert(m_available_spots.empty() == false);
|
||||
unsigned ret = m_available_spots.back();
|
||||
m_available_spots.pop_back();
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_upair_queue<T>::remove(unsigned i, unsigned j) {
|
||||
upair p(i, j);
|
||||
auto it = m_pairs_to_index.find(p);
|
||||
if (it == m_pairs_to_index.end())
|
||||
return; // nothing to do
|
||||
m_q.remove(it->second);
|
||||
m_available_spots.push_back(it->second);
|
||||
m_pairs_to_index.erase(it);
|
||||
}
|
||||
|
||||
|
||||
template <typename T> bool binary_heap_upair_queue<T>::ij_index_is_new(unsigned ij_index) const {
|
||||
for (auto it : m_pairs_to_index) {
|
||||
if (it.second == ij_index)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_upair_queue<T>::enqueue(unsigned i, unsigned j, const T & priority) {
|
||||
upair p(i, j);
|
||||
auto it = m_pairs_to_index.find(p);
|
||||
unsigned ij_index;
|
||||
if (it == m_pairs_to_index.end()) {
|
||||
// it is a new pair, let us find a spot for it
|
||||
if (m_available_spots.empty()) {
|
||||
// we ran out of empty spots
|
||||
unsigned size_was = static_cast<unsigned>(m_pairs.size());
|
||||
unsigned new_size = size_was << 1;
|
||||
for (unsigned i = size_was; i < new_size; i++)
|
||||
m_available_spots.push_back(i);
|
||||
m_pairs.resize(new_size);
|
||||
}
|
||||
ij_index = dequeue_available_spot();
|
||||
// lean_assert(ij_index<m_pairs.size() && ij_index_is_new(ij_index));
|
||||
m_pairs[ij_index] = p;
|
||||
m_pairs_to_index[p] = ij_index;
|
||||
} else {
|
||||
ij_index = it->second;
|
||||
}
|
||||
m_q.enqueue(ij_index, priority);
|
||||
}
|
||||
|
||||
template <typename T> void binary_heap_upair_queue<T>::dequeue(unsigned & i, unsigned &j) {
|
||||
lean_assert(!m_q.is_empty());
|
||||
unsigned ij_index = m_q.dequeue();
|
||||
upair & p = m_pairs[ij_index];
|
||||
i = p.first;
|
||||
j = p.second;
|
||||
m_available_spots.push_back(ij_index);
|
||||
m_pairs_to_index.erase(p);
|
||||
}
|
||||
|
||||
|
||||
template <typename T> T binary_heap_upair_queue<T>::get_priority(unsigned i, unsigned j) const {
|
||||
auto it = m_pairs_to_index.find(std::make_pair(i, j));
|
||||
if (it == m_pairs_to_index.end())
|
||||
return T(0xFFFFFF); // big number
|
||||
return m_q.get_priority(it->second);
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T> bool binary_heap_upair_queue<T>::pair_to_index_is_a_bijection() const {
|
||||
std::set<int> tmp;
|
||||
for (auto p : m_pairs_to_index) {
|
||||
unsigned j = p.second;
|
||||
unsigned size = tmp.size();
|
||||
tmp.insert(j);
|
||||
if (tmp.size() == size)
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T> bool binary_heap_upair_queue<T>::available_spots_are_correct() const {
|
||||
std::set<int> tmp;
|
||||
for (auto p : m_available_spots){
|
||||
tmp.insert(p);
|
||||
}
|
||||
if (tmp.size() != m_available_spots.size())
|
||||
return false;
|
||||
for (auto it : m_pairs_to_index)
|
||||
if (tmp.find(it.second) != tmp.end())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
}
|
17
src/util/lp/binary_heap_upair_queue_instances.cpp
Normal file
17
src/util/lp/binary_heap_upair_queue_instances.cpp
Normal file
|
@ -0,0 +1,17 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/binary_heap_upair_queue.hpp"
|
||||
namespace lean {
|
||||
template binary_heap_upair_queue<int>::binary_heap_upair_queue(unsigned int);
|
||||
template binary_heap_upair_queue<unsigned int>::binary_heap_upair_queue(unsigned int);
|
||||
template unsigned binary_heap_upair_queue<int>::dequeue_available_spot();
|
||||
template unsigned binary_heap_upair_queue<unsigned int>::dequeue_available_spot();
|
||||
template void binary_heap_upair_queue<int>::enqueue(unsigned int, unsigned int, int const&);
|
||||
template void binary_heap_upair_queue<int>::remove(unsigned int, unsigned int);
|
||||
template void binary_heap_upair_queue<unsigned int>::remove(unsigned int, unsigned int);
|
||||
template void binary_heap_upair_queue<int>::dequeue(unsigned int&, unsigned int&);
|
||||
template void binary_heap_upair_queue<unsigned int>::enqueue(unsigned int, unsigned int, unsigned int const&);
|
||||
template void binary_heap_upair_queue<unsigned int>::dequeue(unsigned int&, unsigned int&);
|
||||
}
|
333
src/util/lp/bound_analyzer_on_row.h
Normal file
333
src/util/lp/bound_analyzer_on_row.h
Normal file
|
@ -0,0 +1,333 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "implied_bound.h"
|
||||
#include "test_bound_analyzer.h"
|
||||
#include <functional>
|
||||
#include "util/lp/bound_propagator.h"
|
||||
// We have an equality : sum by j of row[j]*x[j] = rs
|
||||
// We try to pin a var by pushing the total by using the variable bounds
|
||||
// In a loop we drive the partial sum down, denoting the variables of this process by _u.
|
||||
// In the same loop trying to pin variables by pushing the partial sum up, denoting the variable related to it by _l
|
||||
namespace lean {
|
||||
|
||||
class bound_analyzer_on_row {
|
||||
|
||||
linear_combination_iterator<mpq> & m_it;
|
||||
unsigned m_row_or_term_index;
|
||||
int m_column_of_u = -1; // index of an unlimited from above monoid
|
||||
// -1 means that such a value is not found, -2 means that at least two of such monoids were found
|
||||
int m_column_of_l = -1; // index of an unlimited from below monoid
|
||||
impq m_rs;
|
||||
bound_propagator & m_bp;
|
||||
public :
|
||||
// constructor
|
||||
bound_analyzer_on_row(
|
||||
linear_combination_iterator<mpq> &it,
|
||||
const numeric_pair<mpq>& rs,
|
||||
unsigned row_or_term_index,
|
||||
bound_propagator & bp
|
||||
)
|
||||
:
|
||||
m_it(it),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_rs(rs),
|
||||
m_bp(bp)
|
||||
{}
|
||||
|
||||
|
||||
unsigned j;
|
||||
void analyze() {
|
||||
|
||||
mpq a; unsigned j;
|
||||
while (((m_column_of_l != -2) || (m_column_of_u != -2)) && m_it.next(a, j))
|
||||
analyze_bound_on_var_on_coeff(j, a);
|
||||
|
||||
if (m_column_of_u >= 0)
|
||||
limit_monoid_u_from_below();
|
||||
else if (m_column_of_u == -1)
|
||||
limit_all_monoids_from_below();
|
||||
|
||||
if (m_column_of_l >= 0)
|
||||
limit_monoid_l_from_above();
|
||||
else if (m_column_of_l == -1)
|
||||
limit_all_monoids_from_above();
|
||||
}
|
||||
|
||||
bool bound_is_available(unsigned j, bool low_bound) {
|
||||
return (low_bound && low_bound_is_available(j)) ||
|
||||
(!low_bound && upper_bound_is_available(j));
|
||||
}
|
||||
|
||||
bool upper_bound_is_available(unsigned j) const {
|
||||
switch (m_bp.get_column_type(j))
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool low_bound_is_available(unsigned j) const {
|
||||
switch (m_bp.get_column_type(j))
|
||||
{
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
const impq & ub(unsigned j) const {
|
||||
lean_assert(upper_bound_is_available(j));
|
||||
return m_bp.get_upper_bound(j);
|
||||
}
|
||||
const impq & lb(unsigned j) const {
|
||||
lean_assert(low_bound_is_available(j));
|
||||
return m_bp.get_low_bound(j);
|
||||
}
|
||||
|
||||
|
||||
const mpq & monoid_max_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
|
||||
if (a_is_pos) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return ub(j).x;
|
||||
}
|
||||
strict = !is_zero(lb(j).y);
|
||||
return lb(j).x;
|
||||
}
|
||||
mpq monoid_max(const mpq & a, unsigned j) const {
|
||||
if (is_pos(a)) {
|
||||
return a * ub(j).x;
|
||||
}
|
||||
return a * lb(j).x;
|
||||
}
|
||||
mpq monoid_max(const mpq & a, unsigned j, bool & strict) const {
|
||||
if (is_pos(a)) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return a * ub(j).x;
|
||||
}
|
||||
strict = !is_zero(lb(j).y);
|
||||
return a * lb(j).x;
|
||||
}
|
||||
const mpq & monoid_min_no_mult(bool a_is_pos, unsigned j, bool & strict) const {
|
||||
if (!a_is_pos) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return ub(j).x;
|
||||
}
|
||||
strict = !is_zero(lb(j).y);
|
||||
return lb(j).x;
|
||||
}
|
||||
|
||||
mpq monoid_min(const mpq & a, unsigned j, bool& strict) const {
|
||||
if (is_neg(a)) {
|
||||
strict = !is_zero(ub(j).y);
|
||||
return a * ub(j).x;
|
||||
}
|
||||
|
||||
strict = !is_zero(lb(j).y);
|
||||
return a * lb(j).x;
|
||||
}
|
||||
|
||||
mpq monoid_min(const mpq & a, unsigned j) const {
|
||||
if (is_neg(a)) {
|
||||
return a * ub(j).x;
|
||||
}
|
||||
|
||||
return a * lb(j).x;
|
||||
}
|
||||
|
||||
|
||||
void limit_all_monoids_from_above() {
|
||||
int strict = 0;
|
||||
mpq total;
|
||||
lean_assert(is_zero(total));
|
||||
m_it.reset();
|
||||
mpq a; unsigned j;
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
total -= monoid_min(a, j, str);
|
||||
if (str)
|
||||
strict++;
|
||||
}
|
||||
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
bool a_is_pos = is_pos(a);
|
||||
mpq bound = total / a + monoid_min_no_mult(a_is_pos, j, str);
|
||||
if (a_is_pos) {
|
||||
limit_j(j, bound, true, false, strict - static_cast<int>(str) > 0);
|
||||
}
|
||||
else {
|
||||
limit_j(j, bound, false, true, strict - static_cast<int>(str) > 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_all_monoids_from_below() {
|
||||
int strict = 0;
|
||||
mpq total;
|
||||
lean_assert(is_zero(total));
|
||||
m_it.reset();
|
||||
mpq a; unsigned j;
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
total -= monoid_max(a, j, str);
|
||||
if (str)
|
||||
strict++;
|
||||
}
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
bool str;
|
||||
bool a_is_pos = is_pos(a);
|
||||
mpq bound = total / a + monoid_max_no_mult(a_is_pos, j, str);
|
||||
bool astrict = strict - static_cast<int>(str) > 0;
|
||||
if (a_is_pos) {
|
||||
limit_j(j, bound, true, true, astrict);
|
||||
}
|
||||
else {
|
||||
limit_j(j, bound, false, false, astrict);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void limit_monoid_u_from_below() {
|
||||
// we are going to limit from below the monoid m_column_of_u,
|
||||
// every other monoid is impossible to limit from below
|
||||
mpq u_coeff, a;
|
||||
unsigned j;
|
||||
mpq bound = -m_rs.x;
|
||||
m_it.reset();
|
||||
bool strict = false;
|
||||
while (m_it.next(a, j)) {
|
||||
if (j == static_cast<unsigned>(m_column_of_u)) {
|
||||
u_coeff = a;
|
||||
continue;
|
||||
}
|
||||
bool str;
|
||||
bound -= monoid_max(a, j, str);
|
||||
if (str)
|
||||
strict = true;
|
||||
}
|
||||
|
||||
bound /= u_coeff;
|
||||
|
||||
if (numeric_traits<impq>::is_pos(u_coeff)) {
|
||||
limit_j(m_column_of_u, bound, true, true, strict);
|
||||
} else {
|
||||
limit_j(m_column_of_u, bound, false, false, strict);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void limit_monoid_l_from_above() {
|
||||
// we are going to limit from above the monoid m_column_of_l,
|
||||
// every other monoid is impossible to limit from above
|
||||
mpq l_coeff, a;
|
||||
unsigned j;
|
||||
mpq bound = -m_rs.x;
|
||||
bool strict = false;
|
||||
m_it.reset();
|
||||
while (m_it.next(a, j)) {
|
||||
if (j == static_cast<unsigned>(m_column_of_l)) {
|
||||
l_coeff = a;
|
||||
continue;
|
||||
}
|
||||
|
||||
bool str;
|
||||
bound -= monoid_min(a, j, str);
|
||||
if (str)
|
||||
strict = true;
|
||||
}
|
||||
|
||||
bound /= l_coeff;
|
||||
if (is_pos(l_coeff)) {
|
||||
limit_j(m_column_of_l, bound, true, false, strict);
|
||||
} else {
|
||||
limit_j(m_column_of_l, bound, false, true, strict);
|
||||
}
|
||||
}
|
||||
|
||||
// // it is the coefficent before the bounded column
|
||||
// void provide_evidence(bool coeff_is_pos) {
|
||||
// /*
|
||||
// auto & be = m_ibounds.back();
|
||||
// bool low_bound = be.m_low_bound;
|
||||
// if (!coeff_is_pos)
|
||||
// low_bound = !low_bound;
|
||||
// auto it = m_it.clone();
|
||||
// mpq a; unsigned j;
|
||||
// while (it->next(a, j)) {
|
||||
// if (be.m_j == j) continue;
|
||||
// lean_assert(bound_is_available(j, is_neg(a) ? low_bound : !low_bound));
|
||||
// be.m_vector_of_bound_signatures.emplace_back(a, j, numeric_traits<impq>::
|
||||
// is_neg(a)? low_bound: !low_bound);
|
||||
// }
|
||||
// delete it;
|
||||
// */
|
||||
// }
|
||||
|
||||
void limit_j(unsigned j, const mpq& u, bool coeff_before_j_is_pos, bool is_low_bound, bool strict){
|
||||
m_bp.try_add_bound(u, j, is_low_bound, coeff_before_j_is_pos, m_row_or_term_index, strict);
|
||||
}
|
||||
|
||||
|
||||
void advance_u(unsigned j) {
|
||||
if (m_column_of_u == -1)
|
||||
m_column_of_u = j;
|
||||
else
|
||||
m_column_of_u = -2;
|
||||
}
|
||||
|
||||
void advance_l(unsigned j) {
|
||||
if (m_column_of_l == -1)
|
||||
m_column_of_l = j;
|
||||
else
|
||||
m_column_of_l = -2;
|
||||
}
|
||||
|
||||
void analyze_bound_on_var_on_coeff(int j, const mpq &a) {
|
||||
switch (m_bp.get_column_type(j)) {
|
||||
case column_type::low_bound:
|
||||
if (numeric_traits<mpq>::is_pos(a))
|
||||
advance_u(j);
|
||||
else
|
||||
advance_l(j);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if(numeric_traits<mpq>::is_neg(a))
|
||||
advance_u(j);
|
||||
else
|
||||
advance_l(j);
|
||||
break;
|
||||
case column_type::free_column:
|
||||
advance_u(j);
|
||||
advance_l(j);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void analyze_row(linear_combination_iterator<mpq> &it,
|
||||
const numeric_pair<mpq>& rs,
|
||||
unsigned row_or_term_index,
|
||||
bound_propagator & bp
|
||||
) {
|
||||
bound_analyzer_on_row a(it, rs, row_or_term_index, bp);
|
||||
a.analyze();
|
||||
}
|
||||
|
||||
};
|
||||
}
|
47
src/util/lp/bound_propagator.cpp
Normal file
47
src/util/lp/bound_propagator.cpp
Normal file
|
@ -0,0 +1,47 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lar_solver.h"
|
||||
namespace lean {
|
||||
bound_propagator::bound_propagator(lar_solver & ls):
|
||||
m_lar_solver(ls) {}
|
||||
column_type bound_propagator::get_column_type(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_column_types()[j];
|
||||
}
|
||||
const impq & bound_propagator::get_low_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_low_bounds()[j];
|
||||
}
|
||||
const impq & bound_propagator::get_upper_bound(unsigned j) const {
|
||||
return m_lar_solver.m_mpq_lar_core_solver.m_r_upper_bounds()[j];
|
||||
}
|
||||
void bound_propagator::try_add_bound(const mpq & v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict) {
|
||||
j = m_lar_solver.adjust_column_index_to_term_index(j);
|
||||
lconstraint_kind kind = is_low? GE : LE;
|
||||
if (strict)
|
||||
kind = static_cast<lconstraint_kind>(kind / 2);
|
||||
|
||||
if (!bound_is_interesting(j, kind, v))
|
||||
return;
|
||||
unsigned k; // index to ibounds
|
||||
if (is_low) {
|
||||
if (try_get_val(m_improved_low_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (v > found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict))
|
||||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
} else {
|
||||
m_improved_low_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
}
|
||||
} else { // the upper bound case
|
||||
if (try_get_val(m_improved_upper_bounds, j, k)) {
|
||||
auto & found_bound = m_ibounds[k];
|
||||
if (v < found_bound.m_bound || (v == found_bound.m_bound && found_bound.m_strict == false && strict))
|
||||
found_bound = implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict);
|
||||
} else {
|
||||
m_improved_upper_bounds[j] = m_ibounds.size();
|
||||
m_ibounds.push_back(implied_bound(v, j, is_low, coeff_before_j_is_pos, row_or_term_index, strict));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
27
src/util/lp/bound_propagator.h
Normal file
27
src/util/lp/bound_propagator.h
Normal file
|
@ -0,0 +1,27 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
class lar_solver;
|
||||
class bound_propagator {
|
||||
std::unordered_map<unsigned, unsigned> m_improved_low_bounds; // these maps map a column index to the corresponding index in ibounds
|
||||
std::unordered_map<unsigned, unsigned> m_improved_upper_bounds;
|
||||
lar_solver & m_lar_solver;
|
||||
public:
|
||||
vector<implied_bound> m_ibounds;
|
||||
public:
|
||||
bound_propagator(lar_solver & ls);
|
||||
column_type get_column_type(unsigned) const;
|
||||
const impq & get_low_bound(unsigned) const;
|
||||
const impq & get_upper_bound(unsigned) const;
|
||||
void try_add_bound(const mpq & v, unsigned j, bool is_low, bool coeff_before_j_is_pos, unsigned row_or_term_index, bool strict);
|
||||
virtual bool bound_is_interesting(unsigned vi,
|
||||
lean::lconstraint_kind kind,
|
||||
const rational & bval) {return true;}
|
||||
unsigned number_of_found_bounds() const { return m_ibounds.size(); }
|
||||
virtual void consume(mpq const& v, unsigned j) { std::cout << "doh\n"; }
|
||||
};
|
||||
}
|
20
src/util/lp/breakpoint.h
Normal file
20
src/util/lp/breakpoint.h
Normal file
|
@ -0,0 +1,20 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace lean {
|
||||
enum breakpoint_type {
|
||||
low_break, upper_break, fixed_break
|
||||
};
|
||||
template <typename X>
|
||||
struct breakpoint {
|
||||
unsigned m_j; // the basic column
|
||||
breakpoint_type m_type;
|
||||
X m_delta;
|
||||
breakpoint(){}
|
||||
breakpoint(unsigned j, X delta, breakpoint_type type):m_j(j), m_type(type), m_delta(delta) {}
|
||||
};
|
||||
}
|
235
src/util/lp/column_info.h
Normal file
235
src/util/lp/column_info.h
Normal file
|
@ -0,0 +1,235 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
inline bool is_valid(unsigned j) { return static_cast<int>(j) >= 0;}
|
||||
|
||||
template <typename T>
|
||||
class column_info {
|
||||
std::string m_name;
|
||||
bool m_low_bound_is_set = false;
|
||||
bool m_low_bound_is_strict = false;
|
||||
bool m_upper_bound_is_set = false;
|
||||
bool m_upper_bound_is_strict = false;
|
||||
T m_low_bound;
|
||||
T m_upper_bound;
|
||||
T m_cost = numeric_traits<T>::zero();
|
||||
T m_fixed_value;
|
||||
bool m_is_fixed = false;
|
||||
unsigned m_column_index = static_cast<unsigned>(-1);
|
||||
public:
|
||||
bool operator==(const column_info & c) const {
|
||||
return m_name == c.m_name &&
|
||||
m_low_bound_is_set == c.m_low_bound_is_set &&
|
||||
m_low_bound_is_strict == c.m_low_bound_is_strict &&
|
||||
m_upper_bound_is_set == c.m_upper_bound_is_set&&
|
||||
m_upper_bound_is_strict == c.m_upper_bound_is_strict&&
|
||||
(!m_low_bound_is_set || m_low_bound == c.m_low_bound) &&
|
||||
(!m_upper_bound_is_set || m_upper_bound == c.m_upper_bound) &&
|
||||
m_cost == c.m_cost&&
|
||||
m_is_fixed == c.m_is_fixed &&
|
||||
(!m_is_fixed || m_fixed_value == c.m_fixed_value) &&
|
||||
m_column_index == c.m_column_index;
|
||||
}
|
||||
bool operator!=(const column_info & c) const { return !((*this) == c); }
|
||||
void set_column_index(unsigned j) {
|
||||
m_column_index = j;
|
||||
}
|
||||
// the default constructor
|
||||
column_info() {}
|
||||
|
||||
column_info(unsigned column_index) : m_column_index(column_index) {
|
||||
}
|
||||
|
||||
column_info(const column_info & ci) {
|
||||
m_name = ci.m_name;
|
||||
m_low_bound_is_set = ci.m_low_bound_is_set;
|
||||
m_low_bound_is_strict = ci.m_low_bound_is_strict;
|
||||
m_upper_bound_is_set = ci.m_upper_bound_is_set;
|
||||
m_upper_bound_is_strict = ci.m_upper_bound_is_strict;
|
||||
m_low_bound = ci.m_low_bound;
|
||||
m_upper_bound = ci.m_upper_bound;
|
||||
m_cost = ci.m_cost;
|
||||
m_fixed_value = ci.m_fixed_value;
|
||||
m_is_fixed = ci.m_is_fixed;
|
||||
m_column_index = ci.m_column_index;
|
||||
}
|
||||
|
||||
unsigned get_column_index() const {
|
||||
return m_column_index;
|
||||
}
|
||||
|
||||
column_type get_column_type() const {
|
||||
return m_is_fixed? column_type::fixed : (m_low_bound_is_set? (m_upper_bound_is_set? column_type::boxed : column_type::low_bound) : (m_upper_bound_is_set? column_type::upper_bound: column_type::free_column));
|
||||
}
|
||||
|
||||
column_type get_column_type_no_flipping() const {
|
||||
if (m_is_fixed) {
|
||||
return column_type::fixed;
|
||||
}
|
||||
|
||||
if (m_low_bound_is_set) {
|
||||
return m_upper_bound_is_set? column_type::boxed: column_type::low_bound;
|
||||
}
|
||||
// we are flipping the bounds!
|
||||
return m_upper_bound_is_set? column_type::upper_bound
|
||||
: column_type::free_column;
|
||||
}
|
||||
|
||||
T get_low_bound() const {
|
||||
lean_assert(m_low_bound_is_set);
|
||||
return m_low_bound;
|
||||
}
|
||||
T get_upper_bound() const {
|
||||
lean_assert(m_upper_bound_is_set);
|
||||
return m_upper_bound;
|
||||
}
|
||||
|
||||
bool low_bound_is_set() const {
|
||||
return m_low_bound_is_set;
|
||||
}
|
||||
|
||||
bool upper_bound_is_set() const {
|
||||
return m_upper_bound_is_set;
|
||||
}
|
||||
|
||||
T get_shift() {
|
||||
if (is_fixed()) {
|
||||
return m_fixed_value;
|
||||
}
|
||||
if (is_flipped()){
|
||||
return m_upper_bound;
|
||||
}
|
||||
return m_low_bound_is_set? m_low_bound : numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
bool is_flipped() {
|
||||
return m_upper_bound_is_set && !m_low_bound_is_set;
|
||||
}
|
||||
|
||||
bool adjusted_low_bound_is_set() {
|
||||
return !is_flipped()? low_bound_is_set(): upper_bound_is_set();
|
||||
}
|
||||
|
||||
bool adjusted_upper_bound_is_set() {
|
||||
return !is_flipped()? upper_bound_is_set(): low_bound_is_set();
|
||||
}
|
||||
|
||||
T get_adjusted_upper_bound() {
|
||||
return get_upper_bound() - get_low_bound();
|
||||
}
|
||||
|
||||
bool is_fixed() const {
|
||||
return m_is_fixed;
|
||||
}
|
||||
|
||||
bool is_free() {
|
||||
return !m_low_bound_is_set && !m_upper_bound_is_set;
|
||||
}
|
||||
|
||||
void set_fixed_value(T v) {
|
||||
m_is_fixed = true;
|
||||
m_fixed_value = v;
|
||||
}
|
||||
|
||||
T get_fixed_value() const {
|
||||
lean_assert(m_is_fixed);
|
||||
return m_fixed_value;
|
||||
}
|
||||
|
||||
T get_cost() const {
|
||||
return m_cost;
|
||||
}
|
||||
|
||||
void set_cost(T const & cost) {
|
||||
m_cost = cost;
|
||||
}
|
||||
|
||||
void set_name(std::string const & s) {
|
||||
m_name = s;
|
||||
}
|
||||
|
||||
std::string get_name() const {
|
||||
return m_name;
|
||||
}
|
||||
|
||||
void set_low_bound(T const & l) {
|
||||
m_low_bound = l;
|
||||
m_low_bound_is_set = true;
|
||||
}
|
||||
|
||||
void set_upper_bound(T const & l) {
|
||||
m_upper_bound = l;
|
||||
m_upper_bound_is_set = true;
|
||||
}
|
||||
|
||||
void unset_low_bound() {
|
||||
m_low_bound_is_set = false;
|
||||
}
|
||||
|
||||
void unset_upper_bound() {
|
||||
m_upper_bound_is_set = false;
|
||||
}
|
||||
|
||||
void unset_fixed() {
|
||||
m_is_fixed = false;
|
||||
}
|
||||
|
||||
bool low_bound_holds(T v) {
|
||||
return !low_bound_is_set() || v >= m_low_bound -T(0.0000001);
|
||||
}
|
||||
|
||||
bool upper_bound_holds(T v) {
|
||||
return !upper_bound_is_set() || v <= m_upper_bound + T(0.000001);
|
||||
}
|
||||
|
||||
bool bounds_hold(T v) {
|
||||
return low_bound_holds(v) && upper_bound_holds(v);
|
||||
}
|
||||
|
||||
bool adjusted_bounds_hold(T v) {
|
||||
return adjusted_low_bound_holds(v) && adjusted_upper_bound_holds(v);
|
||||
}
|
||||
|
||||
bool adjusted_low_bound_holds(T v) {
|
||||
return !adjusted_low_bound_is_set() || v >= -T(0.0000001);
|
||||
}
|
||||
|
||||
bool adjusted_upper_bound_holds(T v) {
|
||||
return !adjusted_upper_bound_is_set() || v <= get_adjusted_upper_bound() + T(0.000001);
|
||||
}
|
||||
bool is_infeasible() {
|
||||
if ((!upper_bound_is_set()) || (!low_bound_is_set()))
|
||||
return false;
|
||||
// ok, both bounds are set
|
||||
bool at_least_one_is_strict = upper_bound_is_strict() || low_bound_is_strict();
|
||||
if (!at_least_one_is_strict)
|
||||
return get_upper_bound() < get_low_bound();
|
||||
// at least on bound is strict
|
||||
return get_upper_bound() <= get_low_bound(); // the equality is impossible
|
||||
}
|
||||
bool low_bound_is_strict() const {
|
||||
return m_low_bound_is_strict;
|
||||
}
|
||||
|
||||
void set_low_bound_strict(bool val) {
|
||||
m_low_bound_is_strict = val;
|
||||
}
|
||||
|
||||
bool upper_bound_is_strict() const {
|
||||
return m_upper_bound_is_strict;
|
||||
}
|
||||
|
||||
void set_upper_bound_strict(bool val) {
|
||||
m_upper_bound_is_strict = val;
|
||||
}
|
||||
};
|
||||
}
|
82
src/util/lp/column_namer.h
Normal file
82
src/util/lp/column_namer.h
Normal file
|
@ -0,0 +1,82 @@
|
|||
#pragma once
|
||||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lean {
|
||||
class column_namer {
|
||||
public:
|
||||
virtual std::string get_column_name(unsigned j) const = 0;
|
||||
template <typename T>
|
||||
void print_linear_iterator(linear_combination_iterator<T>* it, std::ostream & out) const {
|
||||
vector<std::pair<T, unsigned>> coeff;
|
||||
T a;
|
||||
unsigned i;
|
||||
while (it->next(a, i)) {
|
||||
coeff.emplace_back(a, i);
|
||||
}
|
||||
print_linear_combination_of_column_indices(coeff, out);
|
||||
}
|
||||
template <typename T>
|
||||
void print_linear_iterator_indices_only(linear_combination_iterator<T>* it, std::ostream & out) const {
|
||||
vector<std::pair<T, unsigned>> coeff;
|
||||
T a;
|
||||
unsigned i;
|
||||
while (it->next(a, i)) {
|
||||
coeff.emplace_back(a, i);
|
||||
}
|
||||
print_linear_combination_of_column_indices_only(coeff, out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_linear_combination_of_column_indices_only(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
|
||||
bool first = true;
|
||||
for (const auto & it : coeffs) {
|
||||
auto val = it.first;
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
if (numeric_traits<T>::is_pos(val)) {
|
||||
out << " + ";
|
||||
} else {
|
||||
out << " - ";
|
||||
val = -val;
|
||||
}
|
||||
}
|
||||
if (val == -numeric_traits<T>::one())
|
||||
out << " - ";
|
||||
else if (val != numeric_traits<T>::one())
|
||||
out << T_to_string(val);
|
||||
|
||||
out << "_" << it.second;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_linear_combination_of_column_indices(const vector<std::pair<T, unsigned>> & coeffs, std::ostream & out) const {
|
||||
bool first = true;
|
||||
for (const auto & it : coeffs) {
|
||||
auto val = it.first;
|
||||
if (first) {
|
||||
first = false;
|
||||
} else {
|
||||
if (numeric_traits<T>::is_pos(val)) {
|
||||
out << " + ";
|
||||
} else {
|
||||
out << " - ";
|
||||
val = -val;
|
||||
}
|
||||
}
|
||||
if (val == -numeric_traits<T>::one())
|
||||
out << " - ";
|
||||
else if (val != numeric_traits<T>::one())
|
||||
out << val;
|
||||
|
||||
out << get_column_name(it.second);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
118
src/util/lp/core_solver_pretty_printer.h
Normal file
118
src/util/lp/core_solver_pretty_printer.h
Normal file
|
@ -0,0 +1,118 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <limits>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/vector.h"
|
||||
#include <ostream>
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X> class lp_core_solver_base; // forward definition
|
||||
|
||||
template <typename T, typename X>
|
||||
class core_solver_pretty_printer {
|
||||
std::ostream & m_out;
|
||||
template<typename A> using vector = vector<A>;
|
||||
typedef std::string string;
|
||||
lp_core_solver_base<T, X> & m_core_solver;
|
||||
vector<unsigned> m_column_widths;
|
||||
vector<vector<string>> m_A;
|
||||
vector<vector<string>> m_signs;
|
||||
vector<string> m_costs;
|
||||
vector<string> m_cost_signs;
|
||||
vector<string> m_lows; // low bounds
|
||||
vector<string> m_upps; // upper bounds
|
||||
vector<string> m_lows_signs;
|
||||
vector<string> m_upps_signs;
|
||||
unsigned m_rs_width;
|
||||
vector<X> m_rs;
|
||||
unsigned m_title_width;
|
||||
std::string m_cost_title;
|
||||
std::string m_basis_heading_title;
|
||||
std::string m_x_title;
|
||||
std::string m_low_bounds_title = "low";
|
||||
std::string m_upp_bounds_title = "upp";
|
||||
std::string m_exact_norm_title = "exact cn";
|
||||
std::string m_approx_norm_title = "approx cn";
|
||||
|
||||
|
||||
unsigned ncols() { return m_core_solver.m_A.column_count(); }
|
||||
unsigned nrows() { return m_core_solver.m_A.row_count(); }
|
||||
unsigned m_artificial_start = std::numeric_limits<unsigned>::max();
|
||||
indexed_vector<T> m_w_buff;
|
||||
indexed_vector<T> m_ed_buff;
|
||||
vector<T> m_exact_column_norms;
|
||||
|
||||
public:
|
||||
core_solver_pretty_printer(lp_core_solver_base<T, X > & core_solver, std::ostream & out);
|
||||
|
||||
void init_costs();
|
||||
|
||||
~core_solver_pretty_printer();
|
||||
void init_rs_width();
|
||||
|
||||
T current_column_norm();
|
||||
|
||||
void init_m_A_and_signs();
|
||||
|
||||
void init_column_widths();
|
||||
|
||||
void adjust_width_with_low_bound(unsigned column, unsigned & w);
|
||||
void adjust_width_with_upper_bound(unsigned column, unsigned & w);
|
||||
|
||||
void adjust_width_with_bounds(unsigned column, unsigned & w);
|
||||
|
||||
void adjust_width_with_basis_heading(unsigned column, unsigned & w) {
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.m_basis_heading[column]).size());
|
||||
}
|
||||
|
||||
unsigned get_column_width(unsigned column);
|
||||
|
||||
unsigned regular_cell_width(unsigned row, unsigned column, std::string name) {
|
||||
return regular_cell_string(row, column, name).size();
|
||||
}
|
||||
|
||||
std::string regular_cell_string(unsigned row, unsigned column, std::string name);
|
||||
|
||||
|
||||
void set_coeff(vector<string>& row, vector<string> & row_signs, unsigned col, const T & t, string name);
|
||||
|
||||
void print_x();
|
||||
|
||||
std::string get_low_bound_string(unsigned j);
|
||||
|
||||
std::string get_upp_bound_string(unsigned j);
|
||||
|
||||
|
||||
void print_lows();
|
||||
|
||||
void print_upps();
|
||||
|
||||
string get_exact_column_norm_string(unsigned col) {
|
||||
return T_to_string(m_exact_column_norms[col]);
|
||||
}
|
||||
|
||||
void print_exact_norms();
|
||||
|
||||
void print_approx_norms();
|
||||
|
||||
void print();
|
||||
|
||||
void print_basis_heading();
|
||||
|
||||
void print_bottom_line() {
|
||||
m_out << "----------------------" << std::endl;
|
||||
}
|
||||
|
||||
void print_cost();
|
||||
|
||||
void print_given_rows(vector<string> & row, vector<string> & signs, X rst);
|
||||
|
||||
void print_row(unsigned i);
|
||||
|
||||
};
|
||||
}
|
377
src/util/lp/core_solver_pretty_printer.hpp
Normal file
377
src/util/lp/core_solver_pretty_printer.hpp
Normal file
|
@ -0,0 +1,377 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <limits>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include "util/lp/core_solver_pretty_printer.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
namespace lean {
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
core_solver_pretty_printer<T, X>::core_solver_pretty_printer(lp_core_solver_base<T, X > & core_solver, std::ostream & out):
|
||||
m_out(out),
|
||||
m_core_solver(core_solver),
|
||||
m_A(core_solver.m_A.row_count(), vector<string>(core_solver.m_A.column_count(), "")),
|
||||
m_signs(core_solver.m_A.row_count(), vector<string>(core_solver.m_A.column_count(), " ")),
|
||||
m_costs(ncols(), ""),
|
||||
m_cost_signs(ncols(), " "),
|
||||
m_rs(ncols(), zero_of_type<X>()),
|
||||
m_w_buff(core_solver.m_w),
|
||||
m_ed_buff(core_solver.m_ed) {
|
||||
m_column_widths.resize(core_solver.m_A.column_count(), 0),
|
||||
init_m_A_and_signs();
|
||||
init_costs();
|
||||
init_column_widths();
|
||||
init_rs_width();
|
||||
m_cost_title = "costs";
|
||||
m_basis_heading_title = "heading";
|
||||
m_x_title = "x*";
|
||||
m_title_width = static_cast<unsigned>(std::max(std::max(m_cost_title.size(), std::max(m_basis_heading_title.size(), m_x_title.size())), m_approx_norm_title.size()));
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_costs() {
|
||||
if (!m_core_solver.use_tableau()) {
|
||||
vector<T> local_y(m_core_solver.m_m());
|
||||
m_core_solver.solve_yB(local_y);
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
if (m_core_solver.m_basis_heading[i] < 0) {
|
||||
T t = m_core_solver.m_costs[i] - m_core_solver.m_A.dot_product_with_column(local_y, i);
|
||||
set_coeff(m_costs, m_cost_signs, i, t, m_core_solver.column_name(i));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
if (m_core_solver.m_basis_heading[i] < 0) {
|
||||
set_coeff(m_costs, m_cost_signs, i, m_core_solver.m_d[i], m_core_solver.column_name(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> core_solver_pretty_printer<T, X>::~core_solver_pretty_printer() {
|
||||
m_core_solver.m_w = m_w_buff;
|
||||
m_core_solver.m_ed = m_ed_buff;
|
||||
}
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_rs_width() {
|
||||
m_rs_width = static_cast<unsigned>(T_to_string(m_core_solver.get_cost()).size());
|
||||
for (unsigned i = 0; i < nrows(); i++) {
|
||||
unsigned wt = static_cast<unsigned>(T_to_string(m_rs[i]).size());
|
||||
if (wt > m_rs_width) {
|
||||
m_rs_width = wt;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> T core_solver_pretty_printer<T, X>::current_column_norm() {
|
||||
T ret = zero_of_type<T>();
|
||||
for (auto i : m_core_solver.m_ed.m_index)
|
||||
ret += m_core_solver.m_ed[i] * m_core_solver.m_ed[i];
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_m_A_and_signs() {
|
||||
if (numeric_traits<T>::precise() && m_core_solver.m_settings.use_tableau()) {
|
||||
for (unsigned column = 0; column < ncols(); column++) {
|
||||
vector<T> t(nrows(), zero_of_type<T>());
|
||||
for (const auto & c : m_core_solver.m_A.m_columns[column]){
|
||||
t[c.m_i] = m_core_solver.m_A.get_val(c);
|
||||
}
|
||||
|
||||
string name = m_core_solver.column_name(column);
|
||||
for (unsigned row = 0; row < nrows(); row ++) {
|
||||
set_coeff(
|
||||
m_A[row],
|
||||
m_signs[row],
|
||||
column,
|
||||
t[row],
|
||||
name);
|
||||
m_rs[row] += t[row] * m_core_solver.m_x[column];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned column = 0; column < ncols(); column++) {
|
||||
m_core_solver.solve_Bd(column); // puts the result into m_core_solver.m_ed
|
||||
string name = m_core_solver.column_name(column);
|
||||
for (unsigned row = 0; row < nrows(); row ++) {
|
||||
set_coeff(
|
||||
m_A[row],
|
||||
m_signs[row],
|
||||
column,
|
||||
m_core_solver.m_ed[row],
|
||||
name);
|
||||
m_rs[row] += m_core_solver.m_ed[row] * m_core_solver.m_x[column];
|
||||
}
|
||||
if (!m_core_solver.use_tableau())
|
||||
m_exact_column_norms.push_back(current_column_norm() + T(1)); // a conversion missing 1 -> T
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::init_column_widths() {
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
m_column_widths[i] = get_column_width(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_low_bound(unsigned column, unsigned & w) {
|
||||
if (!m_core_solver.low_bounds_are_set()) return;
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.low_bound_value(column)).size());
|
||||
}
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_upper_bound(unsigned column, unsigned & w) {
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.upper_bound_value(column)).size());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::adjust_width_with_bounds(unsigned column, unsigned & w) {
|
||||
switch (m_core_solver.get_column_type(column)) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
adjust_width_with_low_bound(column, w);
|
||||
adjust_width_with_upper_bound(column, w);
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
adjust_width_with_low_bound(column, w);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
adjust_width_with_upper_bound(column, w);
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> unsigned core_solver_pretty_printer<T, X>:: get_column_width(unsigned column) {
|
||||
unsigned w = static_cast<unsigned>(std::max((size_t)m_costs[column].size(), T_to_string(m_core_solver.m_x[column]).size()));
|
||||
adjust_width_with_bounds(column, w);
|
||||
adjust_width_with_basis_heading(column, w);
|
||||
for (unsigned i = 0; i < nrows(); i++) {
|
||||
unsigned cellw = static_cast<unsigned>(m_A[i][column].size());
|
||||
if (cellw > w) {
|
||||
w = cellw;
|
||||
}
|
||||
}
|
||||
if (!m_core_solver.use_tableau()) {
|
||||
w = std::max(w, (unsigned)T_to_string(m_exact_column_norms[column]).size());
|
||||
if (m_core_solver.m_column_norms.size() > 0)
|
||||
w = std::max(w, (unsigned)T_to_string(m_core_solver.m_column_norms[column]).size());
|
||||
}
|
||||
return w;
|
||||
}
|
||||
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::regular_cell_string(unsigned row, unsigned /* column */, std::string name) {
|
||||
T t = fabs(m_core_solver.m_ed[row]);
|
||||
if ( t == 1) return name;
|
||||
return T_to_string(t) + name;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::set_coeff(vector<string>& row, vector<string> & row_signs, unsigned col, const T & t, string name) {
|
||||
if (numeric_traits<T>::is_zero(t)) {
|
||||
return;
|
||||
}
|
||||
if (col > 0) {
|
||||
if (t > 0) {
|
||||
row_signs[col] = "+";
|
||||
row[col] = t != 1? T_to_string(t) + name : name;
|
||||
} else {
|
||||
row_signs[col] = "-";
|
||||
row[col] = t != -1? T_to_string(-t) + name: name;
|
||||
}
|
||||
} else { // col == 0
|
||||
if (t == -1) {
|
||||
row[col] = "-" + name;
|
||||
} else if (t == 1) {
|
||||
row[col] = name;
|
||||
} else {
|
||||
row[col] = T_to_string(t) + name;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_x() {
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_x_title.size());
|
||||
m_out << m_x_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
auto bh = m_core_solver.m_x;
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = T_to_string(bh[i]);
|
||||
int blanks = m_column_widths[i] - static_cast<int>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::get_low_bound_string(unsigned j) {
|
||||
switch (m_core_solver.get_column_type(j)){
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
case column_type::fixed:
|
||||
if (m_core_solver.low_bounds_are_set())
|
||||
return T_to_string(m_core_solver.low_bound_value(j));
|
||||
else
|
||||
return std::string("0");
|
||||
break;
|
||||
default:
|
||||
return std::string();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> std::string core_solver_pretty_printer<T, X>::get_upp_bound_string(unsigned j) {
|
||||
switch (m_core_solver.get_column_type(j)){
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
case column_type::fixed:
|
||||
return T_to_string(m_core_solver.upper_bound_value(j));
|
||||
break;
|
||||
default:
|
||||
return std::string();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_lows() {
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
int blanks = m_title_width + 1 - static_cast<unsigned>(m_low_bounds_title.size());
|
||||
m_out << m_low_bounds_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = get_low_bound_string(i);
|
||||
int blanks = m_column_widths[i] - static_cast<unsigned>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_upps() {
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
int blanks = m_title_width + 1 - static_cast<unsigned>(m_upp_bounds_title.size());
|
||||
m_out << m_upp_bounds_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = get_upp_bound_string(i);
|
||||
int blanks = m_column_widths[i] - static_cast<unsigned>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_exact_norms() {
|
||||
if (m_core_solver.use_tableau()) return;
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_exact_norm_title.size());
|
||||
m_out << m_exact_norm_title;
|
||||
print_blanks(blanks, m_out);
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = get_exact_column_norm_string(i);
|
||||
int blanks = m_column_widths[i] - static_cast<int>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " ";
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_approx_norms() {
|
||||
if (m_core_solver.use_tableau()) return;
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_approx_norm_title.size());
|
||||
m_out << m_approx_norm_title;
|
||||
print_blanks(blanks, m_out);
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = T_to_string(m_core_solver.m_column_norms[i]);
|
||||
int blanks = m_column_widths[i] - static_cast<int>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " ";
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print() {
|
||||
for (unsigned i = 0; i < nrows(); i++) {
|
||||
print_row(i);
|
||||
}
|
||||
print_bottom_line();
|
||||
print_cost();
|
||||
print_x();
|
||||
print_basis_heading();
|
||||
print_lows();
|
||||
print_upps();
|
||||
print_exact_norms();
|
||||
if (m_core_solver.m_column_norms.size() > 0)
|
||||
print_approx_norms();
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_basis_heading() {
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_basis_heading_title.size());
|
||||
m_out << m_basis_heading_title;
|
||||
print_blanks(blanks, m_out);
|
||||
|
||||
if (ncols() == 0) {
|
||||
return;
|
||||
}
|
||||
auto bh = m_core_solver.m_basis_heading;
|
||||
for (unsigned i = 0; i < ncols(); i++) {
|
||||
string s = T_to_string(bh[i]);
|
||||
int blanks = m_column_widths[i] - static_cast<unsigned>(s.size());
|
||||
print_blanks(blanks, m_out);
|
||||
m_out << s << " "; // the column interval
|
||||
}
|
||||
m_out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_cost() {
|
||||
int blanks = m_title_width + 1 - static_cast<int>(m_cost_title.size());
|
||||
m_out << m_cost_title;
|
||||
print_blanks(blanks, m_out);
|
||||
print_given_rows(m_costs, m_cost_signs, m_core_solver.get_cost());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_given_rows(vector<string> & row, vector<string> & signs, X rst) {
|
||||
for (unsigned col = 0; col < row.size(); col++) {
|
||||
unsigned width = m_column_widths[col];
|
||||
string s = row[col];
|
||||
int number_of_blanks = width - static_cast<unsigned>(s.size());
|
||||
lean_assert(number_of_blanks >= 0);
|
||||
print_blanks(number_of_blanks, m_out);
|
||||
m_out << s << ' ';
|
||||
if (col < row.size() - 1) {
|
||||
m_out << signs[col + 1] << ' ';
|
||||
}
|
||||
}
|
||||
m_out << '=';
|
||||
|
||||
string rs = T_to_string(rst);
|
||||
int nb = m_rs_width - static_cast<int>(rs.size());
|
||||
lean_assert(nb >= 0);
|
||||
print_blanks(nb + 1, m_out);
|
||||
m_out << rs << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void core_solver_pretty_printer<T, X>::print_row(unsigned i){
|
||||
print_blanks(m_title_width + 1, m_out);
|
||||
auto row = m_A[i];
|
||||
auto sign_row = m_signs[i];
|
||||
auto rs = m_rs[i];
|
||||
print_given_rows(row, sign_row, rs);
|
||||
}
|
||||
}
|
15
src/util/lp/core_solver_pretty_printer_instances.cpp
Normal file
15
src/util/lp/core_solver_pretty_printer_instances.cpp
Normal file
|
@ -0,0 +1,15 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/core_solver_pretty_printer.hpp"
|
||||
template lean::core_solver_pretty_printer<double, double>::core_solver_pretty_printer(lean::lp_core_solver_base<double, double> &, std::ostream & out);
|
||||
template void lean::core_solver_pretty_printer<double, double>::print();
|
||||
template lean::core_solver_pretty_printer<double, double>::~core_solver_pretty_printer();
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::mpq>::core_solver_pretty_printer(lean::lp_core_solver_base<lean::mpq, lean::mpq> &, std::ostream & out);
|
||||
template void lean::core_solver_pretty_printer<lean::mpq, lean::mpq>::print();
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::mpq>::~core_solver_pretty_printer();
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::numeric_pair<lean::mpq> >::core_solver_pretty_printer(lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> > &, std::ostream & out);
|
||||
template lean::core_solver_pretty_printer<lean::mpq, lean::numeric_pair<lean::mpq> >::~core_solver_pretty_printer();
|
||||
template void lean::core_solver_pretty_printer<lean::mpq, lean::numeric_pair<lean::mpq> >::print();
|
92
src/util/lp/dense_matrix.h
Normal file
92
src/util/lp/dense_matrix.h
Normal file
|
@ -0,0 +1,92 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#ifdef LEAN_DEBUG
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/matrix.h"
|
||||
namespace lean {
|
||||
// used for debugging purposes only
|
||||
template <typename T, typename X>
|
||||
class dense_matrix: public matrix<T, X> {
|
||||
public:
|
||||
struct ref {
|
||||
unsigned m_i;
|
||||
dense_matrix & m_s;
|
||||
ref(unsigned i, dense_matrix & s) :m_i(i * s.m_n), m_s(s){}
|
||||
T & operator[] (unsigned j) {
|
||||
return m_s.m_values[m_i + j];
|
||||
}
|
||||
const T & operator[] (unsigned j) const {
|
||||
return m_s.m_v[m_i + j];
|
||||
}
|
||||
};
|
||||
ref operator[] (unsigned i) {
|
||||
return ref(i, *this);
|
||||
}
|
||||
unsigned m_m; // number of rows
|
||||
unsigned m_n; // number of const
|
||||
vector<T> m_values;
|
||||
dense_matrix(unsigned m, unsigned n);
|
||||
|
||||
dense_matrix operator*=(matrix<T, X> const & a) {
|
||||
lean_assert(column_count() == a.row_count());
|
||||
dense_matrix c(row_count(), a.column_count());
|
||||
for (unsigned i = 0; i < row_count(); i++) {
|
||||
for (unsigned j = 0; j < a.column_count(); j++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (unsigned k = 0; k < a.column_count(); k++) {
|
||||
v += get_elem(i, k) * a(k, j);
|
||||
}
|
||||
c.set_elem(i, j, v);
|
||||
}
|
||||
}
|
||||
*this = c;
|
||||
return *this;
|
||||
}
|
||||
|
||||
dense_matrix & operator=(matrix<T, X> const & other);
|
||||
|
||||
dense_matrix & operator=(dense_matrix const & other);
|
||||
|
||||
dense_matrix(matrix<T, X> const * other);
|
||||
void apply_from_right(T * w);
|
||||
|
||||
void apply_from_right(vector <T> & w);
|
||||
|
||||
T * apply_from_left_with_different_dims(vector<T> & w);
|
||||
void apply_from_left(vector<T> & w , lp_settings & ) { apply_from_left(w); }
|
||||
|
||||
void apply_from_left(vector<T> & w);
|
||||
|
||||
void apply_from_left(X * w, lp_settings & );
|
||||
|
||||
void apply_from_left_to_X(vector<X> & w, lp_settings & );
|
||||
|
||||
virtual void set_number_of_rows(unsigned /*m*/) {}
|
||||
virtual void set_number_of_columns(unsigned /*n*/) { }
|
||||
|
||||
T get_elem(unsigned i, unsigned j) const { return m_values[i * m_n + j]; }
|
||||
|
||||
unsigned row_count() const { return m_m; }
|
||||
unsigned column_count() const { return m_n; }
|
||||
|
||||
void set_elem(unsigned i, unsigned j, const T& val) { m_values[i * m_n + j] = val; }
|
||||
|
||||
// This method pivots row i to row i0 by muliplying row i by
|
||||
// alpha and adding it to row i0.
|
||||
void pivot_row_to_row(unsigned i, const T& alpha, unsigned i0,
|
||||
const double & pivot_epsilon);
|
||||
|
||||
void swap_columns(unsigned a, unsigned b);
|
||||
|
||||
void swap_rows(unsigned a, unsigned b);
|
||||
|
||||
void multiply_row_by_constant(unsigned row, T & t);
|
||||
|
||||
};
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> operator* (matrix<T, X> & a, matrix<T, X> & b);
|
||||
}
|
||||
#endif
|
186
src/util/lp/dense_matrix.hpp
Normal file
186
src/util/lp/dense_matrix.hpp
Normal file
|
@ -0,0 +1,186 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_settings.h"
|
||||
#ifdef LEAN_DEBUG
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/dense_matrix.h"
|
||||
namespace lean {
|
||||
template <typename T> void print_vector(const vector<T> & t, std::ostream & out);
|
||||
template <typename T, typename X> dense_matrix<T, X>::dense_matrix(unsigned m, unsigned n) : m_m(m), m_n(n), m_values(m * n, numeric_traits<T>::zero()) {
|
||||
}
|
||||
|
||||
template <typename T, typename X> dense_matrix<T, X>&
|
||||
dense_matrix<T, X>::operator=(matrix<T, X> const & other){
|
||||
if ( this == & other)
|
||||
return *this;
|
||||
m_values = new T[m_m * m_n];
|
||||
for (unsigned i = 0; i < m_m; i ++)
|
||||
for (unsigned j = 0; j < m_n; j++)
|
||||
m_values[i * m_n + j] = other.get_elem(i, j);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, typename X> dense_matrix<T, X>&
|
||||
dense_matrix<T, X>::operator=(dense_matrix const & other){
|
||||
if ( this == & other)
|
||||
return *this;
|
||||
m_m = other.m_m;
|
||||
m_n = other.m_n;
|
||||
m_values.resize(m_m * m_n);
|
||||
for (unsigned i = 0; i < m_m; i ++)
|
||||
for (unsigned j = 0; j < m_n; j++)
|
||||
m_values[i * m_n + j] = other.get_elem(i, j);
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T, typename X> dense_matrix<T, X>::dense_matrix(matrix<T, X> const * other) :
|
||||
m_m(other->row_count()),
|
||||
m_n(other->column_count()) {
|
||||
m_values.resize(m_m*m_n);
|
||||
for (unsigned i = 0; i < m_m; i++)
|
||||
for (unsigned j = 0; j < m_n; j++)
|
||||
m_values[i * m_n + j] = other->get_elem(i, j);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_right(T * w) {
|
||||
T * t = new T[m_m];
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (int j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(j, i);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_m; i++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
delete [] t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_right(vector <T> & w) {
|
||||
vector<T> t(m_m, numeric_traits<T>::zero());
|
||||
for (unsigned i = 0; i < m_m; i ++) {
|
||||
auto & v = t[i];
|
||||
for (unsigned j = 0; j < m_m; j++)
|
||||
v += w[j]* get_elem(j, i);
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_m; i++)
|
||||
w[i] = t[i];
|
||||
}
|
||||
|
||||
template <typename T, typename X> T* dense_matrix<T, X>::
|
||||
apply_from_left_with_different_dims(vector<T> & w) {
|
||||
T * t = new T[m_m];
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (int j = 0; j < m_n; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
return t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_left(vector<T> & w) {
|
||||
T * t = new T[m_m];
|
||||
for (unsigned i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (unsigned j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_m; i ++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
delete [] t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_left(X * w, lp_settings & ) {
|
||||
T * t = new T[m_m];
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (int j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
delete [] t;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::apply_from_left_to_X(vector<X> & w, lp_settings & ) {
|
||||
vector<X> t(m_m);
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
X v = zero_of_type<X>();
|
||||
for (int j = 0; j < m_m; j++) {
|
||||
v += w[j]* get_elem(i, j);
|
||||
}
|
||||
t[i] = v;
|
||||
}
|
||||
|
||||
for (int i = 0; i < m_m; i ++) {
|
||||
w[i] = t[i];
|
||||
}
|
||||
}
|
||||
|
||||
// This method pivots row i to row i0 by muliplying row i by
|
||||
// alpha and adding it to row i0.
|
||||
template <typename T, typename X> void dense_matrix<T, X>::pivot_row_to_row(unsigned i, const T& alpha, unsigned i0,
|
||||
const double & pivot_epsilon) {
|
||||
for (unsigned j = 0; j < m_n; j++) {
|
||||
m_values[i0 * m_n + j] += m_values[i * m_n + j] * alpha;
|
||||
if (fabs(m_values[i0 + m_n + j]) < pivot_epsilon) {
|
||||
m_values[i0 + m_n + j] = numeric_traits<T>::zero();;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::swap_columns(unsigned a, unsigned b) {
|
||||
for (unsigned i = 0; i < m_m; i++) {
|
||||
T t = get_elem(i, a);
|
||||
set_elem(i, a, get_elem(i, b));
|
||||
set_elem(i, b, t);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::swap_rows(unsigned a, unsigned b) {
|
||||
for (unsigned i = 0; i < m_n; i++) {
|
||||
T t = get_elem(a, i);
|
||||
set_elem(a, i, get_elem(b, i));
|
||||
set_elem(b, i, t);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void dense_matrix<T, X>::multiply_row_by_constant(unsigned row, T & t) {
|
||||
for (unsigned i = 0; i < m_n; i++) {
|
||||
set_elem(row, i, t * get_elem(row, i));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> operator* (matrix<T, X> & a, matrix<T, X> & b){
|
||||
lean_assert(a.column_count() == b.row_count());
|
||||
dense_matrix<T, X> ret(a.row_count(), b.column_count());
|
||||
for (unsigned i = 0; i < ret.m_m; i++)
|
||||
for (unsigned j = 0; j< ret.m_n; j++) {
|
||||
T v = numeric_traits<T>::zero();
|
||||
for (unsigned k = 0; k < a.column_count(); k ++){
|
||||
v += (a.get_elem(i, k) * b.get_elem(k, j));
|
||||
}
|
||||
ret.set_elem(i, j, v);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
#endif
|
24
src/util/lp/dense_matrix_instances.cpp
Normal file
24
src/util/lp/dense_matrix_instances.cpp
Normal file
|
@ -0,0 +1,24 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/dense_matrix.hpp"
|
||||
#ifdef LEAN_DEBUG
|
||||
#include "util/vector.h"
|
||||
template lean::dense_matrix<double, double> lean::operator*<double, double>(lean::matrix<double, double>&, lean::matrix<double, double>&);
|
||||
template void lean::dense_matrix<double, double>::apply_from_left(vector<double> &);
|
||||
template lean::dense_matrix<double, double>::dense_matrix(lean::matrix<double, double> const*);
|
||||
template lean::dense_matrix<double, double>::dense_matrix(unsigned int, unsigned int);
|
||||
template lean::dense_matrix<double, double>& lean::dense_matrix<double, double>::operator=(lean::dense_matrix<double, double> const&);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::dense_matrix(lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> > const*);
|
||||
template void lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_left(vector<lean::mpq>&);
|
||||
template lean::dense_matrix<lean::mpq, lean::mpq> lean::operator*<lean::mpq, lean::mpq>(lean::matrix<lean::mpq, lean::mpq>&, lean::matrix<lean::mpq, lean::mpq>&);
|
||||
template lean::dense_matrix<lean::mpq, lean::mpq> & lean::dense_matrix<lean::mpq, lean::mpq>::operator=(lean::dense_matrix<lean::mpq, lean::mpq> const&);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::dense_matrix(unsigned int, unsigned int);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >& lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::operator=(lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> > const&);
|
||||
template lean::dense_matrix<lean::mpq, lean::numeric_pair<lean::mpq> > lean::operator*<lean::mpq, lean::numeric_pair<lean::mpq> >(lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&, lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::dense_matrix<lean::mpq, lean::numeric_pair< lean::mpq> >::apply_from_right( vector< lean::mpq> &);
|
||||
template void lean::dense_matrix<double,double>::apply_from_right(class vector<double> &);
|
||||
template void lean::dense_matrix<lean::mpq, lean::mpq>::apply_from_left(vector<lean::mpq>&);
|
||||
#endif
|
83
src/util/lp/eta_matrix.h
Normal file
83
src/util/lp/eta_matrix.h
Normal file
|
@ -0,0 +1,83 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/tail_matrix.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
namespace lean {
|
||||
|
||||
// This is the sum of a unit matrix and a one-column matrix
|
||||
template <typename T, typename X>
|
||||
class eta_matrix
|
||||
: public tail_matrix<T, X> {
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned m_length;
|
||||
#endif
|
||||
unsigned m_column_index;
|
||||
public:
|
||||
sparse_vector<T> m_column_vector;
|
||||
T m_diagonal_element;
|
||||
#ifdef LEAN_DEBUG
|
||||
eta_matrix(unsigned column_index, unsigned length):
|
||||
#else
|
||||
eta_matrix(unsigned column_index):
|
||||
#endif
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
m_length(length),
|
||||
#endif
|
||||
m_column_index(column_index) {}
|
||||
|
||||
bool is_dense() const { return false; }
|
||||
|
||||
void print(std::ostream & out) {
|
||||
print_matrix(*this, out);
|
||||
}
|
||||
|
||||
bool is_unit() {
|
||||
return m_column_vector.size() == 0 && m_diagonal_element == 1;
|
||||
}
|
||||
|
||||
bool set_diagonal_element(T const & diagonal_element) {
|
||||
m_diagonal_element = diagonal_element;
|
||||
return !lp_settings::is_eps_small_general(diagonal_element, 1e-12);
|
||||
}
|
||||
|
||||
const T & get_diagonal_element() const {
|
||||
return m_diagonal_element;
|
||||
}
|
||||
|
||||
void apply_from_left(vector<X> & w, lp_settings & );
|
||||
|
||||
template <typename L>
|
||||
void apply_from_left_local(indexed_vector<L> & w, lp_settings & settings);
|
||||
|
||||
void apply_from_left_to_T(indexed_vector<T> & w, lp_settings & settings) {
|
||||
apply_from_left_local(w, settings);
|
||||
}
|
||||
|
||||
|
||||
void push_back(unsigned row_index, T val ) {
|
||||
lean_assert(row_index != m_column_index);
|
||||
m_column_vector.push_back(row_index, val);
|
||||
}
|
||||
|
||||
void apply_from_right(vector<T> & w);
|
||||
void apply_from_right(indexed_vector<T> & w);
|
||||
|
||||
T get_elem(unsigned i, unsigned j) const;
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned row_count() const { return m_length; }
|
||||
unsigned column_count() const { return m_length; }
|
||||
void set_number_of_rows(unsigned m) { m_length = m; }
|
||||
void set_number_of_columns(unsigned n) { m_length = n; }
|
||||
#endif
|
||||
void divide_by_diagonal_element() {
|
||||
m_column_vector.divide(m_diagonal_element);
|
||||
}
|
||||
void conjugate_by_permutation(permutation_matrix<T, X> & p);
|
||||
};
|
||||
}
|
136
src/util/lp/eta_matrix.hpp
Normal file
136
src/util/lp/eta_matrix.hpp
Normal file
|
@ -0,0 +1,136 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/eta_matrix.h"
|
||||
namespace lean {
|
||||
|
||||
// This is the sum of a unit matrix and a one-column matrix
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings & ) {
|
||||
auto & w_at_column_index = w[m_column_index];
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
w[it.first] += w_at_column_index * it.second;
|
||||
}
|
||||
w_at_column_index /= m_diagonal_element;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
template <typename L>
|
||||
void eta_matrix<T, X>::
|
||||
apply_from_left_local(indexed_vector<L> & w, lp_settings & settings) {
|
||||
const L w_at_column_index = w[m_column_index];
|
||||
if (is_zero(w_at_column_index)) return;
|
||||
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(w[m_column_index] /= m_diagonal_element)) {
|
||||
w[m_column_index] = zero_of_type<L>();
|
||||
w.erase_from_index(m_column_index);
|
||||
}
|
||||
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
unsigned i = it.first;
|
||||
if (is_zero(w[i])) {
|
||||
L v = w[i] = w_at_column_index * it.second;
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(v)) {
|
||||
w[i] = zero_of_type<L>();
|
||||
continue;
|
||||
}
|
||||
w.m_index.push_back(i);
|
||||
} else {
|
||||
L v = w[i] += w_at_column_index * it.second;
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(v)) {
|
||||
w[i] = zero_of_type<L>();
|
||||
w.erase_from_index(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::apply_from_right(vector<T> & w) {
|
||||
#ifdef LEAN_DEBUG
|
||||
// dense_matrix<T, X> deb(*this);
|
||||
// auto clone_w = clone_vector<T>(w, get_number_of_rows());
|
||||
// deb.apply_from_right(clone_w);
|
||||
#endif
|
||||
T t = w[m_column_index] / m_diagonal_element;
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
t += w[it.first] * it.second;
|
||||
}
|
||||
w[m_column_index] = t;
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal<T>(clone_w, w, get_number_of_rows()));
|
||||
// delete clone_w;
|
||||
#endif
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
|
||||
if (w.m_index.size() == 0)
|
||||
return;
|
||||
#ifdef LEAN_DEBUG
|
||||
// vector<T> wcopy(w.m_data);
|
||||
// apply_from_right(wcopy);
|
||||
#endif
|
||||
T & t = w[m_column_index];
|
||||
t /= m_diagonal_element;
|
||||
bool was_in_index = (!numeric_traits<T>::is_zero(t));
|
||||
|
||||
for (auto & it : m_column_vector.m_data) {
|
||||
t += w[it.first] * it.second;
|
||||
}
|
||||
|
||||
if (numeric_traits<T>::precise() ) {
|
||||
if (!numeric_traits<T>::is_zero(t)) {
|
||||
if (!was_in_index)
|
||||
w.m_index.push_back(m_column_index);
|
||||
} else {
|
||||
if (was_in_index)
|
||||
w.erase_from_index(m_column_index);
|
||||
}
|
||||
} else {
|
||||
if (!lp_settings::is_eps_small_general(t, 1e-14)) {
|
||||
if (!was_in_index)
|
||||
w.m_index.push_back(m_column_index);
|
||||
} else {
|
||||
if (was_in_index)
|
||||
w.erase_from_index(m_column_index);
|
||||
t = zero_of_type<T>();
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(w.is_OK());
|
||||
// lean_assert(vectors_are_equal<T>(wcopy, w.m_data));
|
||||
#endif
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
T eta_matrix<T, X>::get_elem(unsigned i, unsigned j) const {
|
||||
if (j == m_column_index){
|
||||
if (i == j) {
|
||||
return 1 / m_diagonal_element;
|
||||
}
|
||||
return m_column_vector[i];
|
||||
}
|
||||
|
||||
return i == j ? numeric_traits<T>::one() : numeric_traits<T>::zero();
|
||||
}
|
||||
#endif
|
||||
template <typename T, typename X>
|
||||
void eta_matrix<T, X>::conjugate_by_permutation(permutation_matrix<T, X> & p) {
|
||||
// this = p * this * p(-1)
|
||||
#ifdef LEAN_DEBUG
|
||||
// auto rev = p.get_reverse();
|
||||
// auto deb = ((*this) * rev);
|
||||
// deb = p * deb;
|
||||
#endif
|
||||
m_column_index = p.get_rev(m_column_index);
|
||||
for (auto & pair : m_column_vector.m_data) {
|
||||
pair.first = p.get_rev(pair.first);
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(deb == *this);
|
||||
#endif
|
||||
}
|
||||
}
|
28
src/util/lp/eta_matrix_instances.cpp
Normal file
28
src/util/lp/eta_matrix_instances.cpp
Normal file
|
@ -0,0 +1,28 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <memory>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/eta_matrix.hpp"
|
||||
#ifdef LEAN_DEBUG
|
||||
template double lean::eta_matrix<double, double>::get_elem(unsigned int, unsigned int) const;
|
||||
template lean::mpq lean::eta_matrix<lean::mpq, lean::mpq>::get_elem(unsigned int, unsigned int) const;
|
||||
template lean::mpq lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::get_elem(unsigned int, unsigned int) const;
|
||||
#endif
|
||||
template void lean::eta_matrix<double, double>::apply_from_left(vector<double>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<double, double>::apply_from_right(vector<double>&);
|
||||
template void lean::eta_matrix<double, double>::conjugate_by_permutation(lean::permutation_matrix<double, double>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_left(vector<lean::mpq>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_right(vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::conjugate_by_permutation(lean::permutation_matrix<lean::mpq, lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_left(vector<lean::numeric_pair<lean::mpq> >&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_right(vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::conjugate_by_permutation(lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::eta_matrix<double, double>::apply_from_left_local<double>(lean::indexed_vector<double>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_left_local<lean::mpq>(lean::indexed_vector<lean::mpq>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_left_local<lean::mpq>(lean::indexed_vector<lean::mpq>&, lean::lp_settings&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_right(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<lean::mpq, lean::mpq>::apply_from_right(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::eta_matrix<double, double>::apply_from_right(lean::indexed_vector<double>&);
|
39
src/util/lp/hash_helper.h
Normal file
39
src/util/lp/hash_helper.h
Normal file
|
@ -0,0 +1,39 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <utility>
|
||||
#include <functional>
|
||||
#include "util/numerics/mpq.h"
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wmismatched-tags"
|
||||
#endif
|
||||
namespace std {
|
||||
template<>
|
||||
struct hash<lean::mpq> {
|
||||
inline size_t operator()(const lean::mpq & v) const {
|
||||
return v.hash();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline void hash_combine(std::size_t & seed, const T & v) {
|
||||
seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template<typename S, typename T> struct hash<pair<S, T>> {
|
||||
inline size_t operator()(const pair<S, T> & v) const {
|
||||
size_t seed = 0;
|
||||
hash_combine(seed, v.first);
|
||||
hash_combine(seed, v.second);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
}
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
42
src/util/lp/implied_bound.h
Normal file
42
src/util/lp/implied_bound.h
Normal file
|
@ -0,0 +1,42 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/lar_constraints.h"
|
||||
namespace lean {
|
||||
struct implied_bound {
|
||||
mpq m_bound;
|
||||
unsigned m_j; // the column for which the bound has been found
|
||||
bool m_is_low_bound;
|
||||
bool m_coeff_before_j_is_pos;
|
||||
unsigned m_row_or_term_index;
|
||||
bool m_strict;
|
||||
|
||||
lconstraint_kind kind() const {
|
||||
lconstraint_kind k = m_is_low_bound? GE : LE;
|
||||
if (m_strict)
|
||||
k = static_cast<lconstraint_kind>(k / 2);
|
||||
return k;
|
||||
}
|
||||
bool operator==(const implied_bound & o) const {
|
||||
return m_j == o.m_j && m_is_low_bound == o.m_is_low_bound && m_bound == o.m_bound &&
|
||||
m_coeff_before_j_is_pos == o.m_coeff_before_j_is_pos &&
|
||||
m_row_or_term_index == o.m_row_or_term_index && m_strict == o.m_strict;
|
||||
}
|
||||
implied_bound(){}
|
||||
implied_bound(const mpq & a,
|
||||
unsigned j,
|
||||
bool low_bound,
|
||||
bool coeff_before_j_is_pos,
|
||||
unsigned row_or_term_index,
|
||||
bool strict):
|
||||
m_bound(a),
|
||||
m_j(j),
|
||||
m_is_low_bound(low_bound),
|
||||
m_coeff_before_j_is_pos(coeff_before_j_is_pos),
|
||||
m_row_or_term_index(row_or_term_index),
|
||||
m_strict(strict) {}
|
||||
};
|
||||
}
|
55
src/util/lp/indexed_value.h
Normal file
55
src/util/lp/indexed_value.h
Normal file
|
@ -0,0 +1,55 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
class indexed_value {
|
||||
public:
|
||||
T m_value;
|
||||
// the idea is that m_index for a row element gives its column, and for a column element its row
|
||||
unsigned m_index;
|
||||
// m_other point is the offset of the corresponding element in its vector : for a row element it point to the column element offset,
|
||||
// for a column element it points to the row element offset
|
||||
unsigned m_other;
|
||||
indexed_value() {}
|
||||
indexed_value(T v, unsigned i) : m_value(v), m_index(i) {}
|
||||
indexed_value(T v, unsigned i, unsigned other) :
|
||||
m_value(v), m_index(i), m_other(other) {
|
||||
}
|
||||
|
||||
indexed_value(const indexed_value & iv) {
|
||||
m_value = iv.m_value;
|
||||
m_index = iv.m_index;
|
||||
m_other = iv.m_other;
|
||||
}
|
||||
|
||||
indexed_value & operator=(const indexed_value & right_side) {
|
||||
m_value = right_side.m_value;
|
||||
m_index = right_side.m_index;
|
||||
m_other = right_side.m_other;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const T & value() const {
|
||||
return m_value;
|
||||
}
|
||||
|
||||
void set_value(T val) {
|
||||
m_value = val;
|
||||
}
|
||||
};
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename X>
|
||||
bool check_vector_for_small_values(indexed_vector<X> & w, lp_settings & settings) {
|
||||
for (unsigned i : w.m_index) {
|
||||
const X & v = w[i];
|
||||
if ((!is_zero(v)) && settings.abs_val_is_smaller_than_drop_tolerance(v))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
}
|
169
src/util/lp/indexed_vector.h
Normal file
169
src/util/lp/indexed_vector.h
Normal file
|
@ -0,0 +1,169 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include <string>
|
||||
#include <iomanip>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include <unordered_set>
|
||||
namespace lean {
|
||||
|
||||
template <typename T> void print_vector(const vector<T> & t, std::ostream & out);
|
||||
template <typename T> void print_vector(const buffer<T> & t, std::ostream & out);
|
||||
template <typename T> void print_sparse_vector(const vector<T> & t, std::ostream & out);
|
||||
|
||||
void print_vector(const vector<mpq> & t, std::ostream & out);
|
||||
template <typename T>
|
||||
class indexed_vector {
|
||||
public:
|
||||
// m_index points to non-zero elements of m_data
|
||||
vector<T> m_data;
|
||||
vector<unsigned> m_index;
|
||||
indexed_vector(unsigned data_size) {
|
||||
m_data.resize(data_size, numeric_traits<T>::zero());
|
||||
}
|
||||
|
||||
indexed_vector& operator=(const indexed_vector<T>& y) {
|
||||
for (unsigned i: m_index)
|
||||
m_data[i] = zero_of_type<T>();
|
||||
|
||||
m_index = y.m_index;
|
||||
|
||||
m_data.resize(y.data_size());
|
||||
for (unsigned i : m_index)
|
||||
m_data[i] = y[i];
|
||||
return *this;
|
||||
}
|
||||
|
||||
bool operator==(const indexed_vector<T>& y) const {
|
||||
std::unordered_set<unsigned> y_index;
|
||||
for (unsigned i : y.m_index)
|
||||
y_index.insert(i);
|
||||
|
||||
std::unordered_set<unsigned> this_index;
|
||||
for (unsigned i : m_index)
|
||||
this_index.insert(i);
|
||||
|
||||
for (unsigned i : y.m_index) {
|
||||
if (this_index.find(i) == this_index.end())
|
||||
return false;
|
||||
}
|
||||
|
||||
for (unsigned i : m_index) {
|
||||
if (y_index.find(i) == y_index.end())
|
||||
return false;
|
||||
}
|
||||
|
||||
return vectors_are_equal(m_data, m_data);
|
||||
|
||||
}
|
||||
|
||||
indexed_vector() {}
|
||||
|
||||
void resize(unsigned data_size);
|
||||
unsigned data_size() const {
|
||||
return m_data.size();
|
||||
}
|
||||
|
||||
unsigned size() {
|
||||
return m_index.size();
|
||||
}
|
||||
|
||||
void set_value(const T& value, unsigned index);
|
||||
void set_value_as_in_dictionary(unsigned index) {
|
||||
lean_assert(index < m_data.size());
|
||||
T & loc = m_data[index];
|
||||
if (is_zero(loc)) {
|
||||
m_index.push_back(index);
|
||||
loc = one_of_type<T>(); // use as a characteristic function
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void clear();
|
||||
void clear_all();
|
||||
const T& operator[] (unsigned i) const {
|
||||
return m_data[i];
|
||||
}
|
||||
|
||||
T& operator[] (unsigned i) {
|
||||
return m_data[i];
|
||||
}
|
||||
|
||||
void clean_up() {
|
||||
#if 0==1
|
||||
for (unsigned k = 0; k < m_index.size(); k++) {
|
||||
unsigned i = m_index[k];
|
||||
T & v = m_data[i];
|
||||
if (lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
v = zero_of_type<T>();
|
||||
m_index.erase(m_index.begin() + k--);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
vector<unsigned> index_copy;
|
||||
for (unsigned i : m_index) {
|
||||
T & v = m_data[i];
|
||||
if (!lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
index_copy.push_back(i);
|
||||
} else if (!numeric_traits<T>::is_zero(v)) {
|
||||
v = zero_of_type<T>();
|
||||
}
|
||||
}
|
||||
m_index = index_copy;
|
||||
}
|
||||
|
||||
|
||||
void erase_from_index(unsigned j);
|
||||
|
||||
void add_value_at_index_with_drop_tolerance(unsigned j, const T& val_to_add) {
|
||||
T & v = m_data[j];
|
||||
bool was_zero = is_zero(v);
|
||||
v += val_to_add;
|
||||
if (lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
v = zero_of_type<T>();
|
||||
if (!was_zero) {
|
||||
erase_from_index(j);
|
||||
}
|
||||
} else {
|
||||
if (was_zero)
|
||||
m_index.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void add_value_at_index(unsigned j, const T& val_to_add) {
|
||||
T & v = m_data[j];
|
||||
bool was_zero = is_zero(v);
|
||||
v += val_to_add;
|
||||
if (is_zero(v)) {
|
||||
if (!was_zero)
|
||||
erase_from_index(j);
|
||||
} else {
|
||||
if (was_zero)
|
||||
m_index.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
void restore_index_and_clean_from_data() {
|
||||
m_index.resize(0);
|
||||
for (unsigned i = 0; i < m_data.size(); i++) {
|
||||
T & v = m_data[i];
|
||||
if (lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
v = zero_of_type<T>();
|
||||
} else {
|
||||
m_index.push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
bool is_OK() const;
|
||||
void print(std::ostream & out);
|
||||
#endif
|
||||
};
|
||||
}
|
110
src/util/lp/indexed_vector.hpp
Normal file
110
src/util/lp/indexed_vector.hpp
Normal file
|
@ -0,0 +1,110 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
|
||||
template <typename T>
|
||||
void print_vector(const vector<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i] << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void print_vector(const buffer<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i] << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_sparse_vector(const vector<T> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++) {
|
||||
if (is_zero(t[i]))continue;
|
||||
out << "[" << i << "] = " << t[i] << ", ";
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
void print_vector(const vector<mpq> & t, std::ostream & out) {
|
||||
for (unsigned i = 0; i < t.size(); i++)
|
||||
out << t[i].get_double() << std::setprecision(3) << " ";
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void indexed_vector<T>::resize(unsigned data_size) {
|
||||
clear();
|
||||
m_data.resize(data_size, numeric_traits<T>::zero());
|
||||
lean_assert(is_OK());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void indexed_vector<T>::set_value(const T& value, unsigned index) {
|
||||
m_data[index] = value;
|
||||
lean_assert(std::find(m_index.begin(), m_index.end(), index) == m_index.end());
|
||||
m_index.push_back(index);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void indexed_vector<T>::clear() {
|
||||
for (unsigned i : m_index)
|
||||
m_data[i] = numeric_traits<T>::zero();
|
||||
m_index.resize(0);
|
||||
}
|
||||
template <typename T>
|
||||
void indexed_vector<T>::clear_all() {
|
||||
unsigned i = m_data.size();
|
||||
while (i--) m_data[i] = numeric_traits<T>::zero();
|
||||
m_index.resize(0);
|
||||
}
|
||||
template <typename T>
|
||||
void indexed_vector<T>::erase_from_index(unsigned j) {
|
||||
auto it = std::find(m_index.begin(), m_index.end(), j);
|
||||
if (it != m_index.end())
|
||||
m_index.erase(it);
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T>
|
||||
bool indexed_vector<T>::is_OK() const {
|
||||
return true;
|
||||
const double drop_eps = 1e-14;
|
||||
for (unsigned i = 0; i < m_data.size(); i++) {
|
||||
if (!is_zero(m_data[i]) && lp_settings::is_eps_small_general(m_data[i], drop_eps)) {
|
||||
return false;
|
||||
}
|
||||
if (lp_settings::is_eps_small_general(m_data[i], drop_eps) != (std::find(m_index.begin(), m_index.end(), i) == m_index.end())) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
std::unordered_set<unsigned> s;
|
||||
for (unsigned i : m_index) {
|
||||
//no duplicates!!!
|
||||
if (s.find(i) != s.end())
|
||||
return false;
|
||||
s.insert(i);
|
||||
if (i >= m_data.size())
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
template <typename T>
|
||||
void indexed_vector<T>::print(std::ostream & out) {
|
||||
out << "m_index " << std::endl;
|
||||
for (unsigned i = 0; i < m_index.size(); i++) {
|
||||
out << m_index[i] << " ";
|
||||
}
|
||||
out << std::endl;
|
||||
print_vector(m_data, out);
|
||||
}
|
||||
#endif
|
||||
|
||||
}
|
36
src/util/lp/indexed_vector_instances.cpp
Normal file
36
src/util/lp/indexed_vector_instances.cpp
Normal file
|
@ -0,0 +1,36 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/indexed_vector.hpp"
|
||||
namespace lean {
|
||||
template void indexed_vector<double>::clear();
|
||||
template void indexed_vector<double>::clear_all();
|
||||
template void indexed_vector<double>::erase_from_index(unsigned int);
|
||||
template void indexed_vector<double>::set_value(const double&, unsigned int);
|
||||
template void indexed_vector<mpq>::clear();
|
||||
template void indexed_vector<unsigned>::clear();
|
||||
template void indexed_vector<mpq>::clear_all();
|
||||
template void indexed_vector<mpq>::erase_from_index(unsigned int);
|
||||
template void indexed_vector<mpq>::resize(unsigned int);
|
||||
template void indexed_vector<unsigned>::resize(unsigned int);
|
||||
template void indexed_vector<mpq>::set_value(const mpq&, unsigned int);
|
||||
template void indexed_vector<unsigned>::set_value(const unsigned&, unsigned int);
|
||||
#ifdef LEAN_DEBUG
|
||||
template bool indexed_vector<double>::is_OK() const;
|
||||
template bool indexed_vector<mpq>::is_OK() const;
|
||||
template bool indexed_vector<lean::numeric_pair<mpq> >::is_OK() const;
|
||||
template void lean::indexed_vector< lean::mpq>::print(std::basic_ostream<char,struct std::char_traits<char> > &);
|
||||
template void lean::indexed_vector<double>::print(std::basic_ostream<char,struct std::char_traits<char> > &);
|
||||
template void lean::indexed_vector<lean::numeric_pair<lean::mpq> >::print(std::ostream&);
|
||||
#endif
|
||||
}
|
||||
template void lean::print_vector<double>(vector<double> const&, std::ostream&);
|
||||
template void lean::print_vector<unsigned int>(vector<unsigned int> const&, std::ostream&);
|
||||
template void lean::print_vector<std::string>(vector<std::string> const&, std::ostream&);
|
||||
template void lean::print_vector<lean::numeric_pair<lean::mpq> >(vector<lean::numeric_pair<lean::mpq>> const&, std::ostream&);
|
||||
template void lean::indexed_vector<double>::resize(unsigned int);
|
||||
template void lean::print_vector< lean::mpq>(vector< lean::mpq> const &, std::basic_ostream<char, std::char_traits<char> > &);
|
||||
template void lean::print_vector<std::pair<lean::mpq, unsigned int> >(vector<std::pair<lean::mpq, unsigned int>> const&, std::ostream&);
|
||||
template void lean::indexed_vector<lean::numeric_pair<lean::mpq> >::erase_from_index(unsigned int);
|
66
src/util/lp/int_set.h
Normal file
66
src/util/lp/int_set.h
Normal file
|
@ -0,0 +1,66 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include <ostream>
|
||||
namespace lean {
|
||||
// serves at a set of non-negative integers smaller than the set size
|
||||
class int_set {
|
||||
vector<int> m_data;
|
||||
public:
|
||||
vector<int> m_index;
|
||||
int_set(unsigned size): m_data(size, -1) {}
|
||||
int_set() {}
|
||||
bool contains(unsigned j) const {
|
||||
if (j >= m_data.size())
|
||||
return false;
|
||||
return m_data[j] >= 0;
|
||||
}
|
||||
void insert(unsigned j) {
|
||||
lean_assert(j < m_data.size());
|
||||
if (contains(j)) return;
|
||||
m_data[j] = m_index.size();
|
||||
m_index.push_back(j);
|
||||
}
|
||||
void erase(unsigned j) {
|
||||
if (!contains(j)) return;
|
||||
unsigned pos_j = m_data[j];
|
||||
unsigned last_pos = m_index.size() - 1;
|
||||
int last_j = m_index[last_pos];
|
||||
if (last_pos != pos_j) {
|
||||
// move last to j spot
|
||||
m_data[last_j] = pos_j;
|
||||
m_index[pos_j] = last_j;
|
||||
}
|
||||
m_index.pop_back();
|
||||
m_data[j] = -1;
|
||||
}
|
||||
|
||||
void resize(unsigned size) {
|
||||
m_data.resize(size, -1);
|
||||
}
|
||||
|
||||
void increase_size_by_one() {
|
||||
resize(m_data.size() + 1);
|
||||
}
|
||||
|
||||
unsigned data_size() const { return m_data.size(); }
|
||||
unsigned size() const { return m_index.size();}
|
||||
bool is_empty() const { return size() == 0; }
|
||||
void clear() {
|
||||
for (unsigned j : m_index)
|
||||
m_data[j] = -1;
|
||||
m_index.resize(0);
|
||||
}
|
||||
void print(std::ostream & out ) const {
|
||||
for (unsigned j : m_index) {
|
||||
out << j << " ";
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
};
|
||||
}
|
50
src/util/lp/iterator_on_column.h
Normal file
50
src/util/lp/iterator_on_column.h
Normal file
|
@ -0,0 +1,50 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
struct iterator_on_column:linear_combination_iterator<T> {
|
||||
const vector<column_cell>& m_column; // the offset in term coeffs
|
||||
const static_matrix<T, X> & m_A;
|
||||
int m_i = -1; // the initial offset in the column
|
||||
unsigned size() const { return m_column.size(); }
|
||||
iterator_on_column(const vector<column_cell>& column, const static_matrix<T,X> & A) // the offset in term coeffs
|
||||
:
|
||||
m_column(column),
|
||||
m_A(A),
|
||||
m_i(-1) {}
|
||||
|
||||
bool next(mpq & a, unsigned & i) {
|
||||
if (++m_i >= static_cast<int>(m_column.size()))
|
||||
return false;
|
||||
|
||||
const column_cell& c = m_column[m_i];
|
||||
a = m_A.get_val(c);
|
||||
i = c.m_i;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) {
|
||||
if (++m_i >= static_cast<int>(m_column.size()))
|
||||
return false;
|
||||
|
||||
const column_cell& c = m_column[m_i];
|
||||
i = c.m_i;
|
||||
return true;
|
||||
}
|
||||
|
||||
void reset() {
|
||||
m_i = -1;
|
||||
}
|
||||
|
||||
linear_combination_iterator<mpq> * clone() {
|
||||
iterator_on_column * r = new iterator_on_column(m_column, m_A);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
35
src/util/lp/iterator_on_indexed_vector.h
Normal file
35
src/util/lp/iterator_on_indexed_vector.h
Normal file
|
@ -0,0 +1,35 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_indexed_vector:linear_combination_iterator<T> {
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_offset = 0;
|
||||
iterator_on_indexed_vector(const indexed_vector<T> & v) : m_v(v){}
|
||||
unsigned size() const { return m_v.m_index.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
return false;
|
||||
i = m_v.m_index[m_offset++];
|
||||
a = m_v.m_data[i];
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) {
|
||||
if (m_offset >= m_v.m_index.size())
|
||||
return false;
|
||||
i = m_v.m_index[m_offset++];
|
||||
return true;
|
||||
}
|
||||
void reset() {
|
||||
m_offset = 0;
|
||||
}
|
||||
linear_combination_iterator<T>* clone() {
|
||||
return new iterator_on_indexed_vector(m_v);
|
||||
}
|
||||
};
|
||||
}
|
42
src/util/lp/iterator_on_pivot_row.h
Normal file
42
src/util/lp/iterator_on_pivot_row.h
Normal file
|
@ -0,0 +1,42 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/iterator_on_indexed_vector.h"
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_pivot_row:linear_combination_iterator<T> {
|
||||
bool m_basis_returned = false;
|
||||
const indexed_vector<T> & m_v;
|
||||
unsigned m_basis_j;
|
||||
iterator_on_indexed_vector<T> m_it;
|
||||
unsigned size() const { return m_it.size(); }
|
||||
iterator_on_pivot_row(const indexed_vector<T> & v, unsigned basis_j) : m_v(v), m_basis_j(basis_j), m_it(v) {}
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
a = one_of_type<T>();
|
||||
i = m_basis_j;
|
||||
return true;
|
||||
}
|
||||
return m_it.next(a, i);
|
||||
}
|
||||
bool next(unsigned & i) {
|
||||
if (m_basis_returned == false) {
|
||||
m_basis_returned = true;
|
||||
i = m_basis_j;
|
||||
return true;
|
||||
}
|
||||
return m_it.next(i);
|
||||
}
|
||||
void reset() {
|
||||
m_basis_returned = false;
|
||||
m_it.reset();
|
||||
}
|
||||
linear_combination_iterator<T> * clone() {
|
||||
iterator_on_pivot_row * r = new iterator_on_pivot_row(m_v, m_basis_j);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
37
src/util/lp/iterator_on_row.h
Normal file
37
src/util/lp/iterator_on_row.h
Normal file
|
@ -0,0 +1,37 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct iterator_on_row:linear_combination_iterator<T> {
|
||||
const vector<row_cell<T>> & m_row;
|
||||
unsigned m_i= 0; // offset
|
||||
iterator_on_row(const vector<row_cell<T>> & row) : m_row(row)
|
||||
{}
|
||||
unsigned size() const { return m_row.size(); }
|
||||
bool next(T & a, unsigned & i) {
|
||||
if (m_i == m_row.size())
|
||||
return false;
|
||||
auto &c = m_row[m_i++];
|
||||
i = c.m_j;
|
||||
a = c.get_val();
|
||||
return true;
|
||||
}
|
||||
bool next(unsigned & i) {
|
||||
if (m_i == m_row.size())
|
||||
return false;
|
||||
auto &c = m_row[m_i++];
|
||||
i = c.m_j;
|
||||
return true;
|
||||
}
|
||||
void reset() {
|
||||
m_i = 0;
|
||||
}
|
||||
linear_combination_iterator<T>* clone() {
|
||||
return new iterator_on_row(m_row);
|
||||
}
|
||||
};
|
||||
}
|
56
src/util/lp/iterator_on_term_with_basis_var.h
Normal file
56
src/util/lp/iterator_on_term_with_basis_var.h
Normal file
|
@ -0,0 +1,56 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lean {
|
||||
struct iterator_on_term_with_basis_var:linear_combination_iterator<mpq> {
|
||||
std::unordered_map<unsigned, mpq>::const_iterator m_i; // the offset in term coeffs
|
||||
bool m_term_j_returned = false;
|
||||
const lar_term & m_term;
|
||||
unsigned m_term_j;
|
||||
unsigned size() const {return static_cast<unsigned>(m_term.m_coeffs.size() + 1);}
|
||||
iterator_on_term_with_basis_var(const lar_term & t, unsigned term_j) :
|
||||
m_i(t.m_coeffs.begin()),
|
||||
m_term(t),
|
||||
m_term_j(term_j) {}
|
||||
|
||||
bool next(mpq & a, unsigned & i) {
|
||||
if (m_term_j_returned == false) {
|
||||
m_term_j_returned = true;
|
||||
a = - one_of_type<mpq>();
|
||||
i = m_term_j;
|
||||
return true;
|
||||
}
|
||||
if (m_i == m_term.m_coeffs.end())
|
||||
return false;
|
||||
i = m_i->first;
|
||||
a = m_i->second;
|
||||
m_i++;
|
||||
return true;
|
||||
}
|
||||
bool next(unsigned & i) {
|
||||
if (m_term_j_returned == false) {
|
||||
m_term_j_returned = true;
|
||||
i = m_term_j;
|
||||
return true;
|
||||
}
|
||||
if (m_i == m_term.m_coeffs.end())
|
||||
return false;
|
||||
i = m_i->first;
|
||||
m_i++;
|
||||
return true;
|
||||
}
|
||||
void reset() {
|
||||
m_term_j_returned = false;
|
||||
m_i = m_term.m_coeffs.begin();
|
||||
}
|
||||
linear_combination_iterator<mpq> * clone() {
|
||||
iterator_on_term_with_basis_var * r = new iterator_on_term_with_basis_var(m_term, m_term_j);
|
||||
return r;
|
||||
}
|
||||
};
|
||||
}
|
86
src/util/lp/lar_constraints.h
Normal file
86
src/util/lp/lar_constraints.h
Normal file
|
@ -0,0 +1,86 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <utility>
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/ul_pair.h"
|
||||
#include "util/lp/lar_term.h"
|
||||
namespace lean {
|
||||
inline lconstraint_kind flip_kind(lconstraint_kind t) {
|
||||
return static_cast<lconstraint_kind>( - static_cast<int>(t));
|
||||
}
|
||||
|
||||
inline std::string lconstraint_kind_string(lconstraint_kind t) {
|
||||
switch (t) {
|
||||
case LE: return std::string("<=");
|
||||
case LT: return std::string("<");
|
||||
case GE: return std::string(">=");
|
||||
case GT: return std::string(">");
|
||||
case EQ: return std::string("=");
|
||||
}
|
||||
lean_unreachable();
|
||||
return std::string(); // it is unreachable
|
||||
}
|
||||
|
||||
class lar_base_constraint {
|
||||
public:
|
||||
lconstraint_kind m_kind;
|
||||
mpq m_right_side;
|
||||
virtual vector<std::pair<mpq, var_index>> get_left_side_coefficients() const = 0;
|
||||
lar_base_constraint() {}
|
||||
lar_base_constraint(lconstraint_kind kind, const mpq& right_side) :m_kind(kind), m_right_side(right_side) {}
|
||||
|
||||
virtual unsigned size() const = 0;
|
||||
virtual ~lar_base_constraint(){}
|
||||
virtual mpq get_free_coeff_of_left_side() const { return zero_of_type<mpq>();}
|
||||
};
|
||||
|
||||
struct lar_var_constraint: public lar_base_constraint {
|
||||
unsigned m_j;
|
||||
vector<std::pair<mpq, var_index>> get_left_side_coefficients() const {
|
||||
vector<std::pair<mpq, var_index>> ret;
|
||||
ret.push_back(std::make_pair(one_of_type<mpq>(), m_j));
|
||||
return ret;
|
||||
}
|
||||
unsigned size() const { return 1;}
|
||||
lar_var_constraint(unsigned j, lconstraint_kind kind, const mpq& right_side) : lar_base_constraint(kind, right_side), m_j(j) { }
|
||||
};
|
||||
|
||||
|
||||
struct lar_term_constraint: public lar_base_constraint {
|
||||
const lar_term * m_term;
|
||||
vector<std::pair<mpq, var_index>> get_left_side_coefficients() const {
|
||||
return m_term->coeffs_as_vector();
|
||||
}
|
||||
unsigned size() const { return m_term->size();}
|
||||
lar_term_constraint(const lar_term *t, lconstraint_kind kind, const mpq& right_side) : lar_base_constraint(kind, right_side), m_term(t) { }
|
||||
virtual mpq get_free_coeff_of_left_side() const { return m_term->m_v;}
|
||||
|
||||
};
|
||||
|
||||
|
||||
class lar_constraint : public lar_base_constraint {
|
||||
public:
|
||||
vector<std::pair<mpq, var_index>> m_coeffs;
|
||||
lar_constraint() {}
|
||||
lar_constraint(const vector<std::pair<mpq, var_index>> & left_side, lconstraint_kind kind, const mpq & right_side)
|
||||
: lar_base_constraint(kind, right_side), m_coeffs(left_side) {}
|
||||
|
||||
lar_constraint(const lar_base_constraint & c) {
|
||||
lean_assert(false); // should not be called : todo!
|
||||
}
|
||||
|
||||
unsigned size() const {
|
||||
return static_cast<unsigned>(m_coeffs.size());
|
||||
}
|
||||
|
||||
vector<std::pair<mpq, var_index>> get_left_side_coefficients() const { return m_coeffs; }
|
||||
};
|
||||
}
|
802
src/util/lp/lar_core_solver.h
Normal file
802
src/util/lp/lar_core_solver.h
Normal file
|
@ -0,0 +1,802 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include <algorithm>
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
#include "util/lp/breakpoint.h"
|
||||
#include "util/lp/stacked_unordered_set.h"
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
#include "util/lp/stacked_vector.h"
|
||||
#include "util/lp/lar_solution_signature.h"
|
||||
#include "util/lp/iterator_on_column.h"
|
||||
#include "util/lp/iterator_on_indexed_vector.h"
|
||||
#include "util/lp/stacked_value.h"
|
||||
namespace lean {
|
||||
|
||||
class lar_core_solver {
|
||||
// m_sign_of_entering is set to 1 if the entering variable needs
|
||||
// to grow and is set to -1 otherwise
|
||||
int m_sign_of_entering_delta;
|
||||
vector<std::pair<mpq, unsigned>> m_infeasible_linear_combination;
|
||||
int m_infeasible_sum_sign = 0; // todo: get rid of this field
|
||||
vector<numeric_pair<mpq>> m_right_sides_dummy;
|
||||
vector<mpq> m_costs_dummy;
|
||||
vector<double> m_d_right_sides_dummy;
|
||||
vector<double> m_d_costs_dummy;
|
||||
public:
|
||||
stacked_value<simplex_strategy_enum> m_stacked_simplex_strategy;
|
||||
stacked_vector<column_type> m_column_types;
|
||||
// r - solver fields, for rational numbers
|
||||
vector<numeric_pair<mpq>> m_r_x; // the solution
|
||||
stacked_vector<numeric_pair<mpq>> m_r_low_bounds;
|
||||
stacked_vector<numeric_pair<mpq>> m_r_upper_bounds;
|
||||
static_matrix<mpq, numeric_pair<mpq>> m_r_A;
|
||||
stacked_vector<unsigned> m_r_pushed_basis;
|
||||
vector<unsigned> m_r_basis;
|
||||
vector<unsigned> m_r_nbasis;
|
||||
vector<int> m_r_heading;
|
||||
stacked_vector<unsigned> m_r_columns_nz;
|
||||
stacked_vector<unsigned> m_r_rows_nz;
|
||||
|
||||
// d - solver fields, for doubles
|
||||
vector<double> m_d_x; // the solution in doubles
|
||||
vector<double> m_d_low_bounds;
|
||||
vector<double> m_d_upper_bounds;
|
||||
static_matrix<double, double> m_d_A;
|
||||
stacked_vector<unsigned> m_d_pushed_basis;
|
||||
vector<unsigned> m_d_basis;
|
||||
vector<unsigned> m_d_nbasis;
|
||||
vector<int> m_d_heading;
|
||||
|
||||
|
||||
lp_primal_core_solver<mpq, numeric_pair<mpq>> m_r_solver; // solver in rational numbers
|
||||
|
||||
lp_primal_core_solver<double, double> m_d_solver; // solver in doubles
|
||||
|
||||
lar_core_solver(
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names
|
||||
);
|
||||
|
||||
lp_settings & settings() { return m_r_solver.m_settings;}
|
||||
const lp_settings & settings() const { return m_r_solver.m_settings;}
|
||||
|
||||
int get_infeasible_sum_sign() const { return m_infeasible_sum_sign; }
|
||||
|
||||
const vector<std::pair<mpq, unsigned>> & get_infeasibility_info(int & inf_sign) const {
|
||||
inf_sign = m_infeasible_sum_sign;
|
||||
return m_infeasible_linear_combination;
|
||||
}
|
||||
|
||||
void fill_not_improvable_zero_sum_from_inf_row();
|
||||
|
||||
column_type get_column_type(unsigned j) { return m_column_types[j];}
|
||||
|
||||
void init_costs(bool first_time);
|
||||
|
||||
void init_cost_for_column(unsigned j);
|
||||
|
||||
// returns m_sign_of_alpha_r
|
||||
int column_is_out_of_bounds(unsigned j);
|
||||
|
||||
void calculate_pivot_row(unsigned i);
|
||||
|
||||
void print_pivot_row(std::ostream & out, unsigned row_index) const { // remove later debug !!!!
|
||||
for (unsigned j : m_r_solver.m_pivot_row.m_index) {
|
||||
if (numeric_traits<mpq>::is_pos(m_r_solver.m_pivot_row.m_data[j]))
|
||||
out << "+";
|
||||
out << m_r_solver.m_pivot_row.m_data[j] << m_r_solver.column_name(j) << " ";
|
||||
}
|
||||
|
||||
out << " +" << m_r_solver.column_name(m_r_solver.m_basis[row_index]) << std::endl;
|
||||
|
||||
for (unsigned j : m_r_solver.m_pivot_row.m_index) {
|
||||
m_r_solver.print_column_bound_info(j, out);
|
||||
}
|
||||
m_r_solver.print_column_bound_info(m_r_solver.m_basis[row_index], out);
|
||||
|
||||
}
|
||||
|
||||
|
||||
void advance_on_sorted_breakpoints(unsigned entering);
|
||||
|
||||
void change_slope_on_breakpoint(unsigned entering, breakpoint<numeric_pair<mpq>> * b, mpq & slope_at_entering);
|
||||
|
||||
bool row_is_infeasible(unsigned row);
|
||||
|
||||
bool row_is_evidence(unsigned row);
|
||||
|
||||
bool find_evidence_row();
|
||||
|
||||
void prefix_r();
|
||||
|
||||
void prefix_d();
|
||||
|
||||
unsigned m_m() const {
|
||||
return m_r_A.row_count();
|
||||
}
|
||||
|
||||
unsigned m_n() const {
|
||||
return m_r_A.column_count();
|
||||
}
|
||||
|
||||
bool is_tiny() const { return this->m_m() < 10 && this->m_n() < 20; }
|
||||
|
||||
bool is_empty() const { return this->m_m() == 0 && this->m_n() == 0; }
|
||||
|
||||
template <typename L>
|
||||
int get_sign(const L & v) {
|
||||
return v > zero_of_type<L>() ? 1 : (v < zero_of_type<L>() ? -1 : 0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void fill_evidence(unsigned row);
|
||||
|
||||
|
||||
|
||||
void solve();
|
||||
|
||||
bool low_bounds_are_set() const { return true; }
|
||||
|
||||
const indexed_vector<mpq> & get_pivot_row() const {
|
||||
return m_r_solver.m_pivot_row;
|
||||
}
|
||||
|
||||
void fill_not_improvable_zero_sum();
|
||||
|
||||
void pop_basis(unsigned k) {
|
||||
if (!settings().use_tableau()) {
|
||||
m_r_pushed_basis.pop(k);
|
||||
m_r_basis = m_r_pushed_basis();
|
||||
m_r_solver.init_basis_heading_and_non_basic_columns_vector();
|
||||
m_d_pushed_basis.pop(k);
|
||||
m_d_basis = m_d_pushed_basis();
|
||||
m_d_solver.init_basis_heading_and_non_basic_columns_vector();
|
||||
} else {
|
||||
m_d_basis = m_r_basis;
|
||||
m_d_nbasis = m_r_nbasis;
|
||||
m_d_heading = m_r_heading;
|
||||
}
|
||||
}
|
||||
|
||||
void push() {
|
||||
lean_assert(m_r_solver.basis_heading_is_correct());
|
||||
lean_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
lean_assert(m_column_types.size() == m_r_A.column_count());
|
||||
m_stacked_simplex_strategy = settings().simplex_strategy();
|
||||
m_stacked_simplex_strategy.push();
|
||||
m_column_types.push();
|
||||
// rational
|
||||
if (!settings().use_tableau())
|
||||
m_r_A.push();
|
||||
m_r_low_bounds.push();
|
||||
m_r_upper_bounds.push();
|
||||
if (!settings().use_tableau()) {
|
||||
push_vector(m_r_pushed_basis, m_r_basis);
|
||||
push_vector(m_r_columns_nz, m_r_solver.m_columns_nz);
|
||||
push_vector(m_r_rows_nz, m_r_solver.m_rows_nz);
|
||||
}
|
||||
|
||||
m_d_A.push();
|
||||
if (!settings().use_tableau())
|
||||
push_vector(m_d_pushed_basis, m_d_basis);
|
||||
}
|
||||
|
||||
template <typename K>
|
||||
void push_vector(stacked_vector<K> & pushed_vector, const vector<K> & vector) {
|
||||
lean_assert(pushed_vector.size() <= vector.size());
|
||||
for (unsigned i = 0; i < vector.size();i++) {
|
||||
if (i == pushed_vector.size()) {
|
||||
pushed_vector.push_back(vector[i]);
|
||||
} else {
|
||||
pushed_vector[i] = vector[i];
|
||||
}
|
||||
}
|
||||
pushed_vector.push();
|
||||
}
|
||||
|
||||
void pop_markowitz_counts(unsigned k) {
|
||||
m_r_columns_nz.pop(k);
|
||||
m_r_rows_nz.pop(k);
|
||||
m_r_solver.m_columns_nz.resize(m_r_columns_nz.size());
|
||||
m_r_solver.m_rows_nz.resize(m_r_rows_nz.size());
|
||||
for (unsigned i = 0; i < m_r_columns_nz.size(); i++)
|
||||
m_r_solver.m_columns_nz[i] = m_r_columns_nz[i];
|
||||
for (unsigned i = 0; i < m_r_rows_nz.size(); i++)
|
||||
m_r_solver.m_rows_nz[i] = m_r_rows_nz[i];
|
||||
}
|
||||
|
||||
|
||||
void pop(unsigned k) {
|
||||
m_stacked_simplex_strategy.pop(k);
|
||||
bool use_tableau = m_stacked_simplex_strategy() != simplex_strategy_enum::no_tableau;
|
||||
// rationals
|
||||
if (!settings().use_tableau())
|
||||
m_r_A.pop(k);
|
||||
m_r_low_bounds.pop(k);
|
||||
m_r_upper_bounds.pop(k);
|
||||
m_column_types.pop(k);
|
||||
|
||||
if (m_r_solver.m_factorization != nullptr) {
|
||||
delete m_r_solver.m_factorization;
|
||||
m_r_solver.m_factorization = nullptr;
|
||||
}
|
||||
m_r_x.resize(m_r_A.column_count());
|
||||
m_r_solver.m_costs.resize(m_r_A.column_count());
|
||||
m_r_solver.m_d.resize(m_r_A.column_count());
|
||||
if(!use_tableau)
|
||||
pop_markowitz_counts(k);
|
||||
m_d_A.pop(k);
|
||||
if (m_d_solver.m_factorization != nullptr) {
|
||||
delete m_d_solver.m_factorization;
|
||||
m_d_solver.m_factorization = nullptr;
|
||||
}
|
||||
|
||||
m_d_x.resize(m_d_A.column_count());
|
||||
pop_basis(k);
|
||||
|
||||
lean_assert(m_r_solver.basis_heading_is_correct());
|
||||
lean_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
}
|
||||
|
||||
bool need_to_presolve_with_double_solver() const {
|
||||
return settings().presolve_with_double_solver_for_lar && !settings().use_tableau();
|
||||
}
|
||||
|
||||
template <typename L>
|
||||
bool is_zero_vector(const vector<L> & b) {
|
||||
for (const L & m: b)
|
||||
if (!is_zero(m)) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool update_xj_and_get_delta(unsigned j, non_basic_column_value_position pos_type, numeric_pair<mpq> & delta) {
|
||||
auto & x = m_r_x[j];
|
||||
switch (pos_type) {
|
||||
case at_low_bound:
|
||||
if (x == m_r_solver.m_low_bounds[j])
|
||||
return false;
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
m_r_solver.m_x[j] = m_r_solver.m_low_bounds[j];
|
||||
break;
|
||||
case at_fixed:
|
||||
case at_upper_bound:
|
||||
if (x == m_r_solver.m_upper_bounds[j])
|
||||
return false;
|
||||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x = m_r_solver.m_upper_bounds[j];
|
||||
break;
|
||||
case free_of_bounds: {
|
||||
return false;
|
||||
}
|
||||
case not_at_bound:
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return false;
|
||||
case column_type::upper_bound:
|
||||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x = m_r_solver.m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (x > m_r_solver.m_upper_bounds[j]) {
|
||||
delta = m_r_solver.m_upper_bounds[j] - x;
|
||||
x += m_r_solver.m_upper_bounds[j];
|
||||
} else {
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::fixed:
|
||||
delta = m_r_solver.m_low_bounds[j] - x;
|
||||
x = m_r_solver.m_low_bounds[j];
|
||||
break;
|
||||
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
m_r_solver.remove_column_from_inf_set(j);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void prepare_solver_x_with_signature_tableau(const lar_solution_signature & signature) {
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
for (auto &t : signature) {
|
||||
unsigned j = t.first;
|
||||
if (m_r_heading[j] >= 0)
|
||||
continue;
|
||||
auto pos_type = t.second;
|
||||
numeric_pair<mpq> delta;
|
||||
if (!update_xj_and_get_delta(j, pos_type, delta))
|
||||
continue;
|
||||
for (const auto & cc : m_r_solver.m_A.m_columns[j]){
|
||||
unsigned i = cc.m_i;
|
||||
unsigned jb = m_r_solver.m_basis[i];
|
||||
m_r_solver.m_x[jb] -= delta * m_r_solver.m_A.get_val(cc);
|
||||
m_r_solver.update_column_in_inf_set(jb);
|
||||
}
|
||||
lean_assert(m_r_solver.A_mult_x_is_off() == false);
|
||||
}
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
}
|
||||
|
||||
|
||||
template <typename L, typename K>
|
||||
void prepare_solver_x_with_signature(const lar_solution_signature & signature, lp_primal_core_solver<L,K> & s) {
|
||||
for (auto &t : signature) {
|
||||
unsigned j = t.first;
|
||||
lean_assert(m_r_heading[j] < 0);
|
||||
auto pos_type = t.second;
|
||||
switch (pos_type) {
|
||||
case at_low_bound:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
case at_fixed:
|
||||
case at_upper_bound:
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
break;
|
||||
case free_of_bounds: {
|
||||
s.m_x[j] = zero_of_type<K>();
|
||||
continue;
|
||||
}
|
||||
case not_at_bound:
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
lean_assert(false); // unreachable
|
||||
case column_type::upper_bound:
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (my_random() % 2) {
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
} else {
|
||||
s.m_x[j] = s.m_upper_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::fixed:
|
||||
s.m_x[j] = s.m_low_bounds[j];
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
lean_assert(is_zero_vector(s.m_b));
|
||||
s.solve_Ax_eq_b();
|
||||
}
|
||||
|
||||
template <typename L, typename K>
|
||||
void catch_up_in_lu_in_reverse(const vector<unsigned> & trace_of_basis_change, lp_primal_core_solver<L,K> & cs) {
|
||||
// recover the previous working basis
|
||||
for (unsigned i = trace_of_basis_change.size(); i > 0; i-= 2) {
|
||||
unsigned entering = trace_of_basis_change[i-1];
|
||||
unsigned leaving = trace_of_basis_change[i-2];
|
||||
cs.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
cs.init_lu();
|
||||
}
|
||||
|
||||
//basis_heading is the basis heading of the solver owning trace_of_basis_change
|
||||
// here we compact the trace as we go to avoid unnecessary column changes
|
||||
template <typename L, typename K>
|
||||
void catch_up_in_lu(const vector<unsigned> & trace_of_basis_change, const vector<int> & basis_heading, lp_primal_core_solver<L,K> & cs) {
|
||||
if (cs.m_factorization == nullptr || cs.m_factorization->m_refactor_counter + trace_of_basis_change.size()/2 >= 200) {
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
unsigned entering = trace_of_basis_change[i];
|
||||
unsigned leaving = trace_of_basis_change[i+1];
|
||||
cs.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
if (cs.m_factorization != nullptr)
|
||||
delete cs.m_factorization;
|
||||
cs.m_factorization = nullptr;
|
||||
} else {
|
||||
indexed_vector<L> w(cs.m_A.row_count());
|
||||
// the queues of delayed indices
|
||||
std::queue<unsigned> entr_q, leav_q;
|
||||
auto * l = cs.m_factorization;
|
||||
lean_assert(l->get_status() == LU_status::OK);
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
unsigned entering = trace_of_basis_change[i];
|
||||
unsigned leaving = trace_of_basis_change[i+1];
|
||||
bool good_e = basis_heading[entering] >= 0 && cs.m_basis_heading[entering] < 0;
|
||||
bool good_l = basis_heading[leaving] < 0 && cs.m_basis_heading[leaving] >= 0;
|
||||
if (!good_e && !good_l) continue;
|
||||
if (good_e && !good_l) {
|
||||
while (!leav_q.empty() && cs.m_basis_heading[leav_q.front()] < 0)
|
||||
leav_q.pop();
|
||||
if (!leav_q.empty()) {
|
||||
leaving = leav_q.front();
|
||||
leav_q.pop();
|
||||
} else {
|
||||
entr_q.push(entering);
|
||||
continue;
|
||||
}
|
||||
} else if (!good_e && good_l) {
|
||||
while (!entr_q.empty() && cs.m_basis_heading[entr_q.front()] >= 0)
|
||||
entr_q.pop();
|
||||
if (!entr_q.empty()) {
|
||||
entering = entr_q.front();
|
||||
entr_q.pop();
|
||||
} else {
|
||||
leav_q.push(leaving);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
lean_assert(cs.m_basis_heading[entering] < 0);
|
||||
lean_assert(cs.m_basis_heading[leaving] >= 0);
|
||||
if (l->get_status() == LU_status::OK) {
|
||||
l->prepare_entering(entering, w); // to init vector w
|
||||
l->replace_column(zero_of_type<L>(), w, cs.m_basis_heading[leaving]);
|
||||
}
|
||||
cs.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
if (l->get_status() != LU_status::OK) {
|
||||
delete l;
|
||||
cs.m_factorization = nullptr;
|
||||
}
|
||||
}
|
||||
if (cs.m_factorization == nullptr) {
|
||||
if (numeric_traits<L>::precise())
|
||||
init_factorization(cs.m_factorization, cs.m_A, cs.m_basis, settings());
|
||||
}
|
||||
}
|
||||
|
||||
bool no_r_lu() const {
|
||||
return m_r_solver.m_factorization == nullptr || m_r_solver.m_factorization->get_status() == LU_status::Degenerated;
|
||||
}
|
||||
|
||||
void solve_on_signature_tableau(const lar_solution_signature & signature, const vector<unsigned> & changes_of_basis) {
|
||||
r_basis_is_OK();
|
||||
lean_assert(settings().use_tableau());
|
||||
bool r = catch_up_in_lu_tableau(changes_of_basis, m_d_solver.m_basis_heading);
|
||||
|
||||
if (!r) { // it is the case where m_d_solver gives a degenerated basis
|
||||
prepare_solver_x_with_signature_tableau(signature); // still are going to use the signature partially
|
||||
m_r_solver.find_feasible_solution();
|
||||
m_d_basis = m_r_basis;
|
||||
m_d_heading = m_r_heading;
|
||||
m_d_nbasis = m_r_nbasis;
|
||||
delete m_d_solver.m_factorization;
|
||||
m_d_solver.m_factorization = nullptr;
|
||||
} else {
|
||||
prepare_solver_x_with_signature_tableau(signature);
|
||||
m_r_solver.start_tracing_basis_changes();
|
||||
m_r_solver.find_feasible_solution();
|
||||
if (settings().get_cancel_flag())
|
||||
return;
|
||||
m_r_solver.stop_tracing_basis_changes();
|
||||
// and now catch up in the double solver
|
||||
lean_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
|
||||
}
|
||||
lean_assert(r_basis_is_OK());
|
||||
}
|
||||
|
||||
bool adjust_x_of_column(unsigned j) {
|
||||
/*
|
||||
if (m_r_solver.m_basis_heading[j] >= 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_r_solver.column_is_feasible(j)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
m_r_solver.snap_column_to_bound_tableau(j);
|
||||
lean_assert(m_r_solver.column_is_feasible(j));
|
||||
m_r_solver.m_inf_set.erase(j);
|
||||
*/
|
||||
lean_assert(false);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool catch_up_in_lu_tableau(const vector<unsigned> & trace_of_basis_change, const vector<int> & basis_heading) {
|
||||
lean_assert(r_basis_is_OK());
|
||||
// the queues of delayed indices
|
||||
std::queue<unsigned> entr_q, leav_q;
|
||||
for (unsigned i = 0; i < trace_of_basis_change.size(); i+= 2) {
|
||||
unsigned entering = trace_of_basis_change[i];
|
||||
unsigned leaving = trace_of_basis_change[i+1];
|
||||
bool good_e = basis_heading[entering] >= 0 && m_r_solver.m_basis_heading[entering] < 0;
|
||||
bool good_l = basis_heading[leaving] < 0 && m_r_solver.m_basis_heading[leaving] >= 0;
|
||||
if (!good_e && !good_l) continue;
|
||||
if (good_e && !good_l) {
|
||||
while (!leav_q.empty() && m_r_solver.m_basis_heading[leav_q.front()] < 0)
|
||||
leav_q.pop();
|
||||
if (!leav_q.empty()) {
|
||||
leaving = leav_q.front();
|
||||
leav_q.pop();
|
||||
} else {
|
||||
entr_q.push(entering);
|
||||
continue;
|
||||
}
|
||||
} else if (!good_e && good_l) {
|
||||
while (!entr_q.empty() && m_r_solver.m_basis_heading[entr_q.front()] >= 0)
|
||||
entr_q.pop();
|
||||
if (!entr_q.empty()) {
|
||||
entering = entr_q.front();
|
||||
entr_q.pop();
|
||||
} else {
|
||||
leav_q.push(leaving);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
lean_assert(m_r_solver.m_basis_heading[entering] < 0);
|
||||
lean_assert(m_r_solver.m_basis_heading[leaving] >= 0);
|
||||
m_r_solver.change_basis_unconditionally(entering, leaving);
|
||||
if(!m_r_solver.pivot_column_tableau(entering, m_r_solver.m_basis_heading[entering])) {
|
||||
// unroll the last step
|
||||
m_r_solver.change_basis_unconditionally(leaving, entering);
|
||||
#ifdef LEAN_DEBUG
|
||||
bool t =
|
||||
#endif
|
||||
m_r_solver.pivot_column_tableau(leaving, m_r_solver.m_basis_heading[leaving]);
|
||||
#ifdef LEAN_DEBUG
|
||||
lean_assert(t);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
}
|
||||
lean_assert(r_basis_is_OK());
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool r_basis_is_OK() const {
|
||||
#ifdef LEAN_DEBUG
|
||||
if (!m_r_solver.m_settings.use_tableau())
|
||||
return true;
|
||||
for (unsigned j : m_r_solver.m_basis) {
|
||||
lean_assert(m_r_solver.m_A.m_columns[j].size() == 1);
|
||||
lean_assert(m_r_solver.m_A.get_val(m_r_solver.m_A.m_columns[j][0]) == one_of_type<mpq>());
|
||||
}
|
||||
for (unsigned j =0; j < m_r_solver.m_basis_heading.size(); j++) {
|
||||
if (m_r_solver.m_basis_heading[j] >= 0) continue;
|
||||
if (m_r_solver.m_column_types[j] == column_type::fixed) continue;
|
||||
lean_assert(static_cast<unsigned>(- m_r_solver.m_basis_heading[j] - 1) < m_r_solver.m_column_types.size());
|
||||
lean_assert( m_r_solver.m_basis_heading[j] <= -1);
|
||||
}
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
|
||||
void solve_on_signature(const lar_solution_signature & signature, const vector<unsigned> & changes_of_basis) {
|
||||
lean_assert(!settings().use_tableau());
|
||||
if (m_r_solver.m_factorization == nullptr) {
|
||||
for (unsigned j = 0; j < changes_of_basis.size(); j+=2) {
|
||||
unsigned entering = changes_of_basis[j];
|
||||
unsigned leaving = changes_of_basis[j + 1];
|
||||
m_r_solver.change_basis_unconditionally(entering, leaving);
|
||||
}
|
||||
init_factorization(m_r_solver.m_factorization, m_r_A, m_r_basis, settings());
|
||||
} else {
|
||||
catch_up_in_lu(changes_of_basis, m_d_solver.m_basis_heading, m_r_solver);
|
||||
}
|
||||
|
||||
if (no_r_lu()) { // it is the case where m_d_solver gives a degenerated basis, we need to roll back
|
||||
std::cout << "no_r_lu" << std::endl;
|
||||
catch_up_in_lu_in_reverse(changes_of_basis, m_r_solver);
|
||||
m_r_solver.find_feasible_solution();
|
||||
m_d_basis = m_r_basis;
|
||||
m_d_heading = m_r_heading;
|
||||
m_d_nbasis = m_r_nbasis;
|
||||
delete m_d_solver.m_factorization;
|
||||
m_d_solver.m_factorization = nullptr;
|
||||
} else {
|
||||
prepare_solver_x_with_signature(signature, m_r_solver);
|
||||
m_r_solver.start_tracing_basis_changes();
|
||||
m_r_solver.find_feasible_solution();
|
||||
if (settings().get_cancel_flag())
|
||||
return;
|
||||
m_r_solver.stop_tracing_basis_changes();
|
||||
// and now catch up in the double solver
|
||||
lean_assert(m_r_solver.total_iterations() >= m_r_solver.m_trace_of_basis_change_vector.size() /2);
|
||||
catch_up_in_lu(m_r_solver.m_trace_of_basis_change_vector, m_r_solver.m_basis_heading, m_d_solver);
|
||||
}
|
||||
}
|
||||
|
||||
void create_double_matrix(static_matrix<double, double> & A) {
|
||||
for (unsigned i = 0; i < m_r_A.row_count(); i++) {
|
||||
auto & row = m_r_A.m_rows[i];
|
||||
for (row_cell<mpq> & c : row) {
|
||||
A.set(i, c.m_j, c.get_val().get_double());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void fill_basis_d(
|
||||
vector<unsigned>& basis_d,
|
||||
vector<int>& heading_d,
|
||||
vector<unsigned>& nbasis_d){
|
||||
basis_d = m_r_basis;
|
||||
heading_d = m_r_heading;
|
||||
nbasis_d = m_r_nbasis;
|
||||
}
|
||||
|
||||
template <typename L, typename K>
|
||||
void extract_signature_from_lp_core_solver(const lp_primal_core_solver<L, K> & solver, lar_solution_signature & signature) {
|
||||
signature.clear();
|
||||
lean_assert(signature.size() == 0);
|
||||
for (unsigned j = 0; j < solver.m_basis_heading.size(); j++) {
|
||||
if (solver.m_basis_heading[j] < 0) {
|
||||
signature[j] = solver.get_non_basic_column_value_position(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void get_bounds_for_double_solver() {
|
||||
unsigned n = m_n();
|
||||
m_d_low_bounds.resize(n);
|
||||
m_d_upper_bounds.resize(n);
|
||||
double delta = find_delta_for_strict_boxed_bounds().get_double();
|
||||
if (delta > 0.000001)
|
||||
delta = 0.000001;
|
||||
for (unsigned j = 0; j < n; j++) {
|
||||
if (low_bound_is_set(j)) {
|
||||
const auto & lb = m_r_solver.m_low_bounds[j];
|
||||
m_d_low_bounds[j] = lb.x.get_double() + delta * lb.y.get_double();
|
||||
}
|
||||
if (upper_bound_is_set(j)) {
|
||||
const auto & ub = m_r_solver.m_upper_bounds[j];
|
||||
m_d_upper_bounds[j] = ub.x.get_double() + delta * ub.y.get_double();
|
||||
lean_assert(!low_bound_is_set(j) || (m_d_upper_bounds[j] >= m_d_low_bounds[j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void scale_problem_for_doubles(
|
||||
static_matrix<double, double>& A,
|
||||
vector<double> & low_bounds,
|
||||
vector<double> & upper_bounds) {
|
||||
vector<double> column_scale_vector;
|
||||
vector<double> right_side_vector(A.column_count());
|
||||
settings().reps_in_scaler = 5;
|
||||
scaler<double, double > scaler(right_side_vector,
|
||||
A,
|
||||
settings().scaling_minimum,
|
||||
settings().scaling_maximum,
|
||||
column_scale_vector,
|
||||
settings());
|
||||
if (! scaler.scale()) {
|
||||
// the scale did not succeed, unscaling
|
||||
A.clear();
|
||||
create_double_matrix(A);
|
||||
} else {
|
||||
for (unsigned j = 0; j < A.column_count(); j++) {
|
||||
if (m_r_solver.column_has_upper_bound(j)) {
|
||||
upper_bounds[j] /= column_scale_vector[j];
|
||||
}
|
||||
if (m_r_solver.column_has_low_bound(j)) {
|
||||
low_bounds[j] /= column_scale_vector[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
// returns the trace of basis changes
|
||||
vector<unsigned> find_solution_signature_with_doubles(lar_solution_signature & signature) {
|
||||
if (m_d_solver.m_factorization == nullptr || m_d_solver.m_factorization->get_status() != LU_status::OK) {
|
||||
vector<unsigned> ret;
|
||||
return ret;
|
||||
}
|
||||
get_bounds_for_double_solver();
|
||||
|
||||
extract_signature_from_lp_core_solver(m_r_solver, signature);
|
||||
prepare_solver_x_with_signature(signature, m_d_solver);
|
||||
m_d_solver.start_tracing_basis_changes();
|
||||
m_d_solver.find_feasible_solution();
|
||||
if (settings().get_cancel_flag())
|
||||
return vector<unsigned>();
|
||||
|
||||
m_d_solver.stop_tracing_basis_changes();
|
||||
extract_signature_from_lp_core_solver(m_d_solver, signature);
|
||||
return m_d_solver.m_trace_of_basis_change_vector;
|
||||
}
|
||||
|
||||
|
||||
bool low_bound_is_set(unsigned j) const {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::upper_bound:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
return true;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool upper_bound_is_set(unsigned j) const {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::low_bound:
|
||||
return false;
|
||||
case column_type::upper_bound:
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
return true;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void update_delta(mpq& delta, numeric_pair<mpq> const& l, numeric_pair<mpq> const& u) const {
|
||||
lean_assert(l <= u);
|
||||
if (l.x < u.x && l.y > u.y) {
|
||||
mpq delta1 = (u.x - l.x) / (l.y - u.y);
|
||||
if (delta1 < delta) {
|
||||
delta = delta1;
|
||||
}
|
||||
}
|
||||
lean_assert(l.x + delta * l.y <= u.x + delta * u.y);
|
||||
}
|
||||
|
||||
|
||||
mpq find_delta_for_strict_boxed_bounds() const{
|
||||
mpq delta = numeric_traits<mpq>::one();
|
||||
for (unsigned j = 0; j < m_r_A.column_count(); j++ ) {
|
||||
if (m_column_types()[j] != column_type::boxed)
|
||||
continue;
|
||||
update_delta(delta, m_r_low_bounds[j], m_r_upper_bounds[j]);
|
||||
|
||||
}
|
||||
return delta;
|
||||
}
|
||||
|
||||
|
||||
mpq find_delta_for_strict_bounds() const{
|
||||
mpq delta = numeric_traits<mpq>::one();
|
||||
for (unsigned j = 0; j < m_r_A.column_count(); j++ ) {
|
||||
if (low_bound_is_set(j))
|
||||
update_delta(delta, m_r_low_bounds[j], m_r_x[j]);
|
||||
if (upper_bound_is_set(j))
|
||||
update_delta(delta, m_r_x[j], m_r_upper_bounds[j]);
|
||||
}
|
||||
return delta;
|
||||
}
|
||||
|
||||
void init_column_row_nz_for_r_solver() {
|
||||
m_r_solver.init_column_row_non_zeroes();
|
||||
}
|
||||
|
||||
linear_combination_iterator<mpq> * get_column_iterator(unsigned j) {
|
||||
if (settings().use_tableau()) {
|
||||
return new iterator_on_column<mpq, numeric_pair<mpq>>(m_r_solver.m_A.m_columns[j], m_r_solver.m_A);
|
||||
} else {
|
||||
m_r_solver.solve_Bd(j);
|
||||
return new iterator_on_indexed_vector<mpq>(m_r_solver.m_ed);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
}
|
292
src/util/lp/lar_core_solver.hpp
Normal file
292
src/util/lp/lar_core_solver.hpp
Normal file
|
@ -0,0 +1,292 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lar_core_solver.h"
|
||||
#include "util/lp/lar_solution_signature.h"
|
||||
namespace lean {
|
||||
lar_core_solver::lar_core_solver(
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names
|
||||
):
|
||||
m_r_solver(m_r_A,
|
||||
m_right_sides_dummy,
|
||||
m_r_x,
|
||||
m_r_basis,
|
||||
m_r_nbasis,
|
||||
m_r_heading,
|
||||
m_costs_dummy,
|
||||
m_column_types(),
|
||||
m_r_low_bounds(),
|
||||
m_r_upper_bounds(),
|
||||
settings,
|
||||
column_names),
|
||||
m_d_solver(m_d_A,
|
||||
m_d_right_sides_dummy,
|
||||
m_d_x,
|
||||
m_d_basis,
|
||||
m_d_nbasis,
|
||||
m_d_heading,
|
||||
m_d_costs_dummy,
|
||||
m_column_types(),
|
||||
m_d_low_bounds,
|
||||
m_d_upper_bounds,
|
||||
settings,
|
||||
column_names){}
|
||||
|
||||
void lar_core_solver::init_costs(bool first_time) {
|
||||
lean_assert(false); // should not be called
|
||||
// lean_assert(this->m_x.size() >= this->m_n());
|
||||
// lean_assert(this->m_column_types.size() >= this->m_n());
|
||||
// if (first_time)
|
||||
// this->m_costs.resize(this->m_n());
|
||||
// X inf = this->m_infeasibility;
|
||||
// this->m_infeasibility = zero_of_type<X>();
|
||||
// for (unsigned j = this->m_n(); j--;)
|
||||
// init_cost_for_column(j);
|
||||
// if (!(first_time || inf >= this->m_infeasibility)) {
|
||||
// LP_OUT(this->m_settings, "iter = " << this->total_iterations() << std::endl);
|
||||
// LP_OUT(this->m_settings, "inf was " << T_to_string(inf) << " and now " << T_to_string(this->m_infeasibility) << std::endl);
|
||||
// lean_assert(false);
|
||||
// }
|
||||
// if (inf == this->m_infeasibility)
|
||||
// this->m_iters_with_no_cost_growing++;
|
||||
}
|
||||
|
||||
|
||||
void lar_core_solver::init_cost_for_column(unsigned j) {
|
||||
/*
|
||||
// If j is a breakpoint column, then we set the cost zero.
|
||||
// When anylyzing an entering column candidate we update the cost of the breakpoints columns to get the left or the right derivative if the infeasibility function
|
||||
const numeric_pair<mpq> & x = this->m_x[j];
|
||||
// set zero cost for each non-basis column
|
||||
if (this->m_basis_heading[j] < 0) {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
return;
|
||||
}
|
||||
// j is a basis column
|
||||
switch (this->m_column_types[j]) {
|
||||
case fixed:
|
||||
case column_type::boxed:
|
||||
if (x > this->m_upper_bounds[j]) {
|
||||
this->m_costs[j] = 1;
|
||||
this->m_infeasibility += x - this->m_upper_bounds[j];
|
||||
} else if (x < this->m_low_bounds[j]) {
|
||||
this->m_infeasibility += this->m_low_bounds[j] - x;
|
||||
this->m_costs[j] = -1;
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case low_bound:
|
||||
if (x < this->m_low_bounds[j]) {
|
||||
this->m_costs[j] = -1;
|
||||
this->m_infeasibility += this->m_low_bounds[j] - x;
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case upper_bound:
|
||||
if (x > this->m_upper_bounds[j]) {
|
||||
this->m_costs[j] = 1;
|
||||
this->m_infeasibility += x - this->m_upper_bounds[j];
|
||||
} else {
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
break;
|
||||
case free_column:
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}*/
|
||||
}
|
||||
|
||||
|
||||
// returns m_sign_of_alpha_r
|
||||
int lar_core_solver::column_is_out_of_bounds(unsigned j) {
|
||||
/*
|
||||
switch (this->m_column_type[j]) {
|
||||
case fixed:
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
return -1;
|
||||
}
|
||||
if (this->x_above_upper_bound(j)) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
case low_bound:
|
||||
if (this->x_below_low_bound(j)) {
|
||||
return -1;
|
||||
}
|
||||
return 0;
|
||||
case upper_bound:
|
||||
if (this->x_above_upper_bound(j)) {
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
default:
|
||||
return 0;
|
||||
break;
|
||||
}*/
|
||||
lean_assert(false);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void lar_core_solver::calculate_pivot_row(unsigned i) {
|
||||
lean_assert(!m_r_solver.use_tableau());
|
||||
lean_assert(m_r_solver.m_pivot_row.is_OK());
|
||||
m_r_solver.m_pivot_row_of_B_1.clear();
|
||||
m_r_solver.m_pivot_row_of_B_1.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_pivot_row.clear();
|
||||
m_r_solver.m_pivot_row.resize(m_r_solver.m_n());
|
||||
if (m_r_solver.m_settings.use_tableau()) {
|
||||
unsigned basis_j = m_r_solver.m_basis[i];
|
||||
for (auto & c : m_r_solver.m_A.m_rows[i]) {
|
||||
if (c.m_j != basis_j)
|
||||
m_r_solver.m_pivot_row.set_value(c.get_val(), c.m_j);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
m_r_solver.calculate_pivot_row_of_B_1(i);
|
||||
m_r_solver.calculate_pivot_row_when_pivot_row_of_B1_is_ready(i);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void lar_core_solver::prefix_r() {
|
||||
if (!m_r_solver.m_settings.use_tableau()) {
|
||||
m_r_solver.m_copy_of_xB.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_ed.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_pivot_row.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_pivot_row_of_B_1.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_w.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_y.resize(m_r_solver.m_m());
|
||||
m_r_solver.m_rows_nz.resize(m_r_solver.m_m(), 0);
|
||||
m_r_solver.m_columns_nz.resize(m_r_solver.m_n(), 0);
|
||||
init_column_row_nz_for_r_solver();
|
||||
}
|
||||
|
||||
m_r_solver.m_b.resize(m_r_solver.m_m());
|
||||
if (m_r_solver.m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows) {
|
||||
if(m_r_solver.m_settings.use_breakpoints_in_feasibility_search)
|
||||
m_r_solver.m_breakpoint_indices_queue.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_costs.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_d.resize(m_r_solver.m_n());
|
||||
m_r_solver.m_using_infeas_costs = true;
|
||||
}
|
||||
}
|
||||
|
||||
void lar_core_solver::prefix_d() {
|
||||
m_d_solver.m_b.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_breakpoint_indices_queue.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_copy_of_xB.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_costs.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_d.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_ed.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_pivot_row.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_pivot_row_of_B_1.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_w.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_y.resize(m_d_solver.m_m());
|
||||
m_d_solver.m_steepest_edge_coefficients.resize(m_d_solver.m_n());
|
||||
m_d_solver.m_column_norms.clear();
|
||||
m_d_solver.m_column_norms.resize(m_d_solver.m_n(), 2);
|
||||
m_d_solver.m_inf_set.clear();
|
||||
m_d_solver.m_inf_set.resize(m_d_solver.m_n());
|
||||
}
|
||||
|
||||
void lar_core_solver::fill_not_improvable_zero_sum_from_inf_row() {
|
||||
lean_assert(m_r_solver.A_mult_x_is_off() == false);
|
||||
unsigned bj = m_r_basis[m_r_solver.m_inf_row_index_for_tableau];
|
||||
m_infeasible_sum_sign = m_r_solver.inf_sign_of_column(bj);
|
||||
m_infeasible_linear_combination.clear();
|
||||
for (auto & rc : m_r_solver.m_A.m_rows[m_r_solver.m_inf_row_index_for_tableau]) {
|
||||
m_infeasible_linear_combination.push_back(std::make_pair( rc.get_val(), rc.m_j));
|
||||
}
|
||||
}
|
||||
|
||||
void lar_core_solver::fill_not_improvable_zero_sum() {
|
||||
if (m_r_solver.m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows) {
|
||||
fill_not_improvable_zero_sum_from_inf_row();
|
||||
return;
|
||||
}
|
||||
// reusing the existing mechanism for row_feasibility_loop
|
||||
m_infeasible_sum_sign = m_r_solver.m_settings.use_breakpoints_in_feasibility_search? -1 : 1;
|
||||
m_infeasible_linear_combination.clear();
|
||||
for (auto j : m_r_solver.m_basis) {
|
||||
const mpq & cost_j = m_r_solver.m_costs[j];
|
||||
if (!numeric_traits<mpq>::is_zero(cost_j)) {
|
||||
m_infeasible_linear_combination.push_back(std::make_pair(cost_j, j));
|
||||
}
|
||||
}
|
||||
// m_costs are expressed by m_d ( additional costs), substructing the latter gives 0
|
||||
for (unsigned j = 0; j < m_r_solver.m_n(); j++) {
|
||||
if (m_r_solver.m_basis_heading[j] >= 0) continue;
|
||||
const mpq & d_j = m_r_solver.m_d[j];
|
||||
if (!numeric_traits<mpq>::is_zero(d_j)) {
|
||||
m_infeasible_linear_combination.push_back(std::make_pair(-d_j, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void lar_core_solver::solve() {
|
||||
lean_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
if (m_r_solver.current_x_is_feasible() && m_r_solver.m_look_for_feasible_solution_only) {
|
||||
m_r_solver.set_status(OPTIMAL);
|
||||
return;
|
||||
}
|
||||
++settings().st().m_need_to_solve_inf;
|
||||
lean_assert(!m_r_solver.A_mult_x_is_off());
|
||||
lean_assert((!settings().use_tableau()) || r_basis_is_OK());
|
||||
if (need_to_presolve_with_double_solver()) {
|
||||
prefix_d();
|
||||
lar_solution_signature solution_signature;
|
||||
vector<unsigned> changes_of_basis = find_solution_signature_with_doubles(solution_signature);
|
||||
if (m_d_solver.get_status() == TIME_EXHAUSTED) {
|
||||
m_r_solver.set_status(TIME_EXHAUSTED);
|
||||
return;
|
||||
}
|
||||
if (settings().use_tableau())
|
||||
solve_on_signature_tableau(solution_signature, changes_of_basis);
|
||||
else
|
||||
solve_on_signature(solution_signature, changes_of_basis);
|
||||
lean_assert(!settings().use_tableau() || r_basis_is_OK());
|
||||
} else {
|
||||
if (!settings().use_tableau()) {
|
||||
bool snapped = m_r_solver.snap_non_basic_x_to_bound();
|
||||
lean_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
if (snapped)
|
||||
m_r_solver.solve_Ax_eq_b();
|
||||
}
|
||||
if (m_r_solver.m_look_for_feasible_solution_only)
|
||||
m_r_solver.find_feasible_solution();
|
||||
else
|
||||
m_r_solver.solve();
|
||||
lean_assert(!settings().use_tableau() || r_basis_is_OK());
|
||||
}
|
||||
if (m_r_solver.get_status() == INFEASIBLE) {
|
||||
fill_not_improvable_zero_sum();
|
||||
} else if (m_r_solver.get_status() != UNBOUNDED) {
|
||||
m_r_solver.set_status(OPTIMAL);
|
||||
}
|
||||
lean_assert(r_basis_is_OK());
|
||||
lean_assert(m_r_solver.non_basic_columns_are_set_correctly());
|
||||
lean_assert(m_r_solver.inf_set_is_correct());
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
10
src/util/lp/lar_core_solver_instances.cpp
Normal file
10
src/util/lp/lar_core_solver_instances.cpp
Normal file
|
@ -0,0 +1,10 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lar_core_solver.hpp"
|
13
src/util/lp/lar_solution_signature.h
Normal file
13
src/util/lp/lar_solution_signature.h
Normal file
|
@ -0,0 +1,13 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include <unordered_map>
|
||||
namespace lean {
|
||||
typedef std::unordered_map<unsigned, non_basic_column_value_position> lar_solution_signature;
|
||||
}
|
2135
src/util/lp/lar_solver.h
Normal file
2135
src/util/lp/lar_solver.h
Normal file
File diff suppressed because it is too large
Load diff
64
src/util/lp/lar_term.h
Normal file
64
src/util/lp/lar_term.h
Normal file
|
@ -0,0 +1,64 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/indexed_vector.h"
|
||||
namespace lean {
|
||||
struct lar_term {
|
||||
// the term evaluates to sum of m_coeffs + m_v
|
||||
std::unordered_map<unsigned, mpq> m_coeffs;
|
||||
mpq m_v;
|
||||
lar_term() {}
|
||||
void add_to_map(unsigned j, const mpq& c) {
|
||||
auto it = m_coeffs.find(j);
|
||||
if (it == m_coeffs.end()) {
|
||||
m_coeffs.emplace(j, c);
|
||||
} else {
|
||||
it->second += c;
|
||||
if (is_zero(it->second))
|
||||
m_coeffs.erase(it);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned size() const { return static_cast<unsigned>(m_coeffs.size()); }
|
||||
|
||||
const std::unordered_map<unsigned, mpq> & coeffs() const {
|
||||
return m_coeffs;
|
||||
}
|
||||
|
||||
lar_term(const vector<std::pair<mpq, unsigned>>& coeffs,
|
||||
const mpq & v) : m_v(v) {
|
||||
for (const auto & p : coeffs) {
|
||||
add_to_map(p.second, p.first);
|
||||
}
|
||||
}
|
||||
bool operator==(const lar_term & a) const { return false; } // take care not to create identical terms
|
||||
bool operator!=(const lar_term & a) const { return ! (*this == a);}
|
||||
// some terms get used in add constraint
|
||||
// it is the same as the offset in the m_constraints
|
||||
|
||||
vector<std::pair<mpq, unsigned>> coeffs_as_vector() const {
|
||||
vector<std::pair<mpq, unsigned>> ret;
|
||||
for (const auto & p : m_coeffs) {
|
||||
ret.push_back(std::make_pair(p.second, p.first));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
// j is the basic variable to substitute
|
||||
void subst(unsigned j, indexed_vector<mpq> & li) {
|
||||
auto it = m_coeffs.find(j);
|
||||
if (it == m_coeffs.end()) return;
|
||||
const mpq & b = it->second;
|
||||
for (unsigned it_j :li.m_index) {
|
||||
add_to_map(it_j, - b * li.m_data[it_j]);
|
||||
}
|
||||
m_coeffs.erase(it);
|
||||
}
|
||||
|
||||
bool contains(unsigned j) const {
|
||||
return m_coeffs.find(j) != m_coeffs.end();
|
||||
}
|
||||
};
|
||||
}
|
47
src/util/lp/linear_combination_iterator.h
Normal file
47
src/util/lp/linear_combination_iterator.h
Normal file
|
@ -0,0 +1,47 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
namespace lean {
|
||||
template <typename T>
|
||||
struct linear_combination_iterator {
|
||||
virtual bool next(T & a, unsigned & i) = 0;
|
||||
virtual bool next(unsigned & i) = 0;
|
||||
virtual void reset() = 0;
|
||||
virtual linear_combination_iterator * clone() = 0;
|
||||
virtual ~linear_combination_iterator(){}
|
||||
virtual unsigned size() const = 0;
|
||||
};
|
||||
template <typename T>
|
||||
struct linear_combination_iterator_on_vector : linear_combination_iterator<T> {
|
||||
vector<std::pair<T, unsigned>> & m_vector;
|
||||
int m_offset = 0;
|
||||
bool next(T & a, unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
auto & p = m_vector[m_offset];
|
||||
a = p.first;
|
||||
i = p.second;
|
||||
m_offset++;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool next(unsigned & i) {
|
||||
if(m_offset >= m_vector.size())
|
||||
return false;
|
||||
auto & p = m_vector[m_offset];
|
||||
i = p.second;
|
||||
m_offset++;
|
||||
return true;
|
||||
}
|
||||
|
||||
void reset() {m_offset = 0;}
|
||||
linear_combination_iterator<T> * clone() {
|
||||
return new linear_combination_iterator_on_vector(m_vector);
|
||||
}
|
||||
linear_combination_iterator_on_vector(vector<std::pair<T, unsigned>> & vec): m_vector(vec) {}
|
||||
unsigned size() const { return m_vector.size(); }
|
||||
};
|
||||
|
||||
}
|
683
src/util/lp/lp_core_solver_base.h
Normal file
683
src/util/lp/lp_core_solver_base.h
Normal file
|
@ -0,0 +1,683 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <set>
|
||||
#include "util/vector.h"
|
||||
#include <string>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/core_solver_pretty_printer.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lu.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
#include "util/lp/column_namer.h"
|
||||
namespace lean {
|
||||
|
||||
template <typename T, typename X> // X represents the type of the x variable and the bounds
|
||||
class lp_core_solver_base {
|
||||
unsigned m_total_iterations = 0;
|
||||
unsigned inc_total_iterations() { ++m_settings.st().m_total_iterations; return m_total_iterations++; }
|
||||
private:
|
||||
lp_status m_status;
|
||||
public:
|
||||
bool current_x_is_feasible() const { return m_inf_set.size() == 0; }
|
||||
bool current_x_is_infeasible() const { return m_inf_set.size() != 0; }
|
||||
int_set m_inf_set;
|
||||
bool m_using_infeas_costs = false;
|
||||
|
||||
|
||||
vector<unsigned> m_columns_nz; // m_columns_nz[i] keeps an approximate value of non zeroes the i-th column
|
||||
vector<unsigned> m_rows_nz; // m_rows_nz[i] keeps an approximate value of non zeroes in the i-th row
|
||||
indexed_vector<T> m_pivot_row_of_B_1; // the pivot row of the reverse of B
|
||||
indexed_vector<T> m_pivot_row; // this is the real pivot row of the simplex tableu
|
||||
static_matrix<T, X> & m_A; // the matrix A
|
||||
vector<X> & m_b; // the right side
|
||||
vector<unsigned> & m_basis;
|
||||
vector<unsigned>& m_nbasis;
|
||||
vector<int>& m_basis_heading;
|
||||
vector<X> & m_x; // a feasible solution, the fist time set in the constructor
|
||||
vector<T> & m_costs;
|
||||
lp_settings & m_settings;
|
||||
vector<T> m_y; // the buffer for yB = cb
|
||||
// a device that is able to solve Bx=c, xB=d, and change the basis
|
||||
lu<T, X> * m_factorization = nullptr;
|
||||
const column_namer & m_column_names;
|
||||
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
|
||||
vector<T> m_d; // the vector of reduced costs
|
||||
indexed_vector<T> m_ed; // the solution of B*m_ed = a
|
||||
unsigned m_iters_with_no_cost_growing = 0;
|
||||
const vector<column_type> & m_column_types;
|
||||
const vector<X> & m_low_bounds;
|
||||
const vector<X> & m_upper_bounds;
|
||||
vector<T> m_column_norms; // the approximate squares of column norms that help choosing a profitable column
|
||||
vector<X> m_copy_of_xB;
|
||||
unsigned m_basis_sort_counter = 0;
|
||||
vector<T> m_steepest_edge_coefficients;
|
||||
vector<unsigned> m_trace_of_basis_change_vector; // the even positions are entering, the odd positions are leaving
|
||||
bool m_tracing_basis_changes = false;
|
||||
int_set* m_pivoted_rows = nullptr;
|
||||
bool m_look_for_feasible_solution_only = false;
|
||||
void start_tracing_basis_changes() {
|
||||
m_trace_of_basis_change_vector.resize(0);
|
||||
m_tracing_basis_changes = true;
|
||||
}
|
||||
|
||||
void stop_tracing_basis_changes() {
|
||||
m_tracing_basis_changes = false;
|
||||
}
|
||||
|
||||
void trace_basis_change(unsigned entering, unsigned leaving) {
|
||||
unsigned size = m_trace_of_basis_change_vector.size();
|
||||
if (size >= 2 && m_trace_of_basis_change_vector[size-2] == leaving
|
||||
&& m_trace_of_basis_change_vector[size -1] == entering) {
|
||||
m_trace_of_basis_change_vector.pop_back();
|
||||
m_trace_of_basis_change_vector.pop_back();
|
||||
} else {
|
||||
m_trace_of_basis_change_vector.push_back(entering);
|
||||
m_trace_of_basis_change_vector.push_back(leaving);
|
||||
}
|
||||
}
|
||||
|
||||
unsigned m_m() const { return m_A.row_count(); } // it is the length of basis. The matrix m_A has m_m rows and the dimension of the matrix A is m_m
|
||||
unsigned m_n() const { return m_A.column_count(); } // the number of columns in the matrix m_A
|
||||
|
||||
lp_core_solver_base(static_matrix<T, X> & A,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<X> & x,
|
||||
vector<T> & costs,
|
||||
lp_settings & settings,
|
||||
const column_namer& column_names,
|
||||
const vector<column_type> & column_types,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & upper_bound_values);
|
||||
|
||||
void allocate_basis_heading();
|
||||
void init();
|
||||
|
||||
virtual ~lp_core_solver_base() {
|
||||
if (m_factorization != nullptr)
|
||||
delete m_factorization;
|
||||
}
|
||||
|
||||
vector<unsigned> & non_basis() {
|
||||
return m_nbasis;
|
||||
}
|
||||
|
||||
const vector<unsigned> & non_basis() const { return m_nbasis; }
|
||||
|
||||
|
||||
|
||||
void set_status(lp_status status) {
|
||||
m_status = status;
|
||||
}
|
||||
lp_status get_status() const{
|
||||
return m_status;
|
||||
}
|
||||
|
||||
void fill_cb(T * y);
|
||||
|
||||
void fill_cb(vector<T> & y);
|
||||
|
||||
void solve_yB(vector<T> & y);
|
||||
|
||||
void solve_Bd(unsigned entering);
|
||||
|
||||
void solve_Bd(unsigned entering, indexed_vector<T> & column);
|
||||
|
||||
void pretty_print(std::ostream & out);
|
||||
|
||||
void save_state(T * w_buffer, T * d_buffer);
|
||||
|
||||
void restore_state(T * w_buffer, T * d_buffer);
|
||||
|
||||
X get_cost() {
|
||||
return dot_product(m_costs, m_x);
|
||||
}
|
||||
|
||||
void copy_m_w(T * buffer);
|
||||
|
||||
void restore_m_w(T * buffer);
|
||||
|
||||
// needed for debugging
|
||||
void copy_m_ed(T * buffer);
|
||||
|
||||
void restore_m_ed(T * buffer);
|
||||
|
||||
bool A_mult_x_is_off() const;
|
||||
|
||||
bool A_mult_x_is_off_on_index(const vector<unsigned> & index) const;
|
||||
// from page 182 of Istvan Maros's book
|
||||
void calculate_pivot_row_of_B_1(unsigned pivot_row);
|
||||
|
||||
void calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned pivot_row);
|
||||
|
||||
void update_x(unsigned entering, const X & delta);
|
||||
|
||||
const T & get_var_value(unsigned j) const {
|
||||
return m_x[j];
|
||||
}
|
||||
|
||||
void print_statistics(char const* str, X cost, std::ostream & message_stream);
|
||||
|
||||
bool print_statistics_with_iterations_and_check_that_the_time_is_over(std::ostream & message_stream);
|
||||
|
||||
bool print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const* str, std::ostream & message_stream);
|
||||
|
||||
bool print_statistics_with_cost_and_check_that_the_time_is_over(X cost, std::ostream & message_stream);
|
||||
|
||||
unsigned total_iterations() const { return m_total_iterations; }
|
||||
|
||||
void set_total_iterations(unsigned s) { m_total_iterations = s; }
|
||||
|
||||
void set_non_basic_x_to_correct_bounds();
|
||||
|
||||
bool at_bound(const X &x, const X & bound) const {
|
||||
return !below_bound(x, bound) && !above_bound(x, bound);
|
||||
}
|
||||
|
||||
|
||||
bool need_to_pivot_to_basis_tableau() const {
|
||||
lean_assert(m_A.is_correct());
|
||||
unsigned m = m_A.row_count();
|
||||
for (unsigned i = 0; i < m; i++) {
|
||||
unsigned bj = m_basis[i];
|
||||
lean_assert(m_A.m_columns[bj].size() > 0);
|
||||
if (m_A.m_columns[bj].size() > 1 || m_A.get_val(m_A.m_columns[bj][0]) != one_of_type<mpq>()) return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool reduced_costs_are_correct_tableau() const {
|
||||
if (m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
return true;
|
||||
lean_assert(m_A.is_correct());
|
||||
if (m_using_infeas_costs) {
|
||||
if (infeasibility_costs_are_correct() == false) {
|
||||
std::cout << "infeasibility_costs_are_correct() does not hold" << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned n = m_A.column_count();
|
||||
for (unsigned j = 0; j < n; j++) {
|
||||
if (m_basis_heading[j] >= 0) {
|
||||
if (!is_zero(m_d[j])) {
|
||||
|
||||
std::cout << "case a\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
auto d = m_costs[j];
|
||||
for (auto & cc : this->m_A.m_columns[j]) {
|
||||
d -= this->m_costs[this->m_basis[cc.m_i]] * this->m_A.get_val(cc);
|
||||
}
|
||||
if (m_d[j] != d) {
|
||||
std::cout << "case b\n";
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool below_bound(const X & x, const X & bound) const {
|
||||
if (precise()) return x < bound;
|
||||
return below_bound_numeric<X>(x, bound, m_settings.primal_feasibility_tolerance);
|
||||
}
|
||||
|
||||
bool above_bound(const X & x, const X & bound) const {
|
||||
if (precise()) return x > bound;
|
||||
return above_bound_numeric<X>(x, bound, m_settings.primal_feasibility_tolerance);
|
||||
}
|
||||
|
||||
bool x_below_low_bound(unsigned p) const {
|
||||
return below_bound(m_x[p], m_low_bounds[p]);
|
||||
}
|
||||
|
||||
bool infeasibility_costs_are_correct() const;
|
||||
bool infeasibility_cost_is_correct_for_column(unsigned j) const;
|
||||
|
||||
bool x_above_low_bound(unsigned p) const {
|
||||
return above_bound(m_x[p], m_low_bounds[p]);
|
||||
}
|
||||
|
||||
bool x_below_upper_bound(unsigned p) const {
|
||||
return below_bound(m_x[p], m_upper_bounds[p]);
|
||||
}
|
||||
|
||||
|
||||
bool x_above_upper_bound(unsigned p) const {
|
||||
return above_bound(m_x[p], m_upper_bounds[p]);
|
||||
}
|
||||
bool x_is_at_low_bound(unsigned j) const {
|
||||
return at_bound(m_x[j], m_low_bounds[j]);
|
||||
}
|
||||
bool x_is_at_upper_bound(unsigned j) const {
|
||||
return at_bound(m_x[j], m_upper_bounds[j]);
|
||||
}
|
||||
|
||||
bool x_is_at_bound(unsigned j) const {
|
||||
return x_is_at_low_bound(j) || x_is_at_upper_bound(j);
|
||||
}
|
||||
bool column_is_feasible(unsigned j) const;
|
||||
|
||||
bool calc_current_x_is_feasible_include_non_basis() const;
|
||||
|
||||
bool inf_set_is_correct() const;
|
||||
|
||||
bool column_is_dual_feasible(unsigned j) const;
|
||||
|
||||
bool d_is_not_negative(unsigned j) const;
|
||||
|
||||
bool d_is_not_positive(unsigned j) const;
|
||||
|
||||
|
||||
bool time_is_over();
|
||||
|
||||
void rs_minus_Anx(vector<X> & rs);
|
||||
|
||||
bool find_x_by_solving();
|
||||
|
||||
bool update_basis_and_x(int entering, int leaving, X const & tt);
|
||||
|
||||
bool basis_has_no_doubles() const;
|
||||
|
||||
bool non_basis_has_no_doubles() const;
|
||||
|
||||
bool basis_is_correctly_represented_in_heading() const ;
|
||||
bool non_basis_is_correctly_represented_in_heading() const ;
|
||||
|
||||
bool basis_heading_is_correct() const;
|
||||
|
||||
void restore_x_and_refactor(int entering, int leaving, X const & t);
|
||||
|
||||
void restore_x(unsigned entering, X const & t);
|
||||
|
||||
void fill_reduced_costs_from_m_y_by_rows();
|
||||
|
||||
void copy_rs_to_xB(vector<X> & rs);
|
||||
virtual bool low_bounds_are_set() const { return false; }
|
||||
X low_bound_value(unsigned j) const { return m_low_bounds[j]; }
|
||||
X upper_bound_value(unsigned j) const { return m_upper_bounds[j]; }
|
||||
|
||||
column_type get_column_type(unsigned j) const {return m_column_types[j]; }
|
||||
|
||||
bool pivot_row_element_is_too_small_for_ratio_test(unsigned j) {
|
||||
return m_settings.abs_val_is_smaller_than_pivot_tolerance(m_pivot_row[j]);
|
||||
}
|
||||
|
||||
X bound_span(unsigned j) const {
|
||||
return m_upper_bounds[j] - m_low_bounds[j];
|
||||
}
|
||||
|
||||
std::string column_name(unsigned column) const;
|
||||
|
||||
void copy_right_side(vector<X> & rs);
|
||||
|
||||
void add_delta_to_xB(vector<X> & del);
|
||||
|
||||
void find_error_in_BxB(vector<X>& rs);
|
||||
|
||||
// recalculates the projection of x to B, such that Ax = b, whereab is the right side
|
||||
void solve_Ax_eq_b();
|
||||
|
||||
bool snap_non_basic_x_to_bound() {
|
||||
bool ret = false;
|
||||
for (unsigned j : non_basis())
|
||||
ret = snap_column_to_bound(j) || ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool snap_column_to_bound(unsigned j) {
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
if (x_is_at_bound(j))
|
||||
break;
|
||||
m_x[j] = m_low_bounds[j];
|
||||
return true;
|
||||
case column_type::boxed:
|
||||
if (x_is_at_bound(j))
|
||||
break; // we should preserve x if possible
|
||||
// snap randomly
|
||||
if (my_random() % 2 == 1)
|
||||
m_x[j] = m_low_bounds[j];
|
||||
else
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
return true;
|
||||
case column_type::low_bound:
|
||||
if (x_is_at_low_bound(j))
|
||||
break;
|
||||
m_x[j] = m_low_bounds[j];
|
||||
return true;
|
||||
case column_type::upper_bound:
|
||||
if (x_is_at_upper_bound(j))
|
||||
break;
|
||||
m_x[j] = m_upper_bounds[j];
|
||||
return true;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool make_column_feasible(unsigned j, numeric_pair<mpq> & delta) {
|
||||
lean_assert(m_basis_heading[j] < 0);
|
||||
auto & x = m_x[j];
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
lean_assert(m_low_bounds[j] == m_upper_bounds[j]);
|
||||
if (x != m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (x < m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
if (x > m_upper_bounds[j]) {
|
||||
delta = m_upper_bounds[j] - x;
|
||||
x = m_upper_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (x < m_low_bounds[j]) {
|
||||
delta = m_low_bounds[j] - x;
|
||||
x = m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (x > m_upper_bounds[j]) {
|
||||
delta = m_upper_bounds[j] - x;
|
||||
x = m_upper_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void snap_non_basic_x_to_bound_and_free_to_zeroes();
|
||||
void snap_xN_to_bounds_and_fill_xB();
|
||||
|
||||
void snap_xN_to_bounds_and_free_columns_to_zeroes();
|
||||
|
||||
void init_reduced_costs_for_one_iteration();
|
||||
|
||||
non_basic_column_value_position get_non_basic_column_value_position(unsigned j) const;
|
||||
|
||||
void init_lu();
|
||||
int pivots_in_column_and_row_are_different(int entering, int leaving) const;
|
||||
void pivot_fixed_vars_from_basis();
|
||||
bool pivot_for_tableau_on_basis();
|
||||
bool pivot_row_for_tableau_on_basis(unsigned row);
|
||||
void init_basic_part_of_basis_heading() {
|
||||
unsigned m = m_basis.size();
|
||||
for (unsigned i = 0; i < m; i++) {
|
||||
unsigned column = m_basis[i];
|
||||
m_basis_heading[column] = i;
|
||||
}
|
||||
}
|
||||
|
||||
void init_non_basic_part_of_basis_heading() {
|
||||
this->m_nbasis.clear();
|
||||
for (int j = m_basis_heading.size(); j--;){
|
||||
if (m_basis_heading[j] < 0) {
|
||||
m_nbasis.push_back(j);
|
||||
// the index of column j in m_nbasis is (- basis_heading[j] - 1)
|
||||
m_basis_heading[j] = - static_cast<int>(m_nbasis.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void init_basis_heading_and_non_basic_columns_vector() {
|
||||
m_basis_heading.resize(0);
|
||||
m_basis_heading.resize(m_n(), -1);
|
||||
init_basic_part_of_basis_heading();
|
||||
init_non_basic_part_of_basis_heading();
|
||||
}
|
||||
|
||||
void change_basis_unconditionally(unsigned entering, unsigned leaving) {
|
||||
lean_assert(m_basis_heading[entering] < 0);
|
||||
int place_in_non_basis = -1 - m_basis_heading[entering];
|
||||
if (static_cast<unsigned>(place_in_non_basis) >= m_nbasis.size()) {
|
||||
// entering variable in not in m_nbasis, we need to put it back;
|
||||
m_basis_heading[entering] = place_in_non_basis = m_nbasis.size();
|
||||
m_nbasis.push_back(entering);
|
||||
}
|
||||
|
||||
int place_in_basis = m_basis_heading[leaving];
|
||||
m_basis_heading[entering] = place_in_basis;
|
||||
m_basis[place_in_basis] = entering;
|
||||
m_basis_heading[leaving] = -place_in_non_basis - 1;
|
||||
m_nbasis[place_in_non_basis] = leaving;
|
||||
if (m_tracing_basis_changes)
|
||||
trace_basis_change(entering, leaving);
|
||||
|
||||
}
|
||||
|
||||
void change_basis(unsigned entering, unsigned leaving) {
|
||||
lean_assert(m_basis_heading[entering] < 0);
|
||||
|
||||
int place_in_basis = m_basis_heading[leaving];
|
||||
int place_in_non_basis = - m_basis_heading[entering] - 1;
|
||||
m_basis_heading[entering] = place_in_basis;
|
||||
m_basis[place_in_basis] = entering;
|
||||
|
||||
m_basis_heading[leaving] = -place_in_non_basis - 1;
|
||||
m_nbasis[place_in_non_basis] = leaving;
|
||||
|
||||
if (m_tracing_basis_changes)
|
||||
trace_basis_change(entering, leaving);
|
||||
}
|
||||
|
||||
void restore_basis_change(unsigned entering, unsigned leaving) {
|
||||
if (m_basis_heading[entering] < 0) {
|
||||
return; // the basis has not been changed
|
||||
}
|
||||
change_basis_unconditionally(leaving, entering);
|
||||
}
|
||||
|
||||
bool non_basic_column_is_set_correctly(unsigned j) const {
|
||||
if (j >= this->m_n())
|
||||
return false;
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (!this->x_is_at_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (!this->x_is_at_low_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (!this->x_is_at_upper_bound(j))
|
||||
return false;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
break;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
bool non_basic_columns_are_set_correctly() const {
|
||||
for (unsigned j : this->m_nbasis)
|
||||
if (!column_is_feasible(j)) {
|
||||
print_column_info(j, std::cout);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void print_column_bound_info(unsigned j, std::ostream & out) const {
|
||||
out << column_name(j) << " type = " << column_type_to_string(m_column_types[j]) << std::endl;
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "(" << m_low_bounds[j] << ", " << m_upper_bounds[j] << ")" << std::endl;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << m_low_bounds[j] << std::endl;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << m_upper_bounds[j] << std::endl;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void print_column_info(unsigned j, std::ostream & out) const {
|
||||
out << "column_index = " << j << ", name = "<< column_name(j) << " type = " << column_type_to_string(m_column_types[j]) << std::endl;
|
||||
switch (m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
out << "(" << m_low_bounds[j] << ", " << m_upper_bounds[j] << ")" << std::endl;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
out << m_low_bounds[j] << std::endl;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
out << m_upper_bounds[j] << std::endl;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
std::cout << "basis heading = " << m_basis_heading[j] << std::endl;
|
||||
std::cout << "x = " << m_x[j] << std::endl;
|
||||
/*
|
||||
std::cout << "cost = " << m_costs[j] << std::endl;
|
||||
std:: cout << "m_d = " << m_d[j] << std::endl;*/
|
||||
}
|
||||
|
||||
bool column_is_free(unsigned j) { return this->m_column_type[j] == free; }
|
||||
|
||||
bool column_has_upper_bound(unsigned j) {
|
||||
switch(m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::low_bound:
|
||||
return false;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool bounds_for_boxed_are_set_correctly() const {
|
||||
for (unsigned j = 0; j < m_column_types.size(); j++) {
|
||||
if (m_column_types[j] != column_type::boxed) continue;
|
||||
if (m_low_bounds[j] > m_upper_bounds[j])
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool column_has_low_bound(unsigned j) {
|
||||
switch(m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
case column_type::upper_bound:
|
||||
return false;
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// only check for basic columns
|
||||
bool calc_current_x_is_feasible() const {
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
if (!column_is_feasible(m_basis[i]))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
int find_pivot_index_in_row(unsigned i, const vector<column_cell> & col) const {
|
||||
for (const auto & c: col) {
|
||||
if (c.m_i == i)
|
||||
return c.m_offset;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
void transpose_rows_tableau(unsigned i, unsigned ii);
|
||||
|
||||
void pivot_to_reduced_costs_tableau(unsigned i, unsigned j);
|
||||
|
||||
bool pivot_column_tableau(unsigned j, unsigned row_index);
|
||||
bool divide_row_by_pivot(unsigned pivot_row, unsigned pivot_col);
|
||||
|
||||
bool precise() const { return numeric_traits<T>::precise(); }
|
||||
|
||||
simplex_strategy_enum simplex_strategy() const { return
|
||||
m_settings.simplex_strategy();
|
||||
}
|
||||
|
||||
bool use_tableau() const { return m_settings.use_tableau(); }
|
||||
|
||||
template <typename K>
|
||||
static void swap(vector<K> &v, unsigned i, unsigned j) {
|
||||
auto t = v[i];
|
||||
v[i] = v[j];
|
||||
v[j] = t;
|
||||
}
|
||||
|
||||
// called when transposing row i and ii
|
||||
void transpose_basis(unsigned i, unsigned ii) {
|
||||
swap(m_basis, i, ii);
|
||||
swap(m_basis_heading, m_basis[i], m_basis[ii]);
|
||||
}
|
||||
|
||||
bool column_is_in_inf_set(unsigned j) const {
|
||||
return m_inf_set.contains(j);
|
||||
}
|
||||
|
||||
void update_column_in_inf_set(unsigned j) {
|
||||
if (column_is_feasible(j)) {
|
||||
m_inf_set.erase(j);
|
||||
} else {
|
||||
m_inf_set.insert(j);
|
||||
}
|
||||
}
|
||||
void insert_column_into_inf_set(unsigned j) {
|
||||
m_inf_set.insert(j);
|
||||
lean_assert(!column_is_feasible(j));
|
||||
}
|
||||
void remove_column_from_inf_set(unsigned j) {
|
||||
m_inf_set.erase(j);
|
||||
lean_assert(column_is_feasible(j));
|
||||
}
|
||||
bool costs_on_nbasis_are_zeros() const {
|
||||
lean_assert(this->basis_heading_is_correct());
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->m_basis_heading[j] < 0)
|
||||
lean_assert(is_zero(this->m_costs[j]));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
};
|
||||
}
|
1007
src/util/lp/lp_core_solver_base.hpp
Normal file
1007
src/util/lp/lp_core_solver_base.hpp
Normal file
File diff suppressed because it is too large
Load diff
131
src/util/lp/lp_core_solver_base_instances.cpp
Normal file
131
src/util/lp/lp_core_solver_base_instances.cpp
Normal file
|
@ -0,0 +1,131 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_core_solver_base.hpp"
|
||||
template bool lean::lp_core_solver_base<double, double>::A_mult_x_is_off() const;
|
||||
template bool lean::lp_core_solver_base<double, double>::A_mult_x_is_off_on_index(const vector<unsigned> &) const;
|
||||
template bool lean::lp_core_solver_base<double, double>::basis_heading_is_correct() const;
|
||||
template void lean::lp_core_solver_base<double, double>::calculate_pivot_row_of_B_1(unsigned int);
|
||||
template void lean::lp_core_solver_base<double, double>::calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned);
|
||||
template bool lean::lp_core_solver_base<double, double>::column_is_dual_feasible(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<double, double>::fill_reduced_costs_from_m_y_by_rows();
|
||||
template bool lean::lp_core_solver_base<double, double>::find_x_by_solving();
|
||||
template lean::non_basic_column_value_position lean::lp_core_solver_base<double, double>::get_non_basic_column_value_position(unsigned int) const;
|
||||
template lean::non_basic_column_value_position lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::get_non_basic_column_value_position(unsigned int) const;
|
||||
template lean::non_basic_column_value_position lean::lp_core_solver_base<lean::mpq, lean::mpq>::get_non_basic_column_value_position(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<double, double>::init_reduced_costs_for_one_iteration();
|
||||
template lean::lp_core_solver_base<double, double>::lp_core_solver_base(
|
||||
lean::static_matrix<double, double>&, vector<double>&,
|
||||
vector<unsigned int >&,
|
||||
vector<unsigned> &, vector<int> &,
|
||||
vector<double >&,
|
||||
vector<double >&,
|
||||
lean::lp_settings&, const column_namer&, const vector<lean::column_type >&,
|
||||
const vector<double >&,
|
||||
const vector<double >&);
|
||||
|
||||
template bool lean::lp_core_solver_base<double, double>::print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const*, std::ostream &);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const*, std::ostream &);
|
||||
template void lean::lp_core_solver_base<double, double>::restore_x(unsigned int, double const&);
|
||||
template void lean::lp_core_solver_base<double, double>::set_non_basic_x_to_correct_bounds();
|
||||
template void lean::lp_core_solver_base<double, double>::snap_xN_to_bounds_and_free_columns_to_zeroes();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::snap_xN_to_bounds_and_free_columns_to_zeroes();
|
||||
template void lean::lp_core_solver_base<double, double>::solve_Ax_eq_b();
|
||||
template void lean::lp_core_solver_base<double, double>::solve_Bd(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq>>::solve_Bd(unsigned int, indexed_vector<lean::mpq>&);
|
||||
template void lean::lp_core_solver_base<double, double>::solve_yB(vector<double >&);
|
||||
template bool lean::lp_core_solver_base<double, double>::update_basis_and_x(int, int, double const&);
|
||||
template void lean::lp_core_solver_base<double, double>::update_x(unsigned int, const double&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::A_mult_x_is_off() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::A_mult_x_is_off_on_index(const vector<unsigned> &) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::basis_heading_is_correct() const ;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::calculate_pivot_row_of_B_1(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::column_is_dual_feasible(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::fill_reduced_costs_from_m_y_by_rows();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::find_x_by_solving();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::init_reduced_costs_for_one_iteration();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over(char const*, std::ostream &);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::restore_x(unsigned int, lean::mpq const&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::set_non_basic_x_to_correct_bounds();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::solve_Ax_eq_b();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::solve_Bd(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::solve_yB(vector<lean::mpq>&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::update_basis_and_x(int, int, lean::mpq const&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::update_x(unsigned int, const lean::mpq&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::calculate_pivot_row_of_B_1(unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::calculate_pivot_row_when_pivot_row_of_B1_is_ready(unsigned);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init_basis_heading_and_non_basic_columns_vector();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init_reduced_costs_for_one_iteration();
|
||||
template lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::lp_core_solver_base(lean::static_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&, vector<lean::numeric_pair<lean::mpq> >&, vector<unsigned int >&, vector<unsigned> &, vector<int> &, vector<lean::numeric_pair<lean::mpq> >&, vector<lean::mpq>&, lean::lp_settings&, const column_namer&, const vector<lean::column_type >&,
|
||||
const vector<lean::numeric_pair<lean::mpq> >&,
|
||||
const vector<lean::numeric_pair<lean::mpq> >&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_statistics_with_cost_and_check_that_the_time_is_over(lean::numeric_pair<lean::mpq>, std::ostream&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::snap_xN_to_bounds_and_fill_xB();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_Bd(unsigned int);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::update_basis_and_x(int, int, lean::numeric_pair<lean::mpq> const&);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::update_x(unsigned int, const lean::numeric_pair<lean::mpq>&);
|
||||
template lean::lp_core_solver_base<lean::mpq, lean::mpq>::lp_core_solver_base(
|
||||
lean::static_matrix<lean::mpq, lean::mpq>&,
|
||||
vector<lean::mpq>&,
|
||||
vector<unsigned int >&,
|
||||
vector<unsigned> &, vector<int> &,
|
||||
vector<lean::mpq>&,
|
||||
vector<lean::mpq>&,
|
||||
lean::lp_settings&,
|
||||
const column_namer&,
|
||||
const vector<lean::column_type >&,
|
||||
const vector<lean::mpq>&,
|
||||
const vector<lean::mpq>&);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_statistics_with_iterations_and_check_that_the_time_is_over(std::ostream &);
|
||||
template std::string lean::lp_core_solver_base<double, double>::column_name(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<double, double>::pretty_print(std::ostream & out);
|
||||
template void lean::lp_core_solver_base<double, double>::restore_state(double*, double*);
|
||||
template void lean::lp_core_solver_base<double, double>::save_state(double*, double*);
|
||||
template std::string lean::lp_core_solver_base<lean::mpq, lean::mpq>::column_name(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::pretty_print(std::ostream & out);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::restore_state(lean::mpq*, lean::mpq*);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::save_state(lean::mpq*, lean::mpq*);
|
||||
template std::string lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::column_name(unsigned int) const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::pretty_print(std::ostream & out);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::restore_state(lean::mpq*, lean::mpq*);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::save_state(lean::mpq*, lean::mpq*);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_yB(vector<lean::mpq>&);
|
||||
template void lean::lp_core_solver_base<double, double>::init_lu();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::mpq>::init_lu();
|
||||
template int lean::lp_core_solver_base<double, double>::pivots_in_column_and_row_are_different(int, int) const;
|
||||
template int lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::pivots_in_column_and_row_are_different(int, int) const;
|
||||
template int lean::lp_core_solver_base<lean::mpq, lean::mpq>::pivots_in_column_and_row_are_different(int, int) const;
|
||||
template bool lean::lp_core_solver_base<double, double>::calc_current_x_is_feasible_include_non_basis(void)const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::calc_current_x_is_feasible_include_non_basis(void)const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::calc_current_x_is_feasible_include_non_basis() const;
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::pivot_fixed_vars_from_basis();
|
||||
template bool lean::lp_core_solver_base<double, double>::column_is_feasible(unsigned int) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::column_is_feasible(unsigned int) const;
|
||||
// template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::print_linear_combination_of_column_indices(vector<std::pair<lean::mpq, unsigned int>, std::allocator<std::pair<lean::mpq, unsigned int> > > const&, std::ostream&) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::column_is_feasible(unsigned int) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::snap_non_basic_x_to_bound();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::init_lu();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::A_mult_x_is_off_on_index(vector<unsigned int> const&) const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::find_x_by_solving();
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::restore_x(unsigned int, lean::numeric_pair<lean::mpq> const&);
|
||||
template bool lean::lp_core_solver_base<double, double>::pivot_for_tableau_on_basis();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::pivot_for_tableau_on_basis();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq>>::pivot_for_tableau_on_basis();
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq>>::pivot_column_tableau(unsigned int, unsigned int);
|
||||
template bool lean::lp_core_solver_base<double, double>::pivot_column_tableau(unsigned int, unsigned int);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::pivot_column_tableau(unsigned int, unsigned int);
|
||||
template void lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::transpose_rows_tableau(unsigned int, unsigned int);
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::inf_set_is_correct() const;
|
||||
template bool lean::lp_core_solver_base<double, double>::inf_set_is_correct() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq>::inf_set_is_correct() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::numeric_pair<lean::mpq> >::infeasibility_costs_are_correct() const;
|
||||
template bool lean::lp_core_solver_base<lean::mpq, lean::mpq >::infeasibility_costs_are_correct() const;
|
||||
template bool lean::lp_core_solver_base<double, double >::infeasibility_costs_are_correct() const;
|
197
src/util/lp/lp_dual_core_solver.h
Normal file
197
src/util/lp/lp_dual_core_solver.h
Normal file
|
@ -0,0 +1,197 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include <string>
|
||||
#include <limits>
|
||||
#include <set>
|
||||
#include <algorithm>
|
||||
#include "util/vector.h"
|
||||
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
class lp_dual_core_solver:public lp_core_solver_base<T, X> {
|
||||
public:
|
||||
vector<bool> & m_can_enter_basis;
|
||||
int m_r; // the row of the leaving column
|
||||
int m_p; // leaving column; that is m_p = m_basis[m_r]
|
||||
T m_delta; // the offset of the leaving basis variable
|
||||
int m_sign_of_alpha_r; // see page 27
|
||||
T m_theta_D;
|
||||
T m_theta_P;
|
||||
int m_q;
|
||||
// todo : replace by a vector later
|
||||
std::set<unsigned> m_breakpoint_set; // it is F in "Progress in the dual simplex method ..."
|
||||
std::set<unsigned> m_flipped_boxed;
|
||||
std::set<unsigned> m_tight_set; // it is the set of all breakpoints that become tight when m_q becomes tight
|
||||
vector<T> m_a_wave;
|
||||
vector<T> m_betas; // m_betas[i] is approximately a square of the norm of the i-th row of the reverse of B
|
||||
T m_harris_tolerance;
|
||||
std::set<unsigned> m_forbidden_rows;
|
||||
|
||||
lp_dual_core_solver(static_matrix<T, X> & A,
|
||||
vector<bool> & can_enter_basis,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<X> & x, // the number of elements in x needs to be at least as large as the number of columns in A
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
vector<column_type> & column_type_array,
|
||||
vector<X> & low_bound_values,
|
||||
vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer & column_names):
|
||||
lp_core_solver_base<T, X>(A,
|
||||
b,
|
||||
basis,
|
||||
nbasis,
|
||||
heading,
|
||||
x,
|
||||
costs,
|
||||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
low_bound_values,
|
||||
upper_bound_values),
|
||||
m_can_enter_basis(can_enter_basis),
|
||||
m_a_wave(this->m_m()),
|
||||
m_betas(this->m_m()) {
|
||||
m_harris_tolerance = numeric_traits<T>::precise()? numeric_traits<T>::zero() : T(this->m_settings.harris_feasibility_tolerance);
|
||||
this->solve_yB(this->m_y);
|
||||
this->init_basic_part_of_basis_heading();
|
||||
fill_non_basis_with_only_able_to_enter_columns();
|
||||
}
|
||||
|
||||
void init_a_wave_by_zeros();
|
||||
|
||||
void fill_non_basis_with_only_able_to_enter_columns() {
|
||||
auto & nb = this->m_nbasis;
|
||||
nb.reset();
|
||||
unsigned j = this->m_n();
|
||||
while (j--) {
|
||||
if (this->m_basis_heading[j] >= 0 || !m_can_enter_basis[j]) continue;
|
||||
nb.push_back(j);
|
||||
this->m_basis_heading[j] = - static_cast<int>(nb.size());
|
||||
}
|
||||
}
|
||||
|
||||
void restore_non_basis();
|
||||
|
||||
bool update_basis(int entering, int leaving);
|
||||
|
||||
void recalculate_xB_and_d();
|
||||
|
||||
void recalculate_d();
|
||||
|
||||
void init_betas();
|
||||
|
||||
void adjust_xb_for_changed_xn_and_init_betas();
|
||||
|
||||
void start_with_initial_basis_and_make_it_dual_feasible();
|
||||
|
||||
bool done();
|
||||
|
||||
T get_edge_steepness_for_low_bound(unsigned p);
|
||||
|
||||
T get_edge_steepness_for_upper_bound(unsigned p);
|
||||
|
||||
T pricing_for_row(unsigned i);
|
||||
|
||||
void pricing_loop(unsigned number_of_rows_to_try, unsigned offset_in_rows);
|
||||
|
||||
bool advance_on_known_p();
|
||||
|
||||
int define_sign_of_alpha_r();
|
||||
|
||||
bool can_be_breakpoint(unsigned j);
|
||||
|
||||
void fill_breakpoint_set();
|
||||
|
||||
void DSE_FTran();
|
||||
T get_delta();
|
||||
|
||||
void restore_d();
|
||||
|
||||
bool d_is_correct();
|
||||
|
||||
void xb_minus_delta_p_pivot_column();
|
||||
|
||||
void update_betas();
|
||||
|
||||
void apply_flips();
|
||||
|
||||
void snap_xN_column_to_bounds(unsigned j);
|
||||
|
||||
void snap_xN_to_bounds();
|
||||
|
||||
void init_beta_precisely(unsigned i);
|
||||
|
||||
void init_betas_precisely();
|
||||
|
||||
// step 7 of the algorithm from Progress
|
||||
bool basis_change_and_update();
|
||||
|
||||
void revert_to_previous_basis();
|
||||
|
||||
non_basic_column_value_position m_entering_boundary_position;
|
||||
bool update_basis_and_x_local(int entering, int leaving, X const & tt);
|
||||
void recover_leaving();
|
||||
|
||||
bool problem_is_dual_feasible() const;
|
||||
|
||||
bool snap_runaway_nonbasic_column(unsigned);
|
||||
|
||||
bool snap_runaway_nonbasic_columns();
|
||||
|
||||
unsigned get_number_of_rows_to_try_for_leaving();
|
||||
|
||||
void update_a_wave(const T & del, unsigned j) {
|
||||
this->m_A.add_column_to_vector(del, j, & m_a_wave[0]);
|
||||
}
|
||||
|
||||
bool delta_keeps_the_sign(int initial_delta_sign, const T & delta);
|
||||
|
||||
void set_status_to_tentative_dual_unbounded_or_dual_unbounded();
|
||||
|
||||
// it is positive if going from low bound to upper bound and negative if going from upper bound to low bound
|
||||
T signed_span_of_boxed(unsigned j) {
|
||||
return this->x_is_at_low_bound(j)? this->bound_span(j): - this->bound_span(j);
|
||||
}
|
||||
|
||||
void add_tight_breakpoints_and_q_to_flipped_set();
|
||||
|
||||
T delta_lost_on_flips_of_tight_breakpoints();
|
||||
|
||||
bool tight_breakpoinst_are_all_boxed();
|
||||
|
||||
T calculate_harris_delta_on_breakpoint_set();
|
||||
|
||||
void fill_tight_set_on_harris_delta(const T & harris_delta );
|
||||
|
||||
void find_q_on_tight_set();
|
||||
|
||||
void find_q_and_tight_set();
|
||||
|
||||
void erase_tight_breakpoints_and_q_from_breakpoint_set();
|
||||
|
||||
bool ratio_test();
|
||||
|
||||
void process_flipped();
|
||||
void update_d_and_xB();
|
||||
|
||||
void calculate_beta_r_precisely();
|
||||
// see "Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms"
|
||||
|
||||
void update_xb_after_bound_flips();
|
||||
|
||||
void one_iteration();
|
||||
|
||||
void solve();
|
||||
|
||||
bool low_bounds_are_set() const { return true; }
|
||||
};
|
||||
}
|
743
src/util/lp/lp_dual_core_solver.hpp
Normal file
743
src/util/lp/lp_dual_core_solver.hpp
Normal file
|
@ -0,0 +1,743 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_dual_core_solver.h"
|
||||
|
||||
namespace lean {
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_a_wave_by_zeros() {
|
||||
unsigned j = this->m_m();
|
||||
while (j--) {
|
||||
m_a_wave[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::restore_non_basis() {
|
||||
auto & nb = this->m_nbasis;
|
||||
nb.reset();
|
||||
unsigned j = this->m_n();
|
||||
while (j--) {
|
||||
if (this->m_basis_heading[j] >= 0 ) continue;
|
||||
if (m_can_enter_basis[j]) {
|
||||
lean_assert(std::find(nb.begin(), nb.end(), j) == nb.end());
|
||||
nb.push_back(j);
|
||||
this->m_basis_heading[j] = - static_cast<int>(nb.size());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::update_basis(int entering, int leaving) {
|
||||
// the second argument is the element of the entering column from the pivot row - its value should be equal to the low diagonal element of the bump after all pivoting is done
|
||||
if (this->m_refactor_counter++ < 200) {
|
||||
this->m_factorization->replace_column(this->m_ed[this->m_factorization->basis_heading(leaving)], this->m_w);
|
||||
if (this->m_factorization->get_status() == LU_status::OK) {
|
||||
this->m_factorization->change_basis(entering, leaving);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
// need to refactor
|
||||
this->m_factorization->change_basis(entering, leaving);
|
||||
init_factorization(this->m_factorization, this->m_A, this->m_basis, this->m_basis_heading, this->m_settings);
|
||||
this->m_refactor_counter = 0;
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
LP_OUT(this->m_settings, "failing refactor for entering = " << entering << ", leaving = " << leaving << " total_iterations = " << this->total_iterations() << std::endl);
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::recalculate_xB_and_d() {
|
||||
this->solve_Ax_eq_b();
|
||||
recalculate_d();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::recalculate_d() {
|
||||
this->solve_yB(this->m_y);
|
||||
this->fill_reduced_costs_from_m_y_by_rows();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_betas() {
|
||||
// todo : look at page 194 of Progress in the dual simplex algorithm for solving large scale LP problems : techniques for a fast and stable implementation
|
||||
// the current implementation is not good enough: todo
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
m_betas[i] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::adjust_xb_for_changed_xn_and_init_betas() {
|
||||
this->solve_Ax_eq_b();
|
||||
init_betas();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::start_with_initial_basis_and_make_it_dual_feasible() {
|
||||
this->set_non_basic_x_to_correct_bounds(); // It is not an efficient version, see 3.29,
|
||||
// however this version does not require that m_x is the solution of Ax = 0 beforehand
|
||||
adjust_xb_for_changed_xn_and_init_betas();
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::done() {
|
||||
if (this->get_status() == OPTIMAL) {
|
||||
return true;
|
||||
}
|
||||
if (this->total_iterations() > this->m_settings.max_total_number_of_iterations) { // debug !!!!
|
||||
this->set_status(ITERATIONS_EXHAUSTED);
|
||||
return true;
|
||||
}
|
||||
return false; // todo, need to be more cases
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_low_bound(unsigned p) {
|
||||
lean_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
T del = this->m_x[p] - this->m_low_bounds[p];
|
||||
del *= del;
|
||||
return del / this->m_betas[this->m_basis_heading[p]];
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_edge_steepness_for_upper_bound(unsigned p) {
|
||||
lean_assert(this->m_basis_heading[p] >= 0 && static_cast<unsigned>(this->m_basis_heading[p]) < this->m_m());
|
||||
T del = this->m_x[p] - this->m_upper_bounds[p];
|
||||
del *= del;
|
||||
return del / this->m_betas[this->m_basis_heading[p]];
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::pricing_for_row(unsigned i) {
|
||||
unsigned p = this->m_basis[i];
|
||||
switch (this->m_column_types[p]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(p)) {
|
||||
T del = get_edge_steepness_for_low_bound(p);
|
||||
return del;
|
||||
}
|
||||
if (this->x_above_upper_bound(p)) {
|
||||
T del = get_edge_steepness_for_upper_bound(p);
|
||||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(p)) {
|
||||
T del = get_edge_steepness_for_low_bound(p);
|
||||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(p)) {
|
||||
T del = get_edge_steepness_for_upper_bound(p);
|
||||
return del;
|
||||
}
|
||||
return numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::free_column:
|
||||
lean_assert(numeric_traits<T>::is_zero(this->m_d[p]));
|
||||
return numeric_traits<T>::zero();
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
lean_unreachable();
|
||||
return numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::pricing_loop(unsigned number_of_rows_to_try, unsigned offset_in_rows) {
|
||||
m_r = -1;
|
||||
T steepest_edge_max = numeric_traits<T>::zero();
|
||||
unsigned initial_offset_in_rows = offset_in_rows;
|
||||
unsigned i = offset_in_rows;
|
||||
unsigned rows_left = number_of_rows_to_try;
|
||||
do {
|
||||
if (m_forbidden_rows.find(i) != m_forbidden_rows.end()) {
|
||||
if (++i == this->m_m()) {
|
||||
i = 0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
T se = pricing_for_row(i);
|
||||
if (se > steepest_edge_max) {
|
||||
steepest_edge_max = se;
|
||||
m_r = i;
|
||||
if (rows_left > 0) {
|
||||
rows_left--;
|
||||
}
|
||||
}
|
||||
if (++i == this->m_m()) {
|
||||
i = 0;
|
||||
}
|
||||
} while (i != initial_offset_in_rows && rows_left);
|
||||
if (m_r == -1) {
|
||||
if (this->get_status() != UNSTABLE) {
|
||||
this->set_status(OPTIMAL);
|
||||
}
|
||||
} else {
|
||||
m_p = this->m_basis[m_r];
|
||||
m_delta = get_delta();
|
||||
if (advance_on_known_p()){
|
||||
m_forbidden_rows.clear();
|
||||
return;
|
||||
}
|
||||
// failure in advance_on_known_p
|
||||
if (this->get_status() == FLOATING_POINT_ERROR) {
|
||||
return;
|
||||
}
|
||||
this->set_status(UNSTABLE);
|
||||
m_forbidden_rows.insert(m_r);
|
||||
}
|
||||
}
|
||||
|
||||
// this calculation is needed for the steepest edge update,
|
||||
// it hijackes m_pivot_row_of_B_1 for this purpose since we will need it anymore to the end of the cycle
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::DSE_FTran() { // todo, see algorithm 7 from page 35
|
||||
this->m_factorization->solve_By_for_T_indexed_only(this->m_pivot_row_of_B_1, this->m_settings);
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::advance_on_known_p() {
|
||||
if (done()) {
|
||||
return true;
|
||||
}
|
||||
this->calculate_pivot_row_of_B_1(m_r);
|
||||
this->calculate_pivot_row_when_pivot_row_of_B1_is_ready(m_r);
|
||||
if (!ratio_test()) {
|
||||
return true;
|
||||
}
|
||||
calculate_beta_r_precisely();
|
||||
this->solve_Bd(m_q); // FTRAN
|
||||
int pivot_compare_result = this->pivots_in_column_and_row_are_different(m_q, m_p);
|
||||
if (!pivot_compare_result){;}
|
||||
else if (pivot_compare_result == 2) { // the sign is changed, cannot continue
|
||||
lean_unreachable(); // not implemented yet
|
||||
} else {
|
||||
lean_assert(pivot_compare_result == 1);
|
||||
this->init_lu();
|
||||
}
|
||||
DSE_FTran();
|
||||
return basis_change_and_update();
|
||||
}
|
||||
|
||||
template <typename T, typename X> int lp_dual_core_solver<T, X>::define_sign_of_alpha_r() {
|
||||
switch (this->m_column_types[m_p]) {
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return -1;
|
||||
}
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return 1;
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return -1;
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return 1;
|
||||
}
|
||||
lean_unreachable();
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
lean_unreachable();
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::can_be_breakpoint(unsigned j) {
|
||||
if (this->pivot_row_element_is_too_small_for_ratio_test(j)) return false;
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::low_bound:
|
||||
lean_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_low_bounds[j]));
|
||||
return m_sign_of_alpha_r * this->m_pivot_row[j] > 0;
|
||||
case column_type::upper_bound:
|
||||
lean_assert(this->m_settings.abs_val_is_smaller_than_harris_tolerance(this->m_x[j] - this->m_upper_bounds[j]));
|
||||
return m_sign_of_alpha_r * this->m_pivot_row[j] < 0;
|
||||
case column_type::boxed:
|
||||
{
|
||||
bool low_bound = this->x_is_at_low_bound(j);
|
||||
bool grawing = m_sign_of_alpha_r * this->m_pivot_row[j] > 0;
|
||||
return low_bound == grawing;
|
||||
}
|
||||
case column_type::fixed: // is always dual feasible so we ingore it
|
||||
return false;
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::fill_breakpoint_set() {
|
||||
m_breakpoint_set.clear();
|
||||
for (unsigned j : this->non_basis()) {
|
||||
if (can_be_breakpoint(j)) {
|
||||
m_breakpoint_set.insert(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// template <typename T, typename X> void lp_dual_core_solver<T, X>::FTran() {
|
||||
// this->solve_Bd(m_q);
|
||||
// }
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::get_delta() {
|
||||
switch (this->m_column_types[m_p]) {
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_low_bounds[m_p];
|
||||
}
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_upper_bounds[m_p];
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(m_p)) {
|
||||
return this->m_x[m_p] - this->m_low_bounds[m_p];
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(m_p)) {
|
||||
return get_edge_steepness_for_upper_bound(m_p);
|
||||
}
|
||||
lean_unreachable();
|
||||
case column_type::fixed:
|
||||
return this->m_x[m_p] - this->m_upper_bounds[m_p];
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
lean_unreachable();
|
||||
return zero_of_type<T>();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::restore_d() {
|
||||
this->m_d[m_p] = numeric_traits<T>::zero();
|
||||
for (auto j : this->non_basis()) {
|
||||
this->m_d[j] += m_theta_D * this->m_pivot_row[j];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::d_is_correct() {
|
||||
this->solve_yB(this->m_y);
|
||||
for (auto j : this->non_basis()) {
|
||||
T d = this->m_costs[j] - this->m_A.dot_product_with_column(this->m_y, j);
|
||||
if (numeric_traits<T>::get_double(abs(d - this->m_d[j])) >= 0.001) {
|
||||
LP_OUT(this->m_settings, "total_iterations = " << this->total_iterations() << std::endl
|
||||
<< "d[" << j << "] = " << this->m_d[j] << " but should be " << d << std::endl);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::xb_minus_delta_p_pivot_column() {
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
this->m_x[this->m_basis[i]] -= m_theta_P * this->m_ed[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::update_betas() { // page 194 of Progress ... todo - once in a while betas have to be reinitialized
|
||||
T one_over_arq = numeric_traits<T>::one() / this->m_pivot_row[m_q];
|
||||
T beta_r = this->m_betas[m_r] = std::max(T(0.0001), (m_betas[m_r] * one_over_arq) * one_over_arq);
|
||||
T k = -2 * one_over_arq;
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
if (static_cast<int>(i) == m_r) continue;
|
||||
T a = this->m_ed[i];
|
||||
m_betas[i] += a * (a * beta_r + k * this->m_pivot_row_of_B_1[i]);
|
||||
if (m_betas[i] < T(0.0001))
|
||||
m_betas[i] = T(0.0001);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::apply_flips() {
|
||||
for (unsigned j : m_flipped_boxed) {
|
||||
lean_assert(this->x_is_at_bound(j));
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
} else {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::snap_xN_column_to_bounds(unsigned j) {
|
||||
switch (this->m_column_type[j]) {
|
||||
case column_type::fixed:
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
} else {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::free_column:
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::snap_xN_to_bounds() {
|
||||
for (auto j : this->non_basis()) {
|
||||
snap_xN_column_to_bounds(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_beta_precisely(unsigned i) {
|
||||
vector<T> vec(this->m_m(), numeric_traits<T>::zero());
|
||||
vec[i] = numeric_traits<T>::one();
|
||||
this->m_factorization->solve_yB_with_error_check(vec, this->m_basis);
|
||||
T beta = numeric_traits<T>::zero();
|
||||
for (T & v : vec) {
|
||||
beta += v * v;
|
||||
}
|
||||
this->m_betas[i] =beta;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::init_betas_precisely() {
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
init_beta_precisely(i);
|
||||
}
|
||||
}
|
||||
|
||||
// step 7 of the algorithm from Progress
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::basis_change_and_update() {
|
||||
update_betas();
|
||||
update_d_and_xB();
|
||||
// m_theta_P = m_delta / this->m_ed[m_r];
|
||||
m_theta_P = m_delta / this->m_pivot_row[m_q];
|
||||
// xb_minus_delta_p_pivot_column();
|
||||
apply_flips();
|
||||
if (!this->update_basis_and_x(m_q, m_p, m_theta_P)) {
|
||||
init_betas_precisely();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (snap_runaway_nonbasic_column(m_p)) {
|
||||
if (!this->find_x_by_solving()) {
|
||||
revert_to_previous_basis();
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (!problem_is_dual_feasible()) {
|
||||
// todo : shift the costs!!!!
|
||||
revert_to_previous_basis();
|
||||
this->m_iters_with_no_cost_growing++;
|
||||
return false;
|
||||
}
|
||||
|
||||
lean_assert(d_is_correct());
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::recover_leaving() {
|
||||
switch (m_entering_boundary_position) {
|
||||
case at_low_bound:
|
||||
case at_fixed:
|
||||
this->m_x[m_q] = this->m_low_bounds[m_q];
|
||||
break;
|
||||
case at_upper_bound:
|
||||
this->m_x[m_q] = this->m_upper_bounds[m_q];
|
||||
break;
|
||||
case free_of_bounds:
|
||||
this->m_x[m_q] = zero_of_type<X>();
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::revert_to_previous_basis() {
|
||||
LP_OUT(this->m_settings, "revert to previous basis on ( " << m_p << ", " << m_q << ")" << std::endl);
|
||||
this->change_basis_unconditionally(m_p, m_q);
|
||||
init_factorization(this->m_factorization, this->m_A, this->m_basis, this->m_settings);
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR); // complete failure
|
||||
return;
|
||||
}
|
||||
recover_leaving();
|
||||
if (!this->find_x_by_solving()) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
return;
|
||||
}
|
||||
recalculate_xB_and_d();
|
||||
init_betas_precisely();
|
||||
}
|
||||
|
||||
// returns true if the column has been snapped
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::snap_runaway_nonbasic_column(unsigned j) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::low_bound:
|
||||
if (!this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
case column_type::boxed:
|
||||
{
|
||||
bool closer_to_low_bound = abs(this->m_low_bounds[j] - this->m_x[j]) < abs(this->m_upper_bounds[j] - this->m_x[j]);
|
||||
if (closer_to_low_bound) {
|
||||
if (!this->x_is_at_low_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
} else {
|
||||
if (!this->x_is_at_upper_bound(j)) {
|
||||
this->m_x[j] = this->m_low_bounds[j];
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (!this->x_is_at_upper_bound(j)) {
|
||||
this->m_x[j] = this->m_upper_bounds[j];
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::problem_is_dual_feasible() const {
|
||||
for (unsigned j : this->non_basis()){
|
||||
if (!this->column_is_dual_feasible(j)) {
|
||||
// std::cout << "column " << j << " is not dual feasible" << std::endl;
|
||||
// std::cout << "m_d[" << j << "] = " << this->m_d[j] << std::endl;
|
||||
// std::cout << "x[" << j << "] = " << this->m_x[j] << std::endl;
|
||||
// std::cout << "type = " << column_type_to_string(this->m_column_type[j]) << std::endl;
|
||||
// std::cout << "bounds = " << this->m_low_bounds[j] << "," << this->m_upper_bounds[j] << std::endl;
|
||||
// std::cout << "total_iterations = " << this->total_iterations() << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> unsigned lp_dual_core_solver<T, X>::get_number_of_rows_to_try_for_leaving() {
|
||||
unsigned s = this->m_m();
|
||||
if (this->m_m() > 300) {
|
||||
s = (unsigned)((s / 100.0) * this->m_settings.percent_of_entering_to_check);
|
||||
}
|
||||
return my_random() % s + 1;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::delta_keeps_the_sign(int initial_delta_sign, const T & delta) {
|
||||
if (numeric_traits<T>::precise())
|
||||
return ((delta > numeric_traits<T>::zero()) && (initial_delta_sign == 1)) ||
|
||||
((delta < numeric_traits<T>::zero()) && (initial_delta_sign == -1));
|
||||
|
||||
double del = numeric_traits<T>::get_double(delta);
|
||||
return ( (del > this->m_settings.zero_tolerance) && (initial_delta_sign == 1)) ||
|
||||
((del < - this->m_settings.zero_tolerance) && (initial_delta_sign == -1));
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::set_status_to_tentative_dual_unbounded_or_dual_unbounded() {
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
this->set_status(DUAL_UNBOUNDED);
|
||||
} else {
|
||||
this->set_status(TENTATIVE_DUAL_UNBOUNDED);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::add_tight_breakpoints_and_q_to_flipped_set() {
|
||||
m_flipped_boxed.insert(m_q);
|
||||
for (auto j : m_tight_set) {
|
||||
m_flipped_boxed.insert(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::delta_lost_on_flips_of_tight_breakpoints() {
|
||||
T ret = abs(this->bound_span(m_q) * this->m_pivot_row[m_q]);
|
||||
for (auto j : m_tight_set) {
|
||||
ret += abs(this->bound_span(j) * this->m_pivot_row[j]);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::tight_breakpoinst_are_all_boxed() {
|
||||
if (this->m_column_types[m_q] != column_type::boxed) return false;
|
||||
for (auto j : m_tight_set) {
|
||||
if (this->m_column_types[j] != column_type::boxed) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_dual_core_solver<T, X>::calculate_harris_delta_on_breakpoint_set() {
|
||||
bool first_time = true;
|
||||
T ret = zero_of_type<T>();
|
||||
lean_assert(m_breakpoint_set.size() > 0);
|
||||
for (auto j : m_breakpoint_set) {
|
||||
T t;
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
t = abs((std::max(this->m_d[j], numeric_traits<T>::zero()) + m_harris_tolerance) / this->m_pivot_row[j]);
|
||||
} else {
|
||||
t = abs((std::min(this->m_d[j], numeric_traits<T>::zero()) - m_harris_tolerance) / this->m_pivot_row[j]);
|
||||
}
|
||||
if (first_time) {
|
||||
ret = t;
|
||||
first_time = false;
|
||||
} else if (t < ret) {
|
||||
ret = t;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::fill_tight_set_on_harris_delta(const T & harris_delta ){
|
||||
m_tight_set.clear();
|
||||
for (auto j : m_breakpoint_set) {
|
||||
if (this->x_is_at_low_bound(j)) {
|
||||
if (abs(std::max(this->m_d[j], numeric_traits<T>::zero()) / this->m_pivot_row[j]) <= harris_delta){
|
||||
m_tight_set.insert(j);
|
||||
}
|
||||
} else {
|
||||
if (abs(std::min(this->m_d[j], numeric_traits<T>::zero() ) / this->m_pivot_row[j]) <= harris_delta){
|
||||
m_tight_set.insert(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_on_tight_set() {
|
||||
m_q = -1;
|
||||
T max_pivot;
|
||||
for (auto j : m_tight_set) {
|
||||
T r = abs(this->m_pivot_row[j]);
|
||||
if (m_q != -1) {
|
||||
if (r > max_pivot) {
|
||||
max_pivot = r;
|
||||
m_q = j;
|
||||
}
|
||||
} else {
|
||||
max_pivot = r;
|
||||
m_q = j;
|
||||
}
|
||||
}
|
||||
m_tight_set.erase(m_q);
|
||||
lean_assert(m_q != -1);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::find_q_and_tight_set() {
|
||||
T harris_del = calculate_harris_delta_on_breakpoint_set();
|
||||
fill_tight_set_on_harris_delta(harris_del);
|
||||
find_q_on_tight_set();
|
||||
m_entering_boundary_position = this->get_non_basic_column_value_position(m_q);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::erase_tight_breakpoints_and_q_from_breakpoint_set() {
|
||||
m_breakpoint_set.erase(m_q);
|
||||
for (auto j : m_tight_set) {
|
||||
m_breakpoint_set.erase(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_dual_core_solver<T, X>::ratio_test() {
|
||||
m_sign_of_alpha_r = define_sign_of_alpha_r();
|
||||
fill_breakpoint_set();
|
||||
m_flipped_boxed.clear();
|
||||
int initial_delta_sign = m_delta >= numeric_traits<T>::zero()? 1: -1;
|
||||
do {
|
||||
if (m_breakpoint_set.size() == 0) {
|
||||
set_status_to_tentative_dual_unbounded_or_dual_unbounded();
|
||||
return false;
|
||||
}
|
||||
this->set_status(FEASIBLE);
|
||||
find_q_and_tight_set();
|
||||
if (!tight_breakpoinst_are_all_boxed()) break;
|
||||
T del = m_delta - delta_lost_on_flips_of_tight_breakpoints() * initial_delta_sign;
|
||||
if (!delta_keeps_the_sign(initial_delta_sign, del)) break;
|
||||
if (m_tight_set.size() + 1 == m_breakpoint_set.size()) {
|
||||
break; // deciding not to flip since we might get stuck without finding m_q, the column entering the basis
|
||||
}
|
||||
// we can flip m_q together with the tight set and look for another breakpoint candidate for m_q and another tight set
|
||||
add_tight_breakpoints_and_q_to_flipped_set();
|
||||
m_delta = del;
|
||||
erase_tight_breakpoints_and_q_from_breakpoint_set();
|
||||
} while (true);
|
||||
m_theta_D = this->m_d[m_q] / this->m_pivot_row[m_q];
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::process_flipped() {
|
||||
init_a_wave_by_zeros();
|
||||
for (auto j : m_flipped_boxed) {
|
||||
update_a_wave(signed_span_of_boxed(j), j);
|
||||
}
|
||||
}
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::update_d_and_xB() {
|
||||
for (auto j : this->non_basis()) {
|
||||
this->m_d[j] -= m_theta_D * this->m_pivot_row[j];
|
||||
}
|
||||
this->m_d[m_p] = - m_theta_D;
|
||||
if (m_flipped_boxed.size() > 0) {
|
||||
process_flipped();
|
||||
update_xb_after_bound_flips();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::calculate_beta_r_precisely() {
|
||||
T t = numeric_traits<T>::zero();
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
T b = this->m_pivot_row_of_B_1[i];
|
||||
t += b * b;
|
||||
}
|
||||
m_betas[m_r] = t;
|
||||
}
|
||||
// see "Progress in the dual simplex method for large scale LP problems: practical dual phase 1 algorithms"
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::update_xb_after_bound_flips() {
|
||||
this->m_factorization->solve_By(m_a_wave);
|
||||
unsigned i = this->m_m();
|
||||
while (i--) {
|
||||
this->m_x[this->m_basis[i]] -= m_a_wave[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::one_iteration() {
|
||||
unsigned number_of_rows_to_try = get_number_of_rows_to_try_for_leaving();
|
||||
unsigned offset_in_rows = my_random() % this->m_m();
|
||||
if (this->get_status() == TENTATIVE_DUAL_UNBOUNDED) {
|
||||
number_of_rows_to_try = this->m_m();
|
||||
} else {
|
||||
this->set_status(FEASIBLE);
|
||||
}
|
||||
pricing_loop(number_of_rows_to_try, offset_in_rows);
|
||||
lean_assert(problem_is_dual_feasible());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_core_solver<T, X>::solve() { // see the page 35
|
||||
lean_assert(d_is_correct());
|
||||
lean_assert(problem_is_dual_feasible());
|
||||
lean_assert(this->basis_heading_is_correct());
|
||||
this->set_total_iterations(0);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
do {
|
||||
if (this->print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over("", *this->m_settings.get_message_ostream())){
|
||||
return;
|
||||
}
|
||||
one_iteration();
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR && this->get_status() != DUAL_UNBOUNDED && this->get_status() != OPTIMAL &&
|
||||
this->m_iters_with_no_cost_growing <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&& this->total_iterations() <= this->m_settings.max_total_number_of_iterations);
|
||||
}
|
||||
}
|
29
src/util/lp/lp_dual_core_solver_instances.cpp
Normal file
29
src/util/lp/lp_dual_core_solver_instances.cpp
Normal file
|
@ -0,0 +1,29 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_dual_core_solver.hpp"
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::start_with_initial_basis_and_make_it_dual_feasible();
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::solve();
|
||||
template lean::lp_dual_core_solver<double, double>::lp_dual_core_solver(lean::static_matrix<double, double>&, vector<bool>&,
|
||||
vector<double>&,
|
||||
vector<double>&,
|
||||
vector<unsigned int>&,
|
||||
vector<unsigned> &,
|
||||
vector<int> &,
|
||||
vector<double>&,
|
||||
vector<lean::column_type>&,
|
||||
vector<double>&,
|
||||
vector<double>&,
|
||||
lean::lp_settings&, const lean::column_namer&);
|
||||
template void lean::lp_dual_core_solver<double, double>::start_with_initial_basis_and_make_it_dual_feasible();
|
||||
template void lean::lp_dual_core_solver<double, double>::solve();
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::restore_non_basis();
|
||||
template void lean::lp_dual_core_solver<double, double>::restore_non_basis();
|
||||
template void lean::lp_dual_core_solver<double, double>::revert_to_previous_basis();
|
||||
template void lean::lp_dual_core_solver<lean::mpq, lean::mpq>::revert_to_previous_basis();
|
79
src/util/lp/lp_dual_simplex.h
Normal file
79
src/util/lp/lp_dual_simplex.h
Normal file
|
@ -0,0 +1,79 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
#include "util/lp/lp_dual_core_solver.h"
|
||||
namespace lean {
|
||||
|
||||
template <typename T, typename X>
|
||||
class lp_dual_simplex: public lp_solver<T, X> {
|
||||
lp_dual_core_solver<T, X> * m_core_solver = nullptr;
|
||||
vector<T> m_b_copy;
|
||||
vector<T> m_low_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver
|
||||
vector<column_type> m_column_types_of_core_solver;
|
||||
vector<column_type> m_column_types_of_logicals;
|
||||
vector<bool> m_can_enter_basis;
|
||||
public:
|
||||
~lp_dual_simplex() {
|
||||
if (m_core_solver != nullptr) {
|
||||
delete m_core_solver;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void decide_on_status_after_stage1();
|
||||
|
||||
void fix_logical_for_stage2(unsigned j);
|
||||
|
||||
void fix_structural_for_stage2(unsigned j);
|
||||
|
||||
void unmark_boxed_and_fixed_columns_and_fix_structural_costs();
|
||||
|
||||
void restore_right_sides();
|
||||
|
||||
void solve_for_stage2();
|
||||
|
||||
void fill_x_with_zeros();
|
||||
|
||||
void stage1();
|
||||
|
||||
void stage2();
|
||||
|
||||
void fill_first_stage_solver_fields();
|
||||
|
||||
column_type get_column_type(unsigned j);
|
||||
|
||||
void fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j);
|
||||
|
||||
void fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j);
|
||||
|
||||
void fill_costs_and_bounds_and_column_types_for_the_first_stage_solver();
|
||||
|
||||
void set_type_for_logical(unsigned j, column_type col_type) {
|
||||
this->m_column_types_of_logicals[j - this->number_of_core_structurals()] = col_type;
|
||||
}
|
||||
|
||||
void fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial);
|
||||
|
||||
void augment_matrix_A_and_fill_x_and_allocate_some_fields();
|
||||
|
||||
|
||||
|
||||
void copy_m_b_aside_and_set_it_to_zeros();
|
||||
|
||||
void find_maximal_solution();
|
||||
|
||||
virtual T get_column_value(unsigned column) const {
|
||||
return this->get_column_value_with_core_solver(column, m_core_solver);
|
||||
}
|
||||
|
||||
T get_current_cost() const;
|
||||
};
|
||||
}
|
362
src/util/lp/lp_dual_simplex.hpp
Normal file
362
src/util/lp/lp_dual_simplex.hpp
Normal file
|
@ -0,0 +1,362 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_dual_simplex.h"
|
||||
namespace lean{
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_after_stage1() {
|
||||
switch (m_core_solver->get_status()) {
|
||||
case OPTIMAL:
|
||||
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
||||
this->m_status = FEASIBLE;
|
||||
} else {
|
||||
this->m_status = UNBOUNDED;
|
||||
}
|
||||
break;
|
||||
case DUAL_UNBOUNDED:
|
||||
lean_unreachable();
|
||||
case ITERATIONS_EXHAUSTED:
|
||||
this->m_status = ITERATIONS_EXHAUSTED;
|
||||
break;
|
||||
case TIME_EXHAUSTED:
|
||||
this->m_status = TIME_EXHAUSTED;
|
||||
break;
|
||||
case FLOATING_POINT_ERROR:
|
||||
this->m_status = FLOATING_POINT_ERROR;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_stage2(unsigned j) {
|
||||
lean_assert(j >= this->number_of_core_structurals());
|
||||
switch (m_column_types_of_logicals[j - this->number_of_core_structurals()]) {
|
||||
case column_type::low_bound:
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::low_bound;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::fixed:
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::fixed;
|
||||
m_can_enter_basis[j] = false;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for_stage2(unsigned j) {
|
||||
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
|
||||
switch (ci->get_column_type()) {
|
||||
case column_type::low_bound:
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::low_bound;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::fixed:
|
||||
case column_type::upper_bound:
|
||||
lean_unreachable();
|
||||
case column_type::boxed:
|
||||
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
|
||||
m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
m_can_enter_basis[j] = true;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
m_can_enter_basis[j] = true;
|
||||
m_column_types_of_core_solver[j] = column_type::free_column;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
// T cost_was = this->m_costs[j];
|
||||
this->set_scaled_cost(j);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::unmark_boxed_and_fixed_columns_and_fix_structural_costs() {
|
||||
unsigned j = this->m_A->column_count();
|
||||
while (j-- > this->number_of_core_structurals()) {
|
||||
fix_logical_for_stage2(j);
|
||||
}
|
||||
j = this->number_of_core_structurals();
|
||||
while (j--) {
|
||||
fix_structural_for_stage2(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::restore_right_sides() {
|
||||
unsigned i = this->m_A->row_count();
|
||||
while (i--) {
|
||||
this->m_b[i] = m_b_copy[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::solve_for_stage2() {
|
||||
m_core_solver->restore_non_basis();
|
||||
m_core_solver->solve_yB(m_core_solver->m_y);
|
||||
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
|
||||
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
||||
m_core_solver->set_status(FEASIBLE);
|
||||
m_core_solver->solve();
|
||||
switch (m_core_solver->get_status()) {
|
||||
case OPTIMAL:
|
||||
this->m_status = OPTIMAL;
|
||||
break;
|
||||
case DUAL_UNBOUNDED:
|
||||
this->m_status = INFEASIBLE;
|
||||
break;
|
||||
case TIME_EXHAUSTED:
|
||||
this->m_status = TIME_EXHAUSTED;
|
||||
break;
|
||||
case FLOATING_POINT_ERROR:
|
||||
this->m_status = FLOATING_POINT_ERROR;
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
this->m_second_stage_iterations = m_core_solver->total_iterations();
|
||||
this->m_total_iterations = (this->m_first_stage_iterations + this->m_second_stage_iterations);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_x_with_zeros() {
|
||||
unsigned j = this->m_A->column_count();
|
||||
while (j--) {
|
||||
this->m_x[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
|
||||
lean_assert(m_core_solver == nullptr);
|
||||
this->m_x.resize(this->m_A->column_count(), numeric_traits<T>::zero());
|
||||
if (this->m_settings.get_message_ostream() != nullptr)
|
||||
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
|
||||
m_core_solver = new lp_dual_core_solver<T, X>(
|
||||
*this->m_A,
|
||||
m_can_enter_basis,
|
||||
this->m_b, // the right side vector
|
||||
this->m_x,
|
||||
this->m_basis,
|
||||
this->m_nbasis,
|
||||
this->m_heading,
|
||||
this->m_costs,
|
||||
this->m_column_types_of_core_solver,
|
||||
this->m_low_bounds,
|
||||
this->m_upper_bounds,
|
||||
this->m_settings,
|
||||
*this);
|
||||
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
|
||||
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
|
||||
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
|
||||
// skipping stage 1
|
||||
m_core_solver->set_status(OPTIMAL);
|
||||
m_core_solver->set_total_iterations(0);
|
||||
} else {
|
||||
m_core_solver->solve();
|
||||
}
|
||||
decide_on_status_after_stage1();
|
||||
this->m_first_stage_iterations = m_core_solver->total_iterations();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::stage2() {
|
||||
unmark_boxed_and_fixed_columns_and_fix_structural_costs();
|
||||
restore_right_sides();
|
||||
solve_for_stage2();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields() {
|
||||
unsigned slack_var = this->number_of_core_structurals();
|
||||
unsigned artificial = this->number_of_core_structurals() + this->m_slacks;
|
||||
|
||||
for (unsigned row = 0; row < this->row_count(); row++) {
|
||||
fill_first_stage_solver_fields_for_row_slack_and_artificial(row, slack_var, artificial);
|
||||
}
|
||||
fill_costs_and_bounds_and_column_types_for_the_first_stage_solver();
|
||||
}
|
||||
|
||||
template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_type(unsigned j) {
|
||||
lean_assert(j < this->m_A->column_count());
|
||||
if (j >= this->number_of_core_structurals()) {
|
||||
return m_column_types_of_logicals[j - this->number_of_core_structurals()];
|
||||
}
|
||||
return this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]]->get_column_type();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j) {
|
||||
// see 4.7 in the dissertation of Achim Koberstein
|
||||
lean_assert(this->m_core_solver_columns_to_external_columns.find(j) !=
|
||||
this->m_core_solver_columns_to_external_columns.end());
|
||||
|
||||
T free_bound = T(1e4); // see 4.8
|
||||
unsigned jj = this->m_core_solver_columns_to_external_columns[j];
|
||||
lean_assert(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = this->m_map_from_var_index_to_column_info[jj];
|
||||
switch (ci->get_column_type()) {
|
||||
case column_type::upper_bound: {
|
||||
std::stringstream s;
|
||||
s << "unexpected bound type " << j << " "
|
||||
<< column_type_to_string(get_column_type(j));
|
||||
throw_exception(s.str());
|
||||
break;
|
||||
}
|
||||
case column_type::low_bound: {
|
||||
m_can_enter_basis[j] = true;
|
||||
this->set_scaled_cost(j);
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] =numeric_traits<T>::one();
|
||||
break;
|
||||
}
|
||||
case column_type::free_column: {
|
||||
m_can_enter_basis[j] = true;
|
||||
this->set_scaled_cost(j);
|
||||
this->m_upper_bounds[j] = free_bound;
|
||||
this->m_low_bounds[j] = -free_bound;
|
||||
break;
|
||||
}
|
||||
case column_type::boxed:
|
||||
m_can_enter_basis[j] = false;
|
||||
this->m_costs[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = this->m_low_bounds[j] = numeric_traits<T>::zero(); // is it needed?
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j) {
|
||||
this->m_costs[j] = 0;
|
||||
lean_assert(get_column_type(j) != column_type::upper_bound);
|
||||
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::low_bound))) {
|
||||
m_column_types_of_core_solver[j] = column_type::boxed;
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::one();
|
||||
} else {
|
||||
m_column_types_of_core_solver[j] = column_type::fixed;
|
||||
this->m_low_bounds[j] = numeric_traits<T>::zero();
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_and_bounds_and_column_types_for_the_first_stage_solver() {
|
||||
unsigned j = this->m_A->column_count();
|
||||
while (j-- > this->number_of_core_structurals()) { // go over logicals here
|
||||
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(j);
|
||||
}
|
||||
j = this->number_of_core_structurals();
|
||||
while (j--) {
|
||||
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial) {
|
||||
lean_assert(row < this->row_count());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
||||
// we need to bring the program to the form Ax = b
|
||||
T rs = this->m_b[row];
|
||||
switch (constraint.m_relation) {
|
||||
case Equal: // no slack variable here
|
||||
set_type_for_logical(artificial, column_type::fixed);
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_costs[artificial] = numeric_traits<T>::zero();
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
artificial++;
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
set_type_for_logical(slack_var, column_type::low_bound);
|
||||
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
||||
if (rs > 0) {
|
||||
// adding one artificial
|
||||
set_type_for_logical(artificial, column_type::fixed);
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_costs[artificial] = numeric_traits<T>::zero();
|
||||
artificial++;
|
||||
} else {
|
||||
// we can put a slack_var into the basis, and avoid adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_costs[slack_var] = numeric_traits<T>::zero();
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
case Less_or_equal:
|
||||
// introduce a non-negative slack variable
|
||||
set_type_for_logical(slack_var, column_type::low_bound);
|
||||
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
||||
if (rs < 0) {
|
||||
// adding one artificial
|
||||
set_type_for_logical(artificial, column_type::fixed);
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_costs[artificial] = numeric_traits<T>::zero();
|
||||
artificial++;
|
||||
} else {
|
||||
// we can put slack_var into the basis, and avoid adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_costs[slack_var] = numeric_traits<T>::zero();
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::augment_matrix_A_and_fill_x_and_allocate_some_fields() {
|
||||
this->count_slacks_and_artificials();
|
||||
this->m_A->add_columns_at_the_end(this->m_slacks + this->m_artificials);
|
||||
unsigned n = this->m_A->column_count();
|
||||
this->m_column_types_of_core_solver.resize(n);
|
||||
m_column_types_of_logicals.resize(this->m_slacks + this->m_artificials);
|
||||
this->m_costs.resize(n);
|
||||
this->m_upper_bounds.resize(n);
|
||||
this->m_low_bounds.resize(n);
|
||||
m_can_enter_basis.resize(n);
|
||||
this->m_basis.resize(this->m_A->row_count());
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::copy_m_b_aside_and_set_it_to_zeros() {
|
||||
for (unsigned i = 0; i < this->m_b.size(); i++) {
|
||||
m_b_copy.push_back(this->m_b[i]);
|
||||
this->m_b[i] = numeric_traits<T>::zero(); // preparing for the first stage
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_dual_simplex<T, X>::find_maximal_solution(){
|
||||
if (this->problem_is_empty()) {
|
||||
this->m_status = lp_status::EMPTY;
|
||||
return;
|
||||
}
|
||||
|
||||
this->flip_costs(); // do it for now, todo ( remove the flipping)
|
||||
|
||||
this->cleanup();
|
||||
if (this->m_status == INFEASIBLE) {
|
||||
return;
|
||||
}
|
||||
this->fill_matrix_A_and_init_right_side();
|
||||
this->fill_m_b();
|
||||
this->scale();
|
||||
augment_matrix_A_and_fill_x_and_allocate_some_fields();
|
||||
fill_first_stage_solver_fields();
|
||||
copy_m_b_aside_and_set_it_to_zeros();
|
||||
stage1();
|
||||
if (this->m_status == FEASIBLE) {
|
||||
stage2();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> T lp_dual_simplex<T, X>::get_current_cost() const {
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
ret += this->get_column_cost_value(it.first, it.second);
|
||||
}
|
||||
return -ret; // we flip costs for now
|
||||
}
|
||||
}
|
9
src/util/lp/lp_dual_simplex_instances.cpp
Normal file
9
src/util/lp/lp_dual_simplex_instances.cpp
Normal file
|
@ -0,0 +1,9 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_dual_simplex.hpp"
|
||||
template lean::mpq lean::lp_dual_simplex<lean::mpq, lean::mpq>::get_current_cost() const;
|
||||
template void lean::lp_dual_simplex<lean::mpq, lean::mpq>::find_maximal_solution();
|
||||
template double lean::lp_dual_simplex<double, double>::get_current_cost() const;
|
||||
template void lean::lp_dual_simplex<double, double>::find_maximal_solution();
|
986
src/util/lp/lp_primal_core_solver.h
Normal file
986
src/util/lp/lp_primal_core_solver.h
Normal file
|
@ -0,0 +1,986 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <list>
|
||||
#include <limits>
|
||||
#include <unordered_map>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <set>
|
||||
#include <math.h>
|
||||
#include <cstdlib>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lu.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/core_solver_pretty_printer.h"
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include "util/lp/breakpoint.h"
|
||||
#include "util/lp/binary_heap_priority_queue.h"
|
||||
#include "util/lp/int_set.h"
|
||||
#include "util/lp/iterator_on_row.h"
|
||||
namespace lean {
|
||||
|
||||
// This core solver solves (Ax=b, low_bound_values \leq x \leq upper_bound_values, maximize costs*x )
|
||||
// The right side b is given implicitly by x and the basis
|
||||
template <typename T, typename X>
|
||||
class lp_primal_core_solver:public lp_core_solver_base<T, X> {
|
||||
public:
|
||||
// m_sign_of_entering is set to 1 if the entering variable needs
|
||||
// to grow and is set to -1 otherwise
|
||||
unsigned m_column_norm_update_counter;
|
||||
T m_enter_price_eps;
|
||||
int m_sign_of_entering_delta;
|
||||
vector<breakpoint<X>> m_breakpoints;
|
||||
binary_heap_priority_queue<X> m_breakpoint_indices_queue;
|
||||
indexed_vector<T> m_beta; // see Swietanowski working vector beta for column norms
|
||||
T m_epsilon_of_reduced_cost = T(1)/T(10000000);
|
||||
vector<T> m_costs_backup;
|
||||
T m_converted_harris_eps;
|
||||
unsigned m_inf_row_index_for_tableau;
|
||||
bool m_bland_mode_tableau;
|
||||
int_set m_left_basis_tableau;
|
||||
unsigned m_bland_mode_threshold = 1000;
|
||||
unsigned m_left_basis_repeated;
|
||||
vector<unsigned> m_leaving_candidates;
|
||||
// T m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance);
|
||||
std::list<unsigned> m_non_basis_list;
|
||||
void sort_non_basis();
|
||||
void sort_non_basis_rational();
|
||||
int choose_entering_column(unsigned number_of_benefitial_columns_to_go_over);
|
||||
int choose_entering_column_tableau();
|
||||
int choose_entering_column_presize(unsigned number_of_benefitial_columns_to_go_over);
|
||||
int find_leaving_and_t_with_breakpoints(unsigned entering, X & t);
|
||||
// int find_inf_row() {
|
||||
// // mimicing CLP : todo : use a heap
|
||||
// int j = -1;
|
||||
// for (unsigned k : this->m_inf_set.m_index) {
|
||||
// if (k < static_cast<unsigned>(j))
|
||||
// j = static_cast<int>(k);
|
||||
// }
|
||||
// if (j == -1)
|
||||
// return -1;
|
||||
// return this->m_basis_heading[j];
|
||||
// #if 0
|
||||
// vector<int> choices;
|
||||
// unsigned len = 100000000;
|
||||
// for (unsigned j : this->m_inf_set.m_index) {
|
||||
// int i = this->m_basis_heading[j];
|
||||
// lean_assert(i >= 0);
|
||||
// unsigned row_len = this->m_A.m_rows[i].size();
|
||||
// if (row_len < len) {
|
||||
// choices.clear();
|
||||
// choices.push_back(i);
|
||||
// len = row_len;
|
||||
// if (my_random() % 10) break;
|
||||
// } else if (row_len == len) {
|
||||
// choices.push_back(i);
|
||||
// if (my_random() % 10) break;
|
||||
// }
|
||||
// }
|
||||
|
||||
// if (choices.size() == 0)
|
||||
// return -1;
|
||||
|
||||
// if (choices.size() == 1)
|
||||
// return choices[0];
|
||||
|
||||
// unsigned k = my_random() % choices.size();
|
||||
// return choices[k];
|
||||
// #endif
|
||||
// }
|
||||
|
||||
|
||||
bool column_is_benefitial_for_entering_basis_on_sign_row_strategy(unsigned j, int sign) const {
|
||||
// sign = 1 means the x of the basis column of the row has to grow to become feasible, when the coeff before j is neg, or x - has to diminish when the coeff is pos
|
||||
// we have xbj = -aj * xj
|
||||
lean_assert(this->m_basis_heading[j] < 0);
|
||||
lean_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column: return true;
|
||||
case column_type::fixed: return false;
|
||||
case column_type::low_bound:
|
||||
if (sign < 0)
|
||||
return true;
|
||||
return !this->x_is_at_low_bound(j);
|
||||
case column_type::upper_bound:
|
||||
if (sign > 0)
|
||||
return true;
|
||||
return !this->x_is_at_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (sign < 0)
|
||||
return !this->x_is_at_low_bound(j);
|
||||
return !this->x_is_at_upper_bound(j);
|
||||
}
|
||||
|
||||
lean_assert(false); // cannot be here
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool needs_to_grow(unsigned bj) const {
|
||||
lean_assert(!this->column_is_feasible(bj));
|
||||
switch(this->m_column_types[bj]) {
|
||||
case column_type::free_column:
|
||||
return false;
|
||||
case column_type::fixed:
|
||||
case column_type::low_bound:
|
||||
case column_type::boxed:
|
||||
return this-> x_below_low_bound(bj);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
int inf_sign_of_column(unsigned bj) const {
|
||||
lean_assert(!this->column_is_feasible(bj));
|
||||
switch(this->m_column_types[bj]) {
|
||||
case column_type::free_column:
|
||||
return 0;
|
||||
case column_type::low_bound:
|
||||
return 1;
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
return this->x_above_upper_bound(bj)? -1: 1;
|
||||
default:
|
||||
return -1;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
|
||||
bool monoid_can_decrease(const row_cell<T> & rc) const {
|
||||
unsigned j = rc.m_j;
|
||||
lean_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
case column_type::fixed:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return true;
|
||||
case column_type::upper_bound:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (is_pos(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
bool monoid_can_increase(const row_cell<T> & rc) const {
|
||||
unsigned j = rc.m_j;
|
||||
lean_assert(this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column:
|
||||
return true;
|
||||
case column_type::fixed:
|
||||
return false;
|
||||
case column_type::low_bound:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return true;
|
||||
case column_type::upper_bound:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
case column_type::boxed:
|
||||
if (is_neg(rc.get_val())) {
|
||||
return this->x_above_low_bound(j);
|
||||
}
|
||||
|
||||
return this->x_below_upper_bound(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
lean_assert(false); // unreachable
|
||||
return false;
|
||||
}
|
||||
|
||||
unsigned get_number_of_basic_vars_that_might_become_inf(unsigned j) const { // consider looking at the signs here: todo
|
||||
unsigned r = 0;
|
||||
for (auto & cc : this->m_A.m_columns[j]) {
|
||||
unsigned k = this->m_basis[cc.m_i];
|
||||
if (this->m_column_types[k] != column_type::free_column)
|
||||
r++;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
int find_beneficial_column_in_row_tableau_rows_bland_mode(int i, T & a_ent) {
|
||||
int j = -1;
|
||||
unsigned bj = this->m_basis[i];
|
||||
bool bj_needs_to_grow = needs_to_grow(bj);
|
||||
for (const row_cell<T>& rc : this->m_A.m_rows[i]) {
|
||||
if (rc.m_j == bj)
|
||||
continue;
|
||||
if (bj_needs_to_grow) {
|
||||
if (!monoid_can_decrease(rc))
|
||||
continue;
|
||||
} else {
|
||||
if (!monoid_can_increase(rc))
|
||||
continue;
|
||||
}
|
||||
if (rc.m_j < static_cast<unsigned>(j) ) {
|
||||
j = rc.m_j;
|
||||
a_ent = rc.m_value;
|
||||
}
|
||||
}
|
||||
if (j == -1) {
|
||||
m_inf_row_index_for_tableau = i;
|
||||
}
|
||||
|
||||
return j;
|
||||
}
|
||||
|
||||
int find_beneficial_column_in_row_tableau_rows(int i, T & a_ent) {
|
||||
if (m_bland_mode_tableau)
|
||||
return find_beneficial_column_in_row_tableau_rows_bland_mode(i, a_ent);
|
||||
// a short row produces short infeasibility explanation and benefits at least one pivot operation
|
||||
vector<const row_cell<T>*> choices;
|
||||
unsigned num_of_non_free_basics = 1000000;
|
||||
unsigned len = 100000000;
|
||||
unsigned bj = this->m_basis[i];
|
||||
bool bj_needs_to_grow = needs_to_grow(bj);
|
||||
for (const row_cell<T>& rc : this->m_A.m_rows[i]) {
|
||||
unsigned j = rc.m_j;
|
||||
if (j == bj)
|
||||
continue;
|
||||
if (bj_needs_to_grow) {
|
||||
if (!monoid_can_decrease(rc))
|
||||
continue;
|
||||
} else {
|
||||
if (!monoid_can_increase(rc))
|
||||
continue;
|
||||
}
|
||||
unsigned damage = get_number_of_basic_vars_that_might_become_inf(j);
|
||||
if (damage < num_of_non_free_basics) {
|
||||
num_of_non_free_basics = damage;
|
||||
len = this->m_A.m_columns[j].size();
|
||||
choices.clear();
|
||||
choices.push_back(&rc);
|
||||
} else if (damage == num_of_non_free_basics &&
|
||||
this->m_A.m_columns[j].size() <= len && (my_random() % 2)) {
|
||||
choices.push_back(&rc);
|
||||
len = this->m_A.m_columns[j].size();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (choices.size() == 0) {
|
||||
m_inf_row_index_for_tableau = i;
|
||||
return -1;
|
||||
}
|
||||
const row_cell<T>* rc = choices.size() == 1? choices[0] :
|
||||
choices[my_random() % choices.size()];
|
||||
|
||||
a_ent = rc->m_value;
|
||||
return rc->m_j;
|
||||
}
|
||||
static X positive_infinity() {
|
||||
return convert_struct<X, unsigned>::convert(std::numeric_limits<unsigned>::max());
|
||||
}
|
||||
|
||||
bool get_harris_theta(X & theta);
|
||||
|
||||
void restore_harris_eps() { m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance); }
|
||||
void zero_harris_eps() { m_converted_harris_eps = zero_of_type<T>(); }
|
||||
int find_leaving_on_harris_theta(X const & harris_theta, X & t);
|
||||
bool try_jump_to_another_bound_on_entering(unsigned entering, const X & theta, X & t, bool & unlimited);
|
||||
bool try_jump_to_another_bound_on_entering_unlimited(unsigned entering, X & t);
|
||||
int find_leaving_and_t(unsigned entering, X & t);
|
||||
int find_leaving_and_t_precise(unsigned entering, X & t);
|
||||
int find_leaving_and_t_tableau(unsigned entering, X & t);
|
||||
|
||||
void limit_theta(const X & lim, X & theta, bool & unlimited) {
|
||||
if (unlimited) {
|
||||
theta = lim;
|
||||
unlimited = false;
|
||||
} else {
|
||||
theta = std::min(lim, theta);
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m < 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
limit_inf_on_upper_bound_m_neg(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m < 0 && this->m_column_types[j] == column_type::low_bound);
|
||||
limit_inf_on_bound_m_neg(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_low_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m > 0 && this->m_column_types[j] == column_type::low_bound);
|
||||
limit_inf_on_low_bound_m_pos(m, this->m_x[j], this->m_low_bounds[j], theta, unlimited);
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_upper_bound(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m > 0 && this->m_column_types[j] == column_type::upper_bound);
|
||||
limit_inf_on_bound_m_pos(m, this->m_x[j], this->m_upper_bounds[j], theta, unlimited);
|
||||
};
|
||||
|
||||
X harris_eps_for_bound(const X & bound) const { return ( convert_struct<X, int>::convert(1) + abs(bound)/10) * m_converted_harris_eps/3;
|
||||
}
|
||||
|
||||
void get_bound_on_variable_and_update_leaving_precisely(unsigned j, vector<unsigned> & leavings, T m, X & t, T & abs_of_d_of_leaving);
|
||||
|
||||
vector<T> m_low_bounds_dummy; // needed for the base class only
|
||||
|
||||
X get_max_bound(vector<X> & b);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
void check_Ax_equal_b();
|
||||
void check_the_bounds();
|
||||
void check_bound(unsigned i);
|
||||
void check_correctness();
|
||||
#endif
|
||||
|
||||
// from page 183 of Istvan Maros's book
|
||||
// the basis structures have not changed yet
|
||||
void update_reduced_costs_from_pivot_row(unsigned entering, unsigned leaving);
|
||||
|
||||
// return 0 if the reduced cost at entering is close enough to the refreshed
|
||||
// 1 if it is way off, and 2 if it is unprofitable
|
||||
int refresh_reduced_cost_at_entering_and_check_that_it_is_off(unsigned entering);
|
||||
|
||||
void backup_and_normalize_costs();
|
||||
|
||||
void init_run();
|
||||
|
||||
void calc_working_vector_beta_for_column_norms();
|
||||
|
||||
void advance_on_entering_and_leaving(int entering, int leaving, X & t);
|
||||
void advance_on_entering_and_leaving_tableau(int entering, int leaving, X & t);
|
||||
void advance_on_entering_equal_leaving(int entering, X & t);
|
||||
void advance_on_entering_equal_leaving_tableau(int entering, X & t);
|
||||
|
||||
bool need_to_switch_costs() const {
|
||||
if (this->m_settings.simplex_strategy() == simplex_strategy_enum::tableau_rows)
|
||||
return false;
|
||||
// lean_assert(calc_current_x_is_feasible() == current_x_is_feasible());
|
||||
return this->current_x_is_feasible() == this->m_using_infeas_costs;
|
||||
}
|
||||
|
||||
|
||||
void advance_on_entering(int entering);
|
||||
void advance_on_entering_tableau(int entering);
|
||||
void advance_on_entering_precise(int entering);
|
||||
void push_forward_offset_in_non_basis(unsigned & offset_in_nb);
|
||||
|
||||
unsigned get_number_of_non_basic_column_to_try_for_enter();
|
||||
|
||||
void print_column_norms(std::ostream & out);
|
||||
|
||||
// returns the number of iterations
|
||||
unsigned solve();
|
||||
|
||||
lu<T, X> * factorization() {return this->m_factorization;}
|
||||
|
||||
void delete_factorization();
|
||||
|
||||
// according to Swietanowski, " A new steepest edge approximation for the simplex method for linear programming"
|
||||
void init_column_norms();
|
||||
|
||||
T calculate_column_norm_exactly(unsigned j);
|
||||
|
||||
void update_or_init_column_norms(unsigned entering, unsigned leaving);
|
||||
|
||||
// following Swietanowski - A new steepest ...
|
||||
void update_column_norms(unsigned entering, unsigned leaving);
|
||||
|
||||
T calculate_norm_of_entering_exactly();
|
||||
|
||||
void find_feasible_solution();
|
||||
|
||||
bool is_tiny() const {return this->m_m < 10 && this->m_n < 20;}
|
||||
|
||||
void one_iteration();
|
||||
void one_iteration_tableau();
|
||||
|
||||
void advance_on_entering_and_leaving_tableau_rows(int entering, int leaving, const X &theta ) {
|
||||
this->update_basis_and_x_tableau(entering, leaving, theta);
|
||||
this->update_column_in_inf_set(entering);
|
||||
}
|
||||
|
||||
|
||||
int find_leaving_tableau_rows(X & new_val_for_leaving) {
|
||||
int j = -1;
|
||||
for (unsigned k : this->m_inf_set.m_index) {
|
||||
if (k < static_cast<unsigned>(j))
|
||||
j = static_cast<int>(k);
|
||||
}
|
||||
if (j == -1)
|
||||
return -1;
|
||||
|
||||
lean_assert(!this->column_is_feasible(j));
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::upper_bound:
|
||||
new_val_for_leaving = this->m_upper_bounds[j];
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
new_val_for_leaving = this->m_low_bounds[j];
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (this->x_above_upper_bound(j))
|
||||
new_val_for_leaving = this->m_upper_bounds[j];
|
||||
else
|
||||
new_val_for_leaving = this->m_low_bounds[j];
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return j;
|
||||
}
|
||||
|
||||
void one_iteration_tableau_rows() {
|
||||
X new_val_for_leaving;
|
||||
int leaving = find_leaving_tableau_rows(new_val_for_leaving);
|
||||
if (leaving == -1) {
|
||||
this->set_status(OPTIMAL);
|
||||
return;
|
||||
}
|
||||
|
||||
if (!m_bland_mode_tableau) {
|
||||
if (m_left_basis_tableau.contains(leaving)) {
|
||||
if (++m_left_basis_repeated > m_bland_mode_threshold) {
|
||||
m_bland_mode_tableau = true;
|
||||
}
|
||||
} else {
|
||||
m_left_basis_tableau.insert(leaving);
|
||||
}
|
||||
}
|
||||
T a_ent;
|
||||
int entering = find_beneficial_column_in_row_tableau_rows(this->m_basis_heading[leaving], a_ent);
|
||||
if (entering == -1) {
|
||||
this->set_status(INFEASIBLE);
|
||||
return;
|
||||
}
|
||||
X theta = (this->m_x[leaving] - new_val_for_leaving) / a_ent;
|
||||
advance_on_entering_and_leaving_tableau_rows(entering, leaving, theta );
|
||||
lean_assert(this->m_x[leaving] == new_val_for_leaving);
|
||||
if (this->current_x_is_feasible())
|
||||
this->set_status(OPTIMAL);
|
||||
}
|
||||
|
||||
void fill_breakpoints_array(unsigned entering);
|
||||
|
||||
void try_add_breakpoint_in_row(unsigned i);
|
||||
|
||||
void clear_breakpoints();
|
||||
|
||||
void change_slope_on_breakpoint(unsigned entering, breakpoint<X> * b, T & slope_at_entering);
|
||||
void advance_on_sorted_breakpoints(unsigned entering);
|
||||
|
||||
void update_basis_and_x_with_comparison(unsigned entering, unsigned leaving, X delta);
|
||||
|
||||
void decide_on_status_when_cannot_find_entering() {
|
||||
lean_assert(!need_to_switch_costs());
|
||||
this->set_status(this->current_x_is_feasible()? OPTIMAL: INFEASIBLE);
|
||||
}
|
||||
|
||||
// void limit_theta_on_basis_column_for_feas_case_m_neg(unsigned j, const T & m, X & theta) {
|
||||
// lean_assert(m < 0);
|
||||
// lean_assert(this->m_column_type[j] == low_bound || this->m_column_type[j] == boxed);
|
||||
// const X & eps = harris_eps_for_bound(this->m_low_bounds[j]);
|
||||
// if (this->above_bound(this->m_x[j], this->m_low_bounds[j])) {
|
||||
// theta = std::min((this->m_low_bounds[j] -this->m_x[j] - eps) / m, theta);
|
||||
// if (theta < zero_of_type<X>()) theta = zero_of_type<X>();
|
||||
// }
|
||||
// }
|
||||
|
||||
void limit_theta_on_basis_column_for_feas_case_m_neg_no_check(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m < 0);
|
||||
const X& eps = harris_eps_for_bound(this->m_low_bounds[j]);
|
||||
limit_theta((this->m_low_bounds[j] - this->m_x[j] - eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) theta = zero_of_type<X>();
|
||||
}
|
||||
|
||||
bool limit_inf_on_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets smaller
|
||||
lean_assert(m < 0);
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (this->below_bound(x, bound)) return false;
|
||||
if (this->above_bound(x, bound)) {
|
||||
limit_theta((bound - x) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
} else {
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->below_bound(x, bound)) return false;
|
||||
if (this->above_bound(x, bound)) {
|
||||
limit_theta((bound - x - eps) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool limit_inf_on_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets larger
|
||||
lean_assert(m > 0);
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (this->above_bound(x, bound)) return false;
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
} else {
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->above_bound(x, bound)) return false;
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x + eps) / m, theta, unlimited);
|
||||
} else {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void limit_inf_on_low_bound_m_pos(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
// x gets larger
|
||||
lean_assert(m > 0);
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x) / m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
else {
|
||||
// x gets larger
|
||||
lean_assert(m > 0);
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->below_bound(x, bound)) {
|
||||
limit_theta((bound - x + eps) / m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_inf_on_upper_bound_m_neg(const T & m, const X & x, const X & bound, X & theta, bool & unlimited) {
|
||||
// x gets smaller
|
||||
lean_assert(m < 0);
|
||||
const X& eps = harris_eps_for_bound(bound);
|
||||
if (this->above_bound(x, bound)) {
|
||||
limit_theta((bound - x - eps) / m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_pos_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
// lean_assert(m > 0 && this->m_column_type[j] == column_type::boxed);
|
||||
const X & x = this->m_x[j];
|
||||
const X & lbound = this->m_low_bounds[j];
|
||||
|
||||
if (this->below_bound(x, lbound)) {
|
||||
const X& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
limit_theta((lbound - x + eps) / m, theta, unlimited);
|
||||
} else {
|
||||
const X & ubound = this->m_upper_bounds[j];
|
||||
if (this->below_bound(x, ubound)){
|
||||
const X& eps = harris_eps_for_bound(ubound);
|
||||
limit_theta((ubound - x + eps) / m, theta, unlimited);
|
||||
} else if (!this->above_bound(x, ubound)) {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_inf_case_m_neg_boxed(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
// lean_assert(m < 0 && this->m_column_type[j] == column_type::boxed);
|
||||
const X & x = this->m_x[j];
|
||||
const X & ubound = this->m_upper_bounds[j];
|
||||
if (this->above_bound(x, ubound)) {
|
||||
const X& eps = harris_eps_for_bound(ubound);
|
||||
limit_theta((ubound - x - eps) / m, theta, unlimited);
|
||||
} else {
|
||||
const X & lbound = this->m_low_bounds[j];
|
||||
if (this->above_bound(x, lbound)){
|
||||
const X& eps = harris_eps_for_bound(lbound);
|
||||
limit_theta((lbound - x - eps) / m, theta, unlimited);
|
||||
} else if (!this->below_bound(x, lbound)) {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
void limit_theta_on_basis_column_for_feas_case_m_pos(unsigned j, const T & m, X & theta, bool & unlimited) {
|
||||
lean_assert(m > 0);
|
||||
const T& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
if (this->below_bound(this->m_x[j], this->m_upper_bounds[j])) {
|
||||
limit_theta((this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) {
|
||||
theta = zero_of_type<X>();
|
||||
unlimited = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void limit_theta_on_basis_column_for_feas_case_m_pos_no_check(unsigned j, const T & m, X & theta, bool & unlimited ) {
|
||||
lean_assert(m > 0);
|
||||
const X& eps = harris_eps_for_bound(this->m_upper_bounds[j]);
|
||||
limit_theta( (this->m_upper_bounds[j] - this->m_x[j] + eps) / m, theta, unlimited);
|
||||
if (theta < zero_of_type<X>()) {
|
||||
theta = zero_of_type<X>();
|
||||
}
|
||||
}
|
||||
|
||||
// j is a basic column or the entering, in any case x[j] has to stay feasible.
|
||||
// m is the multiplier. updating t in a way that holds the following
|
||||
// x[j] + t * m >= this->m_low_bounds[j]- harris_feasibility_tolerance ( if m < 0 )
|
||||
// or
|
||||
// x[j] + t * m <= this->m_upper_bounds[j] + harris_feasibility_tolerance ( if m > 0)
|
||||
void limit_theta_on_basis_column(unsigned j, T m, X & theta, bool & unlimited) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::free_column: break;
|
||||
case column_type::upper_bound:
|
||||
if (this->current_x_is_feasible()) {
|
||||
if (m > 0)
|
||||
limit_theta_on_basis_column_for_feas_case_m_pos_no_check(j, m, theta, unlimited);
|
||||
} else { // inside of feasibility_loop
|
||||
if (m > 0)
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_upper_bound(j, m, theta, unlimited);
|
||||
else
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_upper_bound(j, m, theta, unlimited);
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (this->current_x_is_feasible()) {
|
||||
if (m < 0)
|
||||
limit_theta_on_basis_column_for_feas_case_m_neg_no_check(j, m, theta, unlimited);
|
||||
} else {
|
||||
if (m < 0)
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_low_bound(j, m, theta, unlimited);
|
||||
else
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_low_bound(j, m, theta, unlimited);
|
||||
}
|
||||
break;
|
||||
// case fixed:
|
||||
// if (get_this->current_x_is_feasible()) {
|
||||
// theta = zero_of_type<X>();
|
||||
// break;
|
||||
// }
|
||||
// if (m < 0)
|
||||
// limit_theta_on_basis_column_for_inf_case_m_neg_fixed(j, m, theta);
|
||||
// else
|
||||
// limit_theta_on_basis_column_for_inf_case_m_pos_fixed(j, m, theta);
|
||||
// break;
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (this->current_x_is_feasible()) {
|
||||
if (m > 0) {
|
||||
limit_theta_on_basis_column_for_feas_case_m_pos_no_check(j, m, theta, unlimited);
|
||||
} else {
|
||||
limit_theta_on_basis_column_for_feas_case_m_neg_no_check(j, m, theta, unlimited);
|
||||
}
|
||||
} else {
|
||||
if (m > 0) {
|
||||
limit_theta_on_basis_column_for_inf_case_m_pos_boxed(j, m, theta, unlimited);
|
||||
} else {
|
||||
limit_theta_on_basis_column_for_inf_case_m_neg_boxed(j, m, theta, unlimited);
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
if (!unlimited && theta < zero_of_type<X>()) {
|
||||
theta = zero_of_type<X>();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool column_is_benefitial_for_entering_basis(unsigned j) const;
|
||||
bool column_is_benefitial_for_entering_basis_precise(unsigned j) const;
|
||||
|
||||
bool column_is_benefitial_for_entering_on_breakpoints(unsigned j) const;
|
||||
|
||||
|
||||
bool can_enter_basis(unsigned j);
|
||||
bool done();
|
||||
void init_infeasibility_costs();
|
||||
|
||||
void init_infeasibility_cost_for_column(unsigned j);
|
||||
T get_infeasibility_cost_for_column(unsigned j) const;
|
||||
void init_infeasibility_costs_for_changed_basis_only();
|
||||
|
||||
void print_column(unsigned j, std::ostream & out);
|
||||
void add_breakpoint(unsigned j, X delta, breakpoint_type type);
|
||||
|
||||
// j is the basic column, x is the value at x[j]
|
||||
// d is the coefficient before m_entering in the row with j as the basis column
|
||||
void try_add_breakpoint(unsigned j, const X & x, const T & d, breakpoint_type break_type, const X & break_value);
|
||||
template <typename L>
|
||||
bool same_sign_with_entering_delta(const L & a) {
|
||||
return (a > zero_of_type<L>() && m_sign_of_entering_delta > 0) || (a < zero_of_type<L>() && m_sign_of_entering_delta < 0);
|
||||
}
|
||||
|
||||
void init_reduced_costs();
|
||||
|
||||
bool low_bounds_are_set() const { return true; }
|
||||
|
||||
int advance_on_sorted_breakpoints(unsigned entering, X & t);
|
||||
|
||||
std::string break_type_to_string(breakpoint_type type);
|
||||
|
||||
void print_breakpoint(const breakpoint<X> * b, std::ostream & out);
|
||||
|
||||
void print_bound_info_and_x(unsigned j, std::ostream & out);
|
||||
|
||||
void init_infeasibility_after_update_x_if_inf(unsigned leaving) {
|
||||
if (this->m_using_infeas_costs) {
|
||||
init_infeasibility_costs_for_changed_basis_only();
|
||||
this->m_costs[leaving] = zero_of_type<T>();
|
||||
this->m_inf_set.erase(leaving);
|
||||
}
|
||||
}
|
||||
|
||||
void init_inf_set() {
|
||||
this->m_inf_set.clear();
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->m_basis_heading[j] < 0)
|
||||
continue;
|
||||
if (!this->column_is_feasible(j))
|
||||
this->m_inf_set.insert(j);
|
||||
}
|
||||
}
|
||||
|
||||
int get_column_out_of_bounds_delta_sign(unsigned j) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
if (this->x_below_low_bound(j))
|
||||
return -1;
|
||||
if (this->x_above_upper_bound(j))
|
||||
return 1;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (this->x_below_low_bound(j))
|
||||
return -1;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (this->x_above_upper_bound(j))
|
||||
return 1;
|
||||
break;
|
||||
case column_type::free_column:
|
||||
return 0;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void init_column_row_non_zeroes() {
|
||||
this->m_columns_nz.resize(this->m_A.column_count());
|
||||
this->m_rows_nz.resize(this->m_A.row_count());
|
||||
for (unsigned i = 0; i < this->m_A.column_count(); i++) {
|
||||
if (this->m_columns_nz[i] == 0)
|
||||
this->m_columns_nz[i] = this->m_A.m_columns[i].size();
|
||||
}
|
||||
for (unsigned i = 0; i < this->m_A.row_count(); i++) {
|
||||
if (this->m_rows_nz[i] == 0)
|
||||
this->m_rows_nz[i] = this->m_A.m_rows[i].size();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int x_at_bound_sign(unsigned j) {
|
||||
switch (this->m_column_types[j]) {
|
||||
case column_type::fixed:
|
||||
return 0;
|
||||
case column_type::boxed:
|
||||
if (this->x_is_at_low_bound(j))
|
||||
return 1;
|
||||
return -1;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
return 1;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
return -1;
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return 0;
|
||||
|
||||
}
|
||||
|
||||
unsigned solve_with_tableau();
|
||||
|
||||
bool basis_column_is_set_correctly(unsigned j) const {
|
||||
return this->m_A.m_columns[j].size() == 1;
|
||||
|
||||
}
|
||||
|
||||
bool basis_columns_are_set_correctly() const {
|
||||
for (unsigned j : this->m_basis)
|
||||
if(!basis_column_is_set_correctly(j))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
void init_run_tableau();
|
||||
void update_x_tableau(unsigned entering, const X & delta);
|
||||
void update_inf_cost_for_column_tableau(unsigned j);
|
||||
|
||||
// the delta is between the old and the new cost (old - new)
|
||||
void update_reduced_cost_for_basic_column_cost_change(const T & delta, unsigned j) {
|
||||
lean_assert(this->m_basis_heading[j] >= 0);
|
||||
unsigned i = static_cast<unsigned>(this->m_basis_heading[j]);
|
||||
for (const row_cell<T> & rc : this->m_A.m_rows[i]) {
|
||||
unsigned k = rc.m_j;
|
||||
if (k == j)
|
||||
continue;
|
||||
this->m_d[k] += delta * rc.get_val();
|
||||
}
|
||||
}
|
||||
|
||||
bool update_basis_and_x_tableau(int entering, int leaving, X const & tt);
|
||||
void init_reduced_costs_tableau();
|
||||
void init_tableau_rows() {
|
||||
m_bland_mode_tableau = false;
|
||||
m_left_basis_tableau.clear();
|
||||
m_left_basis_tableau.resize(this->m_A.column_count());
|
||||
m_left_basis_repeated = 0;
|
||||
}
|
||||
// stage1 constructor
|
||||
lp_primal_core_solver(static_matrix<T, X> & A,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<X> & x, // the number of elements in x needs to be at least as large as the number of columns in A
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
const vector<column_type> & column_type_array,
|
||||
const vector<X> & low_bound_values,
|
||||
const vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer& column_names):
|
||||
lp_core_solver_base<T, X>(A, b,
|
||||
basis,
|
||||
nbasis,
|
||||
heading,
|
||||
x,
|
||||
costs,
|
||||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
low_bound_values,
|
||||
upper_bound_values),
|
||||
m_beta(A.row_count()) {
|
||||
|
||||
if (!(numeric_traits<T>::precise())) {
|
||||
m_converted_harris_eps = convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance);
|
||||
} else {
|
||||
m_converted_harris_eps = zero_of_type<T>();
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
}
|
||||
|
||||
// constructor
|
||||
lp_primal_core_solver(static_matrix<T, X> & A,
|
||||
vector<X> & b, // the right side vector
|
||||
vector<X> & x, // the number of elements in x needs to be at least as large as the number of columns in A
|
||||
vector<unsigned> & basis,
|
||||
vector<unsigned> & nbasis,
|
||||
vector<int> & heading,
|
||||
vector<T> & costs,
|
||||
const vector<column_type> & column_type_array,
|
||||
const vector<X> & upper_bound_values,
|
||||
lp_settings & settings,
|
||||
const column_namer& column_names):
|
||||
lp_core_solver_base<T, X>(A, b,
|
||||
basis,
|
||||
nbasis,
|
||||
heading,
|
||||
x,
|
||||
costs,
|
||||
settings,
|
||||
column_names,
|
||||
column_type_array,
|
||||
m_low_bounds_dummy,
|
||||
upper_bound_values),
|
||||
m_beta(A.row_count()),
|
||||
m_converted_harris_eps(convert_struct<T, double>::convert(this->m_settings.harris_feasibility_tolerance)) {
|
||||
lean_assert(initial_x_is_correct());
|
||||
m_low_bounds_dummy.resize(A.column_count(), zero_of_type<T>());
|
||||
m_enter_price_eps = numeric_traits<T>::precise() ? numeric_traits<T>::zero() : T(1e-5);
|
||||
#ifdef LEAN_DEBUG
|
||||
// check_correctness();
|
||||
#endif
|
||||
}
|
||||
|
||||
bool initial_x_is_correct() {
|
||||
std::set<unsigned> basis_set;
|
||||
for (unsigned i = 0; i < this->m_A.row_count(); i++) {
|
||||
basis_set.insert(this->m_basis[i]);
|
||||
}
|
||||
for (unsigned j = 0; j < this->m_n(); j++) {
|
||||
if (this->column_has_low_bound(j) && this->m_x[j] < numeric_traits<T>::zero()) {
|
||||
LP_OUT(this->m_settings, "low bound for variable " << j << " does not hold: this->m_x[" << j << "] = " << this->m_x[j] << " is negative " << std::endl);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (this->column_has_upper_bound(j) && this->m_x[j] > this->m_upper_bounds[j]) {
|
||||
LP_OUT(this->m_settings, "upper bound for " << j << " does not hold: " << this->m_upper_bounds[j] << ">" << this->m_x[j] << std::endl);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (basis_set.find(j) != basis_set.end()) continue;
|
||||
if (this->m_column_types[j] == column_type::low_bound) {
|
||||
if (numeric_traits<T>::zero() != this->m_x[j]) {
|
||||
LP_OUT(this->m_settings, "only low bound is set for " << j << " but low bound value " << numeric_traits<T>::zero() << " is not equal to " << this->m_x[j] << std::endl);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
if (this->m_column_types[j] == column_type::boxed) {
|
||||
if (this->m_upper_bounds[j] != this->m_x[j] && !numeric_traits<T>::is_zero(this->m_x[j])) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
friend core_solver_pretty_printer<T, X>;
|
||||
};
|
||||
}
|
1374
src/util/lp/lp_primal_core_solver.hpp
Normal file
1374
src/util/lp/lp_primal_core_solver.hpp
Normal file
File diff suppressed because it is too large
Load diff
24
src/util/lp/lp_primal_core_solver_instances.cpp
Normal file
24
src/util/lp/lp_primal_core_solver_instances.cpp
Normal file
|
@ -0,0 +1,24 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include "util/lp/lp_primal_core_solver.hpp"
|
||||
#include "util/lp/lp_primal_core_solver_tableau.hpp"
|
||||
namespace lean {
|
||||
template void lp_primal_core_solver<double, double>::find_feasible_solution();
|
||||
template void lean::lp_primal_core_solver<lean::mpq, lean::numeric_pair<lean::mpq> >::find_feasible_solution();
|
||||
|
||||
template unsigned lp_primal_core_solver<double, double>::solve();
|
||||
template unsigned lp_primal_core_solver<double, double>::solve_with_tableau();
|
||||
template unsigned lp_primal_core_solver<mpq, mpq>::solve();
|
||||
template void lean::lp_primal_core_solver<double, double>::clear_breakpoints();
|
||||
template bool lean::lp_primal_core_solver<lean::mpq, lean::mpq>::update_basis_and_x_tableau(int, int, lean::mpq const&);
|
||||
template bool lean::lp_primal_core_solver<double, double>::update_basis_and_x_tableau(int, int, double const&);
|
||||
template bool lean::lp_primal_core_solver<lean::mpq, lean::numeric_pair<lean::mpq> >::update_basis_and_x_tableau(int, int, lean::numeric_pair<lean::mpq> const&);
|
||||
}
|
393
src/util/lp/lp_primal_core_solver_tableau.hpp
Normal file
393
src/util/lp/lp_primal_core_solver_tableau.hpp
Normal file
|
@ -0,0 +1,393 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
// this is a part of lp_primal_core_solver that deals with the tableau
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::one_iteration_tableau() {
|
||||
int entering = choose_entering_column_tableau();
|
||||
if (entering == -1) {
|
||||
decide_on_status_when_cannot_find_entering();
|
||||
}
|
||||
else {
|
||||
advance_on_entering_tableau(entering);
|
||||
}
|
||||
lean_assert(this->inf_set_is_correct());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::advance_on_entering_tableau(int entering) {
|
||||
X t;
|
||||
int leaving = find_leaving_and_t_tableau(entering, t);
|
||||
if (leaving == -1) {
|
||||
this->set_status(UNBOUNDED);
|
||||
return;
|
||||
}
|
||||
advance_on_entering_and_leaving_tableau(entering, leaving, t);
|
||||
}
|
||||
/*
|
||||
template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_entering_column_tableau_rows() {
|
||||
int i = find_inf_row();
|
||||
if (i == -1)
|
||||
return -1;
|
||||
return find_shortest_beneficial_column_in_row(i);
|
||||
}
|
||||
*/
|
||||
template <typename T, typename X> int lp_primal_core_solver<T, X>::choose_entering_column_tableau() {
|
||||
//this moment m_y = cB * B(-1)
|
||||
unsigned number_of_benefitial_columns_to_go_over = get_number_of_non_basic_column_to_try_for_enter();
|
||||
|
||||
lean_assert(numeric_traits<T>::precise());
|
||||
if (number_of_benefitial_columns_to_go_over == 0)
|
||||
return -1;
|
||||
if (this->m_basis_sort_counter == 0) {
|
||||
sort_non_basis();
|
||||
this->m_basis_sort_counter = 20;
|
||||
}
|
||||
else {
|
||||
this->m_basis_sort_counter--;
|
||||
}
|
||||
unsigned j_nz = this->m_m() + 1; // this number is greater than the max column size
|
||||
std::list<unsigned>::iterator entering_iter = m_non_basis_list.end();
|
||||
for (auto non_basis_iter = m_non_basis_list.begin(); number_of_benefitial_columns_to_go_over && non_basis_iter != m_non_basis_list.end(); ++non_basis_iter) {
|
||||
unsigned j = *non_basis_iter;
|
||||
if (!column_is_benefitial_for_entering_basis(j))
|
||||
continue;
|
||||
|
||||
// if we are here then j is a candidate to enter the basis
|
||||
unsigned t = this->m_A.number_of_non_zeroes_in_column(j);
|
||||
if (t < j_nz) {
|
||||
j_nz = t;
|
||||
entering_iter = non_basis_iter;
|
||||
if (number_of_benefitial_columns_to_go_over)
|
||||
number_of_benefitial_columns_to_go_over--;
|
||||
}
|
||||
else if (t == j_nz && my_random() % 2 == 0) {
|
||||
entering_iter = non_basis_iter;
|
||||
}
|
||||
}// while (number_of_benefitial_columns_to_go_over && initial_offset_in_non_basis != offset_in_nb);
|
||||
if (entering_iter == m_non_basis_list.end())
|
||||
return -1;
|
||||
unsigned entering = *entering_iter;
|
||||
m_sign_of_entering_delta = this->m_d[entering] > 0 ? 1 : -1;
|
||||
if (this->m_using_infeas_costs && this->m_settings.use_breakpoints_in_feasibility_search)
|
||||
m_sign_of_entering_delta = -m_sign_of_entering_delta;
|
||||
m_non_basis_list.erase(entering_iter);
|
||||
m_non_basis_list.push_back(entering);
|
||||
return entering;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
unsigned lp_primal_core_solver<T, X>::solve_with_tableau() {
|
||||
init_run_tableau();
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only) {
|
||||
this->set_status(FEASIBLE);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ((!numeric_traits<T>::precise()) && this->A_mult_x_is_off()) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
return 0;
|
||||
}
|
||||
do {
|
||||
if (this->print_statistics_with_iterations_and_nonzeroes_and_cost_and_check_that_the_time_is_over((this->m_using_infeas_costs? "inf t" : "feas t"), * this->m_settings.get_message_ostream())) {
|
||||
return this->total_iterations();
|
||||
}
|
||||
if (this->m_settings.use_tableau_rows())
|
||||
one_iteration_tableau_rows();
|
||||
else
|
||||
one_iteration_tableau();
|
||||
switch (this->get_status()) {
|
||||
case OPTIMAL: // double check that we are at optimum
|
||||
case INFEASIBLE:
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
break;
|
||||
if (!numeric_traits<T>::precise()) {
|
||||
if(this->m_look_for_feasible_solution_only)
|
||||
break;
|
||||
this->init_lu();
|
||||
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
if (choose_entering_column(1) == -1) {
|
||||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
} else { // precise case
|
||||
if ((!this->infeasibility_costs_are_correct())) {
|
||||
init_reduced_costs_tableau(); // forcing recalc
|
||||
if (choose_entering_column_tableau() == -1) {
|
||||
decide_on_status_when_cannot_find_entering();
|
||||
break;
|
||||
}
|
||||
this->set_status(UNKNOWN);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case TENTATIVE_UNBOUNDED:
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
|
||||
init_reduced_costs();
|
||||
break;
|
||||
case UNBOUNDED:
|
||||
if (this->current_x_is_infeasible()) {
|
||||
init_reduced_costs();
|
||||
this->set_status(UNKNOWN);
|
||||
}
|
||||
break;
|
||||
|
||||
case UNSTABLE:
|
||||
lean_assert(! (numeric_traits<T>::precise()));
|
||||
this->init_lu();
|
||||
if (this->m_factorization->get_status() != LU_status::OK) {
|
||||
this->set_status(FLOATING_POINT_ERROR);
|
||||
break;
|
||||
}
|
||||
init_reduced_costs();
|
||||
break;
|
||||
|
||||
default:
|
||||
break; // do nothing
|
||||
}
|
||||
} while (this->get_status() != FLOATING_POINT_ERROR
|
||||
&&
|
||||
this->get_status() != UNBOUNDED
|
||||
&&
|
||||
this->get_status() != OPTIMAL
|
||||
&&
|
||||
this->get_status() != INFEASIBLE
|
||||
&&
|
||||
this->m_iters_with_no_cost_growing <= this->m_settings.max_number_of_iterations_with_no_improvements
|
||||
&&
|
||||
this->total_iterations() <= this->m_settings.max_total_number_of_iterations
|
||||
&&
|
||||
!(this->current_x_is_feasible() && this->m_look_for_feasible_solution_only));
|
||||
|
||||
lean_assert(this->get_status() == FLOATING_POINT_ERROR
|
||||
||
|
||||
this->current_x_is_feasible() == false
|
||||
||
|
||||
this->calc_current_x_is_feasible_include_non_basis());
|
||||
return this->total_iterations();
|
||||
|
||||
}
|
||||
template <typename T, typename X>void lp_primal_core_solver<T, X>::advance_on_entering_and_leaving_tableau(int entering, int leaving, X & t) {
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
lean_assert(leaving >= 0 && entering >= 0);
|
||||
lean_assert((this->m_settings.simplex_strategy() ==
|
||||
simplex_strategy_enum::tableau_rows) ||
|
||||
m_non_basis_list.back() == static_cast<unsigned>(entering));
|
||||
lean_assert(this->m_using_infeas_costs || !is_neg(t));
|
||||
lean_assert(entering != leaving || !is_zero(t)); // otherwise nothing changes
|
||||
if (entering == leaving) {
|
||||
advance_on_entering_equal_leaving_tableau(entering, t);
|
||||
return;
|
||||
}
|
||||
if (!is_zero(t)) {
|
||||
if (this->current_x_is_feasible() || !this->m_settings.use_breakpoints_in_feasibility_search ) {
|
||||
if (m_sign_of_entering_delta == -1)
|
||||
t = -t;
|
||||
}
|
||||
this->update_basis_and_x_tableau(entering, leaving, t);
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
} else {
|
||||
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
|
||||
this->change_basis(entering, leaving);
|
||||
}
|
||||
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
return;
|
||||
|
||||
if (this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows) {
|
||||
if (need_to_switch_costs()) {
|
||||
this->init_reduced_costs_tableau();
|
||||
}
|
||||
|
||||
lean_assert(!need_to_switch_costs());
|
||||
std::list<unsigned>::iterator it = m_non_basis_list.end();
|
||||
it--;
|
||||
* it = static_cast<unsigned>(leaving);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lp_primal_core_solver<T, X>::advance_on_entering_equal_leaving_tableau(int entering, X & t) {
|
||||
lean_assert(!this->A_mult_x_is_off() );
|
||||
this->update_x_tableau(entering, t * m_sign_of_entering_delta);
|
||||
if (this->m_look_for_feasible_solution_only && this->current_x_is_feasible())
|
||||
return;
|
||||
|
||||
if (need_to_switch_costs()) {
|
||||
init_reduced_costs_tableau();
|
||||
}
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
}
|
||||
template <typename T, typename X> int lp_primal_core_solver<T, X>::find_leaving_and_t_tableau(unsigned entering, X & t) {
|
||||
unsigned k = 0;
|
||||
bool unlimited = true;
|
||||
unsigned row_min_nz = this->m_n() + 1;
|
||||
m_leaving_candidates.clear();
|
||||
auto & col = this->m_A.m_columns[entering];
|
||||
unsigned col_size = col.size();
|
||||
for (;k < col_size && unlimited; k++) {
|
||||
const column_cell & c = col[k];
|
||||
unsigned i = c.m_i;
|
||||
const T & ed = this->m_A.get_val(c);
|
||||
lean_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
limit_theta_on_basis_column(j, - ed * m_sign_of_entering_delta, t, unlimited);
|
||||
if (!unlimited) {
|
||||
m_leaving_candidates.push_back(j);
|
||||
row_min_nz = this->m_A.m_rows[i].size();
|
||||
}
|
||||
}
|
||||
if (unlimited) {
|
||||
if (try_jump_to_another_bound_on_entering_unlimited(entering, t))
|
||||
return entering;
|
||||
return -1;
|
||||
}
|
||||
|
||||
X ratio;
|
||||
for (;k < col_size; k++) {
|
||||
const column_cell & c = col[k];
|
||||
unsigned i = c.m_i;
|
||||
const T & ed = this->m_A.get_val(c);
|
||||
lean_assert(!numeric_traits<T>::is_zero(ed));
|
||||
unsigned j = this->m_basis[i];
|
||||
unlimited = true;
|
||||
limit_theta_on_basis_column(j, -ed * m_sign_of_entering_delta, ratio, unlimited);
|
||||
if (unlimited) continue;
|
||||
unsigned i_nz = this->m_A.m_rows[i].size();
|
||||
if (ratio < t) {
|
||||
t = ratio;
|
||||
m_leaving_candidates.clear();
|
||||
m_leaving_candidates.push_back(j);
|
||||
row_min_nz = i_nz;
|
||||
} else if (ratio == t && i_nz < row_min_nz) {
|
||||
m_leaving_candidates.clear();
|
||||
m_leaving_candidates.push_back(j);
|
||||
row_min_nz = this->m_A.m_rows[i].size();
|
||||
} else if (ratio == t && i_nz == row_min_nz) {
|
||||
m_leaving_candidates.push_back(j);
|
||||
}
|
||||
}
|
||||
|
||||
ratio = t;
|
||||
unlimited = false;
|
||||
if (try_jump_to_another_bound_on_entering(entering, t, ratio, unlimited)) {
|
||||
t = ratio;
|
||||
return entering;
|
||||
}
|
||||
if (m_leaving_candidates.size() == 1)
|
||||
return m_leaving_candidates[0];
|
||||
k = my_random() % m_leaving_candidates.size();
|
||||
return m_leaving_candidates[k];
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_run_tableau() {
|
||||
// print_matrix(&(this->m_A), std::cout);
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
lean_assert(basis_columns_are_set_correctly());
|
||||
this->m_basis_sort_counter = 0; // to initiate the sort of the basis
|
||||
this->set_total_iterations(0);
|
||||
this->m_iters_with_no_cost_growing = 0;
|
||||
lean_assert(this->inf_set_is_correct());
|
||||
if (this->current_x_is_feasible() && this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
if (this->m_settings.backup_costs)
|
||||
backup_and_normalize_costs();
|
||||
m_epsilon_of_reduced_cost = numeric_traits<X>::precise() ? zero_of_type<T>() : T(1) / T(10000000);
|
||||
if (this->m_settings.use_breakpoints_in_feasibility_search)
|
||||
m_breakpoint_indices_queue.resize(this->m_n());
|
||||
if (!numeric_traits<X>::precise()) {
|
||||
this->m_column_norm_update_counter = 0;
|
||||
init_column_norms();
|
||||
}
|
||||
if (this->m_settings.m_simplex_strategy == simplex_strategy_enum::tableau_rows)
|
||||
init_tableau_rows();
|
||||
lean_assert(this->reduced_costs_are_correct_tableau());
|
||||
lean_assert(!this->need_to_pivot_to_basis_tableau());
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_core_solver<T, X>::
|
||||
update_basis_and_x_tableau(int entering, int leaving, X const & tt) {
|
||||
lean_assert(this->use_tableau());
|
||||
update_x_tableau(entering, tt);
|
||||
this->pivot_column_tableau(entering, this->m_basis_heading[leaving]);
|
||||
this->change_basis(entering, leaving);
|
||||
return true;
|
||||
}
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::
|
||||
update_x_tableau(unsigned entering, const X& delta) {
|
||||
if (!this->m_using_infeas_costs) {
|
||||
this->m_x[entering] += delta;
|
||||
for (const auto & c : this->m_A.m_columns[entering]) {
|
||||
unsigned i = c.m_i;
|
||||
this->m_x[this->m_basis[i]] -= delta * this->m_A.get_val(c);
|
||||
this->update_column_in_inf_set(this->m_basis[i]);
|
||||
}
|
||||
} else { // m_using_infeas_costs == true
|
||||
this->m_x[entering] += delta;
|
||||
lean_assert(this->column_is_feasible(entering));
|
||||
lean_assert(this->m_costs[entering] == zero_of_type<T>());
|
||||
// m_d[entering] can change because of the cost change for basic columns.
|
||||
for (const auto & c : this->m_A.m_columns[entering]) {
|
||||
unsigned i = c.m_i;
|
||||
unsigned j = this->m_basis[i];
|
||||
this->m_x[j] -= delta * this->m_A.get_val(c);
|
||||
update_inf_cost_for_column_tableau(j);
|
||||
if (is_zero(this->m_costs[j]))
|
||||
this->m_inf_set.erase(j);
|
||||
else
|
||||
this->m_inf_set.insert(j);
|
||||
}
|
||||
}
|
||||
lean_assert(this->A_mult_x_is_off() == false);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::
|
||||
update_inf_cost_for_column_tableau(unsigned j) {
|
||||
lean_assert(this->m_settings.simplex_strategy() != simplex_strategy_enum::tableau_rows);
|
||||
lean_assert(this->m_using_infeas_costs);
|
||||
T new_cost = get_infeasibility_cost_for_column(j);
|
||||
T delta = this->m_costs[j] - new_cost;
|
||||
if (is_zero(delta))
|
||||
return;
|
||||
this->m_costs[j] = new_cost;
|
||||
update_reduced_cost_for_basic_column_cost_change(delta, j);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_core_solver<T, X>::init_reduced_costs_tableau() {
|
||||
if (this->current_x_is_infeasible() && !this->m_using_infeas_costs) {
|
||||
init_infeasibility_costs();
|
||||
} else if (this->current_x_is_feasible() && this->m_using_infeas_costs) {
|
||||
if (this->m_look_for_feasible_solution_only)
|
||||
return;
|
||||
this->m_costs = m_costs_backup;
|
||||
this->m_using_infeas_costs = false;
|
||||
}
|
||||
unsigned size = this->m_basis_heading.size();
|
||||
for (unsigned j = 0; j < size; j++) {
|
||||
if (this->m_basis_heading[j] >= 0)
|
||||
this->m_d[j] = zero_of_type<T>();
|
||||
else {
|
||||
T& d = this->m_d[j] = this->m_costs[j];
|
||||
for (auto & cc : this->m_A.m_columns[j]) {
|
||||
d -= this->m_costs[this->m_basis[cc.m_i]] * this->m_A.get_val(cc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
96
src/util/lp/lp_primal_simplex.h
Normal file
96
src/util/lp/lp_primal_simplex.h
Normal file
|
@ -0,0 +1,96 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/column_info.h"
|
||||
#include "util/lp/lp_primal_core_solver.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
#include "util/lp/iterator_on_row.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
class lp_primal_simplex: public lp_solver<T, X> {
|
||||
lp_primal_core_solver<T, X> * m_core_solver = nullptr;
|
||||
vector<X> m_low_bounds;
|
||||
private:
|
||||
unsigned original_rows() { return this->m_external_rows_to_core_solver_rows.size(); }
|
||||
|
||||
void fill_costs_and_x_for_first_stage_solver(unsigned original_number_of_columns);
|
||||
|
||||
void init_buffer(unsigned k, vector<T> & r);
|
||||
|
||||
void refactor();
|
||||
|
||||
void set_scaled_costs();
|
||||
public:
|
||||
lp_primal_simplex() {}
|
||||
|
||||
column_info<T> * get_or_create_column_info(unsigned column);
|
||||
|
||||
void set_status(lp_status status) {
|
||||
this->m_status = status;
|
||||
}
|
||||
|
||||
lp_status get_status() {
|
||||
return this->m_status;
|
||||
}
|
||||
|
||||
void fill_acceptable_values_for_x();
|
||||
|
||||
|
||||
void set_zero_bound(bool * bound_is_set, T * bounds, unsigned i);
|
||||
|
||||
void fill_costs_and_x_for_first_stage_solver_for_row(
|
||||
int row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial);
|
||||
|
||||
|
||||
|
||||
|
||||
void set_core_solver_bounds();
|
||||
|
||||
void update_time_limit_from_starting_time(int start_time) {
|
||||
this->m_settings.time_limit -= (get_millisecond_span(start_time) / 1000.);
|
||||
}
|
||||
|
||||
void find_maximal_solution();
|
||||
|
||||
void fill_A_x_and_basis_for_stage_one_total_inf();
|
||||
|
||||
void fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row);
|
||||
|
||||
void solve_with_total_inf();
|
||||
|
||||
|
||||
~lp_primal_simplex();
|
||||
|
||||
bool bounds_hold(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
T get_row_value(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out);
|
||||
|
||||
bool row_constraint_holds(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out);
|
||||
|
||||
bool row_constraints_hold(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
|
||||
T * get_array_from_map(std::unordered_map<std::string, T> const & solution);
|
||||
|
||||
bool solution_is_feasible(std::unordered_map<std::string, T> const & solution) {
|
||||
return bounds_hold(solution) && row_constraints_hold(solution);
|
||||
}
|
||||
|
||||
virtual T get_column_value(unsigned column) const {
|
||||
return this->get_column_value_with_core_solver(column, m_core_solver);
|
||||
}
|
||||
|
||||
T get_current_cost() const;
|
||||
|
||||
|
||||
};
|
||||
}
|
355
src/util/lp/lp_primal_simplex.hpp
Normal file
355
src/util/lp/lp_primal_simplex.hpp
Normal file
|
@ -0,0 +1,355 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_primal_simplex.h"
|
||||
|
||||
namespace lean {
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x_for_first_stage_solver(unsigned original_number_of_columns) {
|
||||
unsigned slack_var = original_number_of_columns;
|
||||
unsigned artificial = original_number_of_columns + this->m_slacks;
|
||||
|
||||
for (unsigned row = 0; row < this->row_count(); row++) {
|
||||
fill_costs_and_x_for_first_stage_solver_for_row(row, slack_var, artificial);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::init_buffer(unsigned k, vector<T> & r) {
|
||||
for (unsigned i = 0; i < k; i++) {
|
||||
r[i] = 0;
|
||||
}
|
||||
r[k] = 1;
|
||||
for (unsigned i = this->row_count() -1; i > k; i--) {
|
||||
r[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::refactor() {
|
||||
m_core_solver->init_lu();
|
||||
if (m_core_solver->factorization()->get_status() != LU_status::OK) {
|
||||
throw_exception("cannot refactor");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_scaled_costs() {
|
||||
unsigned j = this->number_of_core_structurals();
|
||||
while (j-- > 0) {
|
||||
this->set_scaled_cost(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> column_info<T> * lp_primal_simplex<T, X>::get_or_create_column_info(unsigned column) {
|
||||
auto it = this->m_columns.find(column);
|
||||
return (it == this->m_columns.end())? ( this->m_columns[column] = new column_info<T>) : it->second;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_acceptable_values_for_x() {
|
||||
for (auto t : this->m_core_solver_columns_to_external_columns) {
|
||||
this->m_x[t.first] = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_zero_bound(bool * bound_is_set, T * bounds, unsigned i) {
|
||||
bound_is_set[i] = true;
|
||||
bounds[i] = numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_costs_and_x_for_first_stage_solver_for_row(
|
||||
int row,
|
||||
unsigned & slack_var,
|
||||
unsigned & artificial) {
|
||||
lean_assert(row >= 0 && row < this->row_count());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
|
||||
// we need to bring the program to the form Ax = b
|
||||
T rs = this->m_b[row];
|
||||
T artificial_cost = - numeric_traits<T>::one();
|
||||
switch (constraint.m_relation) {
|
||||
case Equal: // no slack variable here
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
this->m_costs[artificial] = artificial_cost; // we are maximizing, so the artificial, which is non-negatiive, will be pushed to zero
|
||||
this->m_basis[row] = artificial;
|
||||
if (rs >= 0) {
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_x[artificial] = rs;
|
||||
} else {
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_x[artificial] = - rs;
|
||||
}
|
||||
artificial++;
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_column_types[slack_var] = column_type::low_bound;
|
||||
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
|
||||
|
||||
if (rs > 0) {
|
||||
lean_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
// adding one artificial
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_basis[row] = artificial;
|
||||
this->m_x[artificial] = rs;
|
||||
artificial++;
|
||||
} else {
|
||||
// we can put a slack_var into the basis, and atemplate <typename T, typename X> void lp_primal_simplex<T, X>::adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_x[slack_var] = - rs;
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
case Less_or_equal:
|
||||
// introduce a non-negative slack variable
|
||||
this->m_column_types[slack_var] = column_type::low_bound;
|
||||
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
|
||||
|
||||
if (rs < 0) {
|
||||
// adding one artificial
|
||||
lean_assert(numeric_traits<T>::is_zero(this->m_x[slack_var]));
|
||||
this->m_column_types[artificial] = column_type::low_bound;
|
||||
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
|
||||
this->m_costs[artificial] = artificial_cost;
|
||||
this->m_x[artificial] = - rs;
|
||||
this->m_basis[row] = artificial++;
|
||||
} else {
|
||||
// we can put slack_var into the basis, and atemplate <typename T, typename X> void lp_primal_simplex<T, X>::adding an artificial variable
|
||||
this->m_basis[row] = slack_var;
|
||||
this->m_x[slack_var] = rs;
|
||||
}
|
||||
slack_var++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::set_core_solver_bounds() {
|
||||
unsigned total_vars = this->m_A->column_count() + this->m_slacks + this->m_artificials;
|
||||
this->m_column_types.resize(total_vars);
|
||||
this->m_upper_bounds.resize(total_vars);
|
||||
for (auto cit : this->m_map_from_var_index_to_column_info) {
|
||||
column_info<T> * ci = cit.second;
|
||||
unsigned j = ci->get_column_index();
|
||||
if (!is_valid(j))
|
||||
continue; // the variable is not mapped to a column
|
||||
switch (this->m_column_types[j] = ci->get_column_type()){
|
||||
case column_type::fixed:
|
||||
this->m_upper_bounds[j] = numeric_traits<T>::zero();
|
||||
break;
|
||||
case column_type::boxed:
|
||||
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
|
||||
break;
|
||||
|
||||
default: break; // do nothing
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::find_maximal_solution() {
|
||||
int preprocessing_start_time = get_millisecond_count();
|
||||
if (this->problem_is_empty()) {
|
||||
this->m_status = lp_status::EMPTY;
|
||||
return;
|
||||
}
|
||||
|
||||
this->cleanup();
|
||||
this->fill_matrix_A_and_init_right_side();
|
||||
if (this->m_status == lp_status::INFEASIBLE) {
|
||||
return;
|
||||
}
|
||||
this->m_x.resize(this->m_A->column_count());
|
||||
this->fill_m_b();
|
||||
this->scale();
|
||||
fill_acceptable_values_for_x();
|
||||
this->count_slacks_and_artificials();
|
||||
set_core_solver_bounds();
|
||||
update_time_limit_from_starting_time(preprocessing_start_time);
|
||||
solve_with_total_inf();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf() {
|
||||
for (unsigned row = 0; row < this->row_count(); row++)
|
||||
fill_A_x_and_basis_for_stage_one_total_inf_for_row(row);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::fill_A_x_and_basis_for_stage_one_total_inf_for_row(unsigned row) {
|
||||
lean_assert(row < this->row_count());
|
||||
auto ext_row_it = this->m_core_solver_rows_to_external_rows.find(row);
|
||||
lean_assert(ext_row_it != this->m_core_solver_rows_to_external_rows.end());
|
||||
unsigned ext_row = ext_row_it->second;
|
||||
auto constr_it = this->m_constraints.find(ext_row);
|
||||
lean_assert(constr_it != this->m_constraints.end());
|
||||
auto & constraint = constr_it->second;
|
||||
unsigned j = this->m_A->column_count(); // j is a slack variable
|
||||
this->m_A->add_column();
|
||||
// we need to bring the program to the form Ax = b
|
||||
this->m_basis[row] = j;
|
||||
switch (constraint.m_relation) {
|
||||
case Equal:
|
||||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::fixed;
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
|
||||
case Greater_or_equal:
|
||||
this->m_x[j] = - this->m_b[row];
|
||||
(*this->m_A)(row, j) = - numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::low_bound;
|
||||
this->m_upper_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
case Less_or_equal:
|
||||
this->m_x[j] = this->m_b[row];
|
||||
(*this->m_A)(row, j) = numeric_traits<T>::one();
|
||||
this->m_column_types[j] = column_type::low_bound;
|
||||
this->m_upper_bounds[j] = m_low_bounds[j] = zero_of_type<X>();
|
||||
break;
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_primal_simplex<T, X>::solve_with_total_inf() {
|
||||
int total_vars = this->m_A->column_count() + this->row_count();
|
||||
if (total_vars == 0) {
|
||||
this->m_status = OPTIMAL;
|
||||
return;
|
||||
}
|
||||
m_low_bounds.clear();
|
||||
m_low_bounds.resize(total_vars, zero_of_type<X>()); // low bounds are shifted ot zero
|
||||
this->m_x.resize(total_vars, numeric_traits<T>::zero());
|
||||
this->m_basis.resize(this->row_count());
|
||||
this->m_costs.clear();
|
||||
this->m_costs.resize(total_vars, zero_of_type<T>());
|
||||
fill_A_x_and_basis_for_stage_one_total_inf();
|
||||
if (this->m_settings.get_message_ostream() != nullptr)
|
||||
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
|
||||
set_scaled_costs();
|
||||
|
||||
m_core_solver = new lp_primal_core_solver<T, X>(*this->m_A,
|
||||
this->m_b,
|
||||
this->m_x,
|
||||
this->m_basis,
|
||||
this->m_nbasis,
|
||||
this->m_heading,
|
||||
this->m_costs,
|
||||
this->m_column_types,
|
||||
m_low_bounds,
|
||||
this->m_upper_bounds,
|
||||
this->m_settings, *this);
|
||||
m_core_solver->solve();
|
||||
this->set_status(m_core_solver->get_status());
|
||||
this->m_total_iterations = m_core_solver->total_iterations();
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> lp_primal_simplex<T, X>::~lp_primal_simplex() {
|
||||
if (m_core_solver != nullptr) {
|
||||
delete m_core_solver;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::bounds_hold(std::unordered_map<std::string, T> const & solution) {
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
auto sol_it = solution.find(it.second->get_name());
|
||||
if (sol_it == solution.end()) {
|
||||
std::stringstream s;
|
||||
s << "cannot find column " << it.first << " in solution";
|
||||
throw_exception(s.str() );
|
||||
}
|
||||
|
||||
if (!it.second->bounds_hold(sol_it->second)) {
|
||||
// std::cout << "bounds do not hold for " << it.second->get_name() << std::endl;
|
||||
it.second->bounds_hold(sol_it->second);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_primal_simplex<T, X>::get_row_value(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream * out) {
|
||||
auto it = this->m_A_values.find(i);
|
||||
if (it == this->m_A_values.end()) {
|
||||
std::stringstream s;
|
||||
s << "cannot find row " << i;
|
||||
throw_exception(s.str() );
|
||||
}
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto & pair : it->second) {
|
||||
auto cit = this->m_map_from_var_index_to_column_info.find(pair.first);
|
||||
lean_assert(cit != this->m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = cit->second;
|
||||
auto sol_it = solution.find(ci->get_name());
|
||||
lean_assert(sol_it != solution.end());
|
||||
T column_val = sol_it->second;
|
||||
if (out != nullptr) {
|
||||
(*out) << pair.second << "(" << ci->get_name() << "=" << column_val << ") ";
|
||||
}
|
||||
ret += pair.second * column_val;
|
||||
}
|
||||
if (out != nullptr) {
|
||||
(*out) << " = " << ret << std::endl;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraint_holds(unsigned i, std::unordered_map<std::string, T> const & solution, std::ostream *out) {
|
||||
T row_val = get_row_value(i, solution, out);
|
||||
auto & constraint = this->m_constraints[i];
|
||||
T rs = constraint.m_rs;
|
||||
bool print = out != nullptr;
|
||||
switch (constraint.m_relation) {
|
||||
case Equal:
|
||||
if (fabs(numeric_traits<T>::get_double(row_val - rs)) > 0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be = " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
case Greater_or_equal:
|
||||
if (numeric_traits<T>::get_double(row_val - rs) < -0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be >= " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;;
|
||||
|
||||
case Less_or_equal:
|
||||
if (numeric_traits<T>::get_double(row_val - rs) > 0.00001) {
|
||||
if (print) {
|
||||
(*out) << "should be <= " << rs << std::endl;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
return true;;
|
||||
}
|
||||
lean_unreachable();
|
||||
return false; // it is unreachable
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_primal_simplex<T, X>::row_constraints_hold(std::unordered_map<std::string, T> const & solution) {
|
||||
for (auto it : this->m_A_values) {
|
||||
if (!row_constraint_holds(it.first, solution, nullptr)) {
|
||||
row_constraint_holds(it.first, solution, nullptr);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_primal_simplex<T, X>::get_current_cost() const {
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto it : this->m_map_from_var_index_to_column_info) {
|
||||
ret += this->get_column_cost_value(it.first, it.second);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
}
|
20
src/util/lp/lp_primal_simplex_instances.cpp
Normal file
20
src/util/lp/lp_primal_simplex_instances.cpp
Normal file
|
@ -0,0 +1,20 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_primal_simplex.hpp"
|
||||
template bool lean::lp_primal_simplex<double, double>::bounds_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template bool lean::lp_primal_simplex<double, double>::row_constraints_hold(std::unordered_map<std::string, double, std::hash<std::string>, std::equal_to<std::string>, std::allocator<std::pair<std::string const, double> > > const&);
|
||||
template double lean::lp_primal_simplex<double, double>::get_current_cost() const;
|
||||
template double lean::lp_primal_simplex<double, double>::get_column_value(unsigned int) const;
|
||||
template lean::lp_primal_simplex<double, double>::~lp_primal_simplex();
|
||||
template lean::lp_primal_simplex<lean::mpq, lean::mpq>::~lp_primal_simplex();
|
||||
template lean::mpq lean::lp_primal_simplex<lean::mpq, lean::mpq>::get_current_cost() const;
|
||||
template lean::mpq lean::lp_primal_simplex<lean::mpq, lean::mpq>::get_column_value(unsigned int) const;
|
||||
template void lean::lp_primal_simplex<double, double>::find_maximal_solution();
|
||||
template void lean::lp_primal_simplex<lean::mpq, lean::mpq>::find_maximal_solution();
|
339
src/util/lp/lp_settings.h
Normal file
339
src/util/lp/lp_settings.h
Normal file
|
@ -0,0 +1,339 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <limits>
|
||||
#include <sys/timeb.h>
|
||||
#include <iomanip>
|
||||
#include "util/lp/lp_utils.h"
|
||||
|
||||
namespace lean {
|
||||
typedef unsigned var_index;
|
||||
typedef unsigned constraint_index;
|
||||
typedef unsigned row_index;
|
||||
enum class column_type {
|
||||
free_column = 0,
|
||||
low_bound = 1,
|
||||
upper_bound = 2,
|
||||
boxed = 3,
|
||||
fixed = 4
|
||||
};
|
||||
|
||||
enum class simplex_strategy_enum {
|
||||
tableau_rows = 0,
|
||||
tableau_costs = 1,
|
||||
no_tableau = 2
|
||||
};
|
||||
|
||||
std::string column_type_to_string(column_type t);
|
||||
|
||||
enum lp_status {
|
||||
UNKNOWN,
|
||||
INFEASIBLE,
|
||||
TENTATIVE_UNBOUNDED,
|
||||
UNBOUNDED,
|
||||
TENTATIVE_DUAL_UNBOUNDED,
|
||||
DUAL_UNBOUNDED,
|
||||
OPTIMAL,
|
||||
FEASIBLE,
|
||||
FLOATING_POINT_ERROR,
|
||||
TIME_EXHAUSTED,
|
||||
ITERATIONS_EXHAUSTED,
|
||||
EMPTY,
|
||||
UNSTABLE
|
||||
};
|
||||
|
||||
// when the ratio of the vector lenth to domain size to is greater than the return value we switch to solve_By_for_T_indexed_only
|
||||
template <typename X>
|
||||
unsigned ratio_of_index_size_to_all_size() {
|
||||
if (numeric_traits<X>::precise())
|
||||
return 10;
|
||||
return 120;
|
||||
}
|
||||
|
||||
const char* lp_status_to_string(lp_status status);
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, lp_status status) {
|
||||
return out << lp_status_to_string(status);
|
||||
}
|
||||
|
||||
lp_status lp_status_from_string(std::string status);
|
||||
|
||||
enum non_basic_column_value_position { at_low_bound, at_upper_bound, at_fixed, free_of_bounds, not_at_bound };
|
||||
|
||||
template <typename X> bool is_epsilon_small(const X & v, const double& eps); // forward definition
|
||||
|
||||
int get_millisecond_count();
|
||||
int get_millisecond_span(int start_time);
|
||||
unsigned my_random();
|
||||
void my_random_init(long unsigned seed);
|
||||
|
||||
|
||||
class lp_resource_limit {
|
||||
public:
|
||||
virtual bool get_cancel_flag() = 0;
|
||||
};
|
||||
|
||||
struct stats {
|
||||
unsigned m_total_iterations;
|
||||
unsigned m_iters_with_no_cost_growing;
|
||||
unsigned m_num_factorizations;
|
||||
unsigned m_num_of_implied_bounds;
|
||||
unsigned m_need_to_solve_inf;
|
||||
stats() { reset(); }
|
||||
void reset() { memset(this, 0, sizeof(*this)); }
|
||||
};
|
||||
|
||||
struct lp_settings {
|
||||
private:
|
||||
class default_lp_resource_limit : public lp_resource_limit {
|
||||
lp_settings& m_settings;
|
||||
int m_start_time;
|
||||
public:
|
||||
default_lp_resource_limit(lp_settings& s): m_settings(s), m_start_time(get_millisecond_count()) {}
|
||||
virtual bool get_cancel_flag() {
|
||||
int span_in_mills = get_millisecond_span(m_start_time);
|
||||
return (span_in_mills / 1000.0 > m_settings.time_limit);
|
||||
}
|
||||
};
|
||||
|
||||
default_lp_resource_limit m_default_resource_limit;
|
||||
lp_resource_limit* m_resource_limit;
|
||||
// used for debug output
|
||||
std::ostream* m_debug_out = &std::cout;
|
||||
// used for messages, for example, the computation progress messages
|
||||
std::ostream* m_message_out = &std::cout;
|
||||
|
||||
stats m_stats;
|
||||
|
||||
public:
|
||||
unsigned reps_in_scaler = 20;
|
||||
// when the absolute value of an element is less than pivot_epsilon
|
||||
// in pivoting, we treat it as a zero
|
||||
double pivot_epsilon = 0.00000001;
|
||||
// see Chatal, page 115
|
||||
double positive_price_epsilon = 1e-7;
|
||||
// a quatation "if some choice of the entering vairable leads to an eta matrix
|
||||
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
|
||||
double entering_diag_epsilon = 1e-8;
|
||||
int c_partial_pivoting = 10; // this is the constant c from page 410
|
||||
unsigned depth_of_rook_search = 4;
|
||||
bool using_partial_pivoting = true;
|
||||
// dissertation of Achim Koberstein
|
||||
// if Bx - b is different at any component more that refactor_epsilon then we refactor
|
||||
double refactor_tolerance = 1e-4;
|
||||
double pivot_tolerance = 1e-6;
|
||||
double zero_tolerance = 1e-12;
|
||||
double drop_tolerance = 1e-14;
|
||||
double tolerance_for_artificials = 1e-4;
|
||||
double can_be_taken_to_basis_tolerance = 0.00001;
|
||||
|
||||
unsigned percent_of_entering_to_check = 5; // we try to find a profitable column in a percentage of the columns
|
||||
bool use_scaling = true;
|
||||
double scaling_maximum = 1;
|
||||
double scaling_minimum = 0.5;
|
||||
double harris_feasibility_tolerance = 1e-7; // page 179 of Istvan Maros
|
||||
double ignore_epsilon_of_harris = 10e-5;
|
||||
unsigned max_number_of_iterations_with_no_improvements = 2000000;
|
||||
unsigned max_total_number_of_iterations = 20000000;
|
||||
double time_limit = std::numeric_limits<double>::max(); // the maximum time limit of the total run time in seconds
|
||||
// dual section
|
||||
double dual_feasibility_tolerance = 1e-7; // // page 71 of the PhD thesis of Achim Koberstein
|
||||
double primal_feasibility_tolerance = 1e-7; // page 71 of the PhD thesis of Achim Koberstein
|
||||
double relative_primal_feasibility_tolerance = 1e-9; // page 71 of the PhD thesis of Achim Koberstein
|
||||
|
||||
bool m_bound_propagation = true;
|
||||
|
||||
bool bound_progation() const {
|
||||
return m_bound_propagation;
|
||||
}
|
||||
|
||||
bool& bound_propagation() {
|
||||
return m_bound_propagation;
|
||||
}
|
||||
|
||||
lp_settings() : m_default_resource_limit(*this), m_resource_limit(&m_default_resource_limit) {}
|
||||
|
||||
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
|
||||
bool get_cancel_flag() const { return m_resource_limit->get_cancel_flag(); }
|
||||
|
||||
void set_debug_ostream(std::ostream* out) { m_debug_out = out; }
|
||||
void set_message_ostream(std::ostream* out) { m_message_out = out; }
|
||||
|
||||
std::ostream* get_debug_ostream() { return m_debug_out; }
|
||||
std::ostream* get_message_ostream() { return m_message_out; }
|
||||
stats& st() { return m_stats; }
|
||||
stats const& st() const { return m_stats; }
|
||||
|
||||
template <typename T> static bool is_eps_small_general(const T & t, const double & eps) {
|
||||
return (!numeric_traits<T>::precise())? is_epsilon_small<T>(t, eps) : numeric_traits<T>::is_zero(t);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_dual_feasibility_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, dual_feasibility_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_primal_feasibility_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, primal_feasibility_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_can_be_taken_to_basis_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, can_be_taken_to_basis_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_drop_tolerance(T const & t) const {
|
||||
return is_eps_small_general<T>(t, drop_tolerance);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_zero_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, zero_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_refactor_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, refactor_tolerance);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_pivot_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, pivot_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_harris_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, harris_feasibility_tolerance);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_ignore_epslilon_for_harris(T const & t) {
|
||||
return is_eps_small_general<T>(t, ignore_epsilon_of_harris);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool abs_val_is_smaller_than_artificial_tolerance(T const & t) {
|
||||
return is_eps_small_general<T>(t, tolerance_for_artificials);
|
||||
}
|
||||
// the method of lar solver to use
|
||||
bool presolve_with_double_solver_for_lar = true;
|
||||
simplex_strategy_enum m_simplex_strategy = simplex_strategy_enum::tableau_rows;
|
||||
simplex_strategy_enum simplex_strategy() const {
|
||||
return m_simplex_strategy;
|
||||
}
|
||||
|
||||
simplex_strategy_enum & simplex_strategy() {
|
||||
return m_simplex_strategy;
|
||||
}
|
||||
|
||||
bool use_tableau() const {
|
||||
return m_simplex_strategy != simplex_strategy_enum::no_tableau;
|
||||
}
|
||||
|
||||
bool use_tableau_rows() const {
|
||||
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
|
||||
}
|
||||
|
||||
int report_frequency = 1000;
|
||||
bool print_statistics = false;
|
||||
unsigned column_norms_update_frequency = 12000;
|
||||
bool scale_with_ratio = true;
|
||||
double density_threshold = 0.7; // need to tune it up, todo
|
||||
#ifdef LEAN_DEBUG
|
||||
static unsigned ddd; // used for debugging
|
||||
#endif
|
||||
bool use_breakpoints_in_feasibility_search = false;
|
||||
unsigned random_seed = 1;
|
||||
static unsigned long random_next;
|
||||
unsigned max_row_length_for_bound_propagation = 300;
|
||||
bool backup_costs = true;
|
||||
}; // end of lp_settings class
|
||||
|
||||
|
||||
#define LP_OUT(_settings_, _msg_) { if (_settings_.get_debug_ostream()) { *_settings_.get_debug_ostream() << _msg_; } }
|
||||
|
||||
template <typename T>
|
||||
std::string T_to_string(const T & t) {
|
||||
std::ostringstream strs;
|
||||
strs << t;
|
||||
return strs.str();
|
||||
}
|
||||
|
||||
inline std::string T_to_string(const numeric_pair<mpq> & t) {
|
||||
std::ostringstream strs;
|
||||
double r = (t.x + t.y / mpq(1000)).get_double();
|
||||
strs << r;
|
||||
return strs.str();
|
||||
}
|
||||
|
||||
|
||||
inline std::string T_to_string(const mpq & t) {
|
||||
std::ostringstream strs;
|
||||
strs << t.get_double();
|
||||
return strs.str();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool val_is_smaller_than_eps(T const & t, double const & eps) {
|
||||
if (!numeric_traits<T>::precise()) {
|
||||
return numeric_traits<T>::get_double(t) < eps;
|
||||
}
|
||||
return t <= numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(T * a, vector<T> &b, unsigned n);
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(const vector<T> & a, const buffer<T> &b);
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(const vector<T> & a, const vector<T> &b);
|
||||
|
||||
template <typename T>
|
||||
T abs (T const & v) { return v >= zero_of_type<T>() ? v : -v; }
|
||||
|
||||
template <typename X>
|
||||
X max_abs_in_vector(vector<X>& t){
|
||||
X r(zero_of_type<X>());
|
||||
for (auto & v : t)
|
||||
r = std::max(abs(v) , r);
|
||||
return r;
|
||||
}
|
||||
inline void print_blanks(int n, std::ostream & out) {
|
||||
while (n--) {out << ' '; }
|
||||
}
|
||||
|
||||
|
||||
// after a push of the last element we ensure that the vector increases
|
||||
// we also suppose that before the last push the vector was increasing
|
||||
inline void ensure_increasing(vector<unsigned> & v) {
|
||||
lean_assert(v.size() > 0);
|
||||
unsigned j = v.size() - 1;
|
||||
for (; j > 0; j-- )
|
||||
if (v[j] <= v[j - 1]) {
|
||||
// swap
|
||||
unsigned t = v[j];
|
||||
v[j] = v[j-1];
|
||||
v[j-1] = t;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if LEAN_DEBUG
|
||||
bool D();
|
||||
#endif
|
||||
}
|
133
src/util/lp/lp_settings.hpp
Normal file
133
src/util/lp/lp_settings.hpp
Normal file
|
@ -0,0 +1,133 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
std::string column_type_to_string(column_type t) {
|
||||
switch (t) {
|
||||
case column_type::fixed: return "fixed";
|
||||
case column_type::boxed: return "boxed";
|
||||
case column_type::low_bound: return "low_bound";
|
||||
case column_type::upper_bound: return "upper_bound";
|
||||
case column_type::free_column: return "free_column";
|
||||
default: lean_unreachable();
|
||||
}
|
||||
return "unknown"; // it is unreachable
|
||||
}
|
||||
|
||||
const char* lp_status_to_string(lp_status status) {
|
||||
switch (status) {
|
||||
case UNKNOWN: return "UNKNOWN";
|
||||
case INFEASIBLE: return "INFEASIBLE";
|
||||
case UNBOUNDED: return "UNBOUNDED";
|
||||
case TENTATIVE_DUAL_UNBOUNDED: return "TENTATIVE_DUAL_UNBOUNDED";
|
||||
case DUAL_UNBOUNDED: return "DUAL_UNBOUNDED";
|
||||
case OPTIMAL: return "OPTIMAL";
|
||||
case FEASIBLE: return "FEASIBLE";
|
||||
case FLOATING_POINT_ERROR: return "FLOATING_POINT_ERROR";
|
||||
case TIME_EXHAUSTED: return "TIME_EXHAUSTED";
|
||||
case ITERATIONS_EXHAUSTED: return "ITERATIONS_EXHAUSTED";
|
||||
case EMPTY: return "EMPTY";
|
||||
case UNSTABLE: return "UNSTABLE";
|
||||
default:
|
||||
lean_unreachable();
|
||||
}
|
||||
return "UNKNOWN"; // it is unreachable
|
||||
}
|
||||
|
||||
lp_status lp_status_from_string(std::string status) {
|
||||
if (status == "UNKNOWN") return lp_status::UNKNOWN;
|
||||
if (status == "INFEASIBLE") return lp_status::INFEASIBLE;
|
||||
if (status == "UNBOUNDED") return lp_status::UNBOUNDED;
|
||||
if (status == "OPTIMAL") return lp_status::OPTIMAL;
|
||||
if (status == "FEASIBLE") return lp_status::FEASIBLE;
|
||||
if (status == "FLOATING_POINT_ERROR") return lp_status::FLOATING_POINT_ERROR;
|
||||
if (status == "TIME_EXHAUSTED") return lp_status::TIME_EXHAUSTED;
|
||||
if (status == "ITERATIONS_EXHAUSTED") return lp_status::ITERATIONS_EXHAUSTED;
|
||||
if (status == "EMPTY") return lp_status::EMPTY;
|
||||
lean_unreachable();
|
||||
return lp_status::UNKNOWN; // it is unreachable
|
||||
}
|
||||
int get_millisecond_count() {
|
||||
timeb tb;
|
||||
ftime(&tb);
|
||||
return tb.millitm + (tb.time & 0xfffff) * 1000;
|
||||
}
|
||||
|
||||
int get_millisecond_span(int start_time) {
|
||||
int span = get_millisecond_count() - start_time;
|
||||
if (span < 0)
|
||||
span += 0x100000 * 1000;
|
||||
return span;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void my_random_init(long unsigned seed) {
|
||||
lp_settings::random_next = seed;
|
||||
}
|
||||
|
||||
unsigned my_random() {
|
||||
lp_settings::random_next = lp_settings::random_next * 1103515245 + 12345;
|
||||
return((unsigned)(lp_settings::random_next/65536) % 32768);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(T * a, vector<T> &b, unsigned n) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (!numeric_traits<T>::is_zero(a[i] - b[i])) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (std::abs(numeric_traits<T>::get_double(a[i] - b[i])) > 0.000001) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
bool vectors_are_equal(const vector<T> & a, const vector<T> &b) {
|
||||
unsigned n = static_cast<unsigned>(a.size());
|
||||
if (n != b.size()) return false;
|
||||
if (numeric_traits<T>::precise()) {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
if (!numeric_traits<T>::is_zero(a[i] - b[i])) {
|
||||
// std::cout << "a[" << i <<"]" << a[i] << ", " << "b[" << i <<"]" << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (unsigned i = 0; i < n; i ++){
|
||||
double da = numeric_traits<T>::get_double(a[i]);
|
||||
double db = numeric_traits<T>::get_double(b[i]);
|
||||
double amax = std::max(fabs(da), fabs(db));
|
||||
if (amax > 1) {
|
||||
da /= amax;
|
||||
db /= amax;
|
||||
}
|
||||
|
||||
if (fabs(da - db) > 0.000001) {
|
||||
// std::cout << "a[" << i <<"] = " << a[i] << ", but " << "b[" << i <<"] = " << b[i] << std::endl;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
unsigned long lp_settings::random_next = 1;
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned lp_settings::ddd = 0;
|
||||
#endif
|
||||
}
|
10
src/util/lp/lp_settings_instances.cpp
Normal file
10
src/util/lp/lp_settings_instances.cpp
Normal file
|
@ -0,0 +1,10 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include <memory>
|
||||
#include "util/lp/lp_settings.hpp"
|
||||
template bool lean::vectors_are_equal<double>(vector<double> const&, vector<double> const&);
|
||||
template bool lean::vectors_are_equal<lean::mpq>(vector<lean::mpq > const&, vector<lean::mpq> const&);
|
||||
|
253
src/util/lp/lp_solver.h
Normal file
253
src/util/lp/lp_solver.h
Normal file
|
@ -0,0 +1,253 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <algorithm>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/column_info.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lp_core_solver_base.h"
|
||||
#include "util/lp/scaler.h"
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
#include "util/lp/bound_analyzer_on_row.h"
|
||||
namespace lean {
|
||||
enum lp_relation {
|
||||
Less_or_equal,
|
||||
Equal,
|
||||
Greater_or_equal
|
||||
};
|
||||
|
||||
template <typename T, typename X>
|
||||
struct lp_constraint {
|
||||
X m_rs; // right side of the constraint
|
||||
lp_relation m_relation;
|
||||
lp_constraint() {} // empty constructor
|
||||
lp_constraint(T rs, lp_relation relation): m_rs(rs), m_relation(relation) {}
|
||||
};
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
class lp_solver : public column_namer {
|
||||
column_info<T> * get_or_create_column_info(unsigned column);
|
||||
|
||||
protected:
|
||||
T get_column_cost_value(unsigned j, column_info<T> * ci) const;
|
||||
public:
|
||||
unsigned m_total_iterations;
|
||||
static_matrix<T, X>* m_A = nullptr; // this is the matrix of constraints
|
||||
vector<T> m_b; // the right side vector
|
||||
unsigned m_first_stage_iterations = 0;
|
||||
unsigned m_second_stage_iterations = 0;
|
||||
std::unordered_map<unsigned, lp_constraint<T, X>> m_constraints;
|
||||
std::unordered_map<var_index, column_info<T>*> m_map_from_var_index_to_column_info;
|
||||
std::unordered_map<unsigned, std::unordered_map<unsigned, T> > m_A_values;
|
||||
std::unordered_map<std::string, unsigned> m_names_to_columns; // don't have to use it
|
||||
std::unordered_map<unsigned, unsigned> m_external_rows_to_core_solver_rows;
|
||||
std::unordered_map<unsigned, unsigned> m_core_solver_rows_to_external_rows;
|
||||
std::unordered_map<unsigned, unsigned> m_core_solver_columns_to_external_columns;
|
||||
vector<T> m_column_scale;
|
||||
std::unordered_map<unsigned, std::string> m_name_map;
|
||||
unsigned m_artificials = 0;
|
||||
unsigned m_slacks = 0;
|
||||
vector<column_type> m_column_types;
|
||||
vector<T> m_costs;
|
||||
vector<T> m_x;
|
||||
vector<T> m_upper_bounds;
|
||||
vector<unsigned> m_basis;
|
||||
vector<unsigned> m_nbasis;
|
||||
vector<int> m_heading;
|
||||
|
||||
|
||||
lp_status m_status = lp_status::UNKNOWN;
|
||||
|
||||
lp_settings m_settings;
|
||||
lp_solver() {}
|
||||
|
||||
unsigned row_count() const { return this->m_A->row_count(); }
|
||||
|
||||
void add_constraint(lp_relation relation, T right_side, unsigned row_index);
|
||||
|
||||
void set_cost_for_column(unsigned column, T column_cost) {
|
||||
get_or_create_column_info(column)->set_cost(column_cost);
|
||||
}
|
||||
std::string get_column_name(unsigned j) const override;
|
||||
|
||||
void set_row_column_coefficient(unsigned row, unsigned column, T const & val) {
|
||||
m_A_values[row][column] = val;
|
||||
}
|
||||
// returns the current cost
|
||||
virtual T get_current_cost() const = 0;
|
||||
// do not have to call it
|
||||
void give_symbolic_name_to_column(std::string name, unsigned column);
|
||||
|
||||
virtual T get_column_value(unsigned column) const = 0;
|
||||
|
||||
T get_column_value_by_name(std::string name) const;
|
||||
|
||||
// returns -1 if not found
|
||||
virtual int get_column_index_by_name(std::string name) const;
|
||||
|
||||
void set_low_bound(unsigned i, T bound) {
|
||||
column_info<T> *ci = get_or_create_column_info(i);
|
||||
ci->set_low_bound(bound);
|
||||
}
|
||||
|
||||
void set_upper_bound(unsigned i, T bound) {
|
||||
column_info<T> *ci = get_or_create_column_info(i);
|
||||
ci->set_upper_bound(bound);
|
||||
}
|
||||
|
||||
void unset_low_bound(unsigned i) {
|
||||
get_or_create_column_info(i)->unset_low_bound();
|
||||
}
|
||||
|
||||
void unset_upper_bound(unsigned i) {
|
||||
get_or_create_column_info(i)->unset_upper_bound();
|
||||
}
|
||||
|
||||
void set_fixed_value(unsigned i, T val) {
|
||||
column_info<T> *ci = get_or_create_column_info(i);
|
||||
ci->set_fixed_value(val);
|
||||
}
|
||||
|
||||
void unset_fixed_value(unsigned i) {
|
||||
get_or_create_column_info(i)->unset_fixed();
|
||||
}
|
||||
|
||||
lp_status get_status() const {
|
||||
return m_status;
|
||||
}
|
||||
|
||||
void set_status(lp_status st) {
|
||||
m_status = st;
|
||||
}
|
||||
|
||||
|
||||
virtual ~lp_solver();
|
||||
|
||||
void flip_costs();
|
||||
|
||||
virtual void find_maximal_solution() = 0;
|
||||
void set_time_limit(unsigned time_limit_in_seconds) {
|
||||
m_settings.time_limit = time_limit_in_seconds;
|
||||
}
|
||||
|
||||
void set_max_iterations_per_stage(unsigned max_iterations) {
|
||||
m_settings.max_total_number_of_iterations = max_iterations;
|
||||
}
|
||||
|
||||
unsigned get_max_iterations_per_stage() const {
|
||||
return m_settings.max_total_number_of_iterations;
|
||||
}
|
||||
protected:
|
||||
bool problem_is_empty();
|
||||
|
||||
void scale();
|
||||
|
||||
|
||||
void print_rows_scale_stats(std::ostream & out);
|
||||
|
||||
void print_columns_scale_stats(std::ostream & out);
|
||||
|
||||
void print_row_scale_stats(unsigned i, std::ostream & out);
|
||||
|
||||
void print_column_scale_stats(unsigned j, std::ostream & out);
|
||||
|
||||
void print_scale_stats(std::ostream & out);
|
||||
|
||||
void get_max_abs_in_row(std::unordered_map<unsigned, T> & row_map);
|
||||
|
||||
void pin_vars_down_on_row(std::unordered_map<unsigned, T> & row) {
|
||||
pin_vars_on_row_with_sign(row, - numeric_traits<T>::one());
|
||||
}
|
||||
|
||||
void pin_vars_up_on_row(std::unordered_map<unsigned, T> & row) {
|
||||
pin_vars_on_row_with_sign(row, numeric_traits<T>::one());
|
||||
}
|
||||
|
||||
void pin_vars_on_row_with_sign(std::unordered_map<unsigned, T> & row, T sign );
|
||||
|
||||
bool get_minimal_row_value(std::unordered_map<unsigned, T> & row, T & low_bound);
|
||||
|
||||
bool get_maximal_row_value(std::unordered_map<unsigned, T> & row, T & low_bound);
|
||||
|
||||
bool row_is_zero(std::unordered_map<unsigned, T> & row);
|
||||
|
||||
bool row_e_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index);
|
||||
|
||||
bool row_ge_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index);
|
||||
|
||||
bool row_le_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index);
|
||||
|
||||
// analyse possible max and min values that are derived from var boundaries
|
||||
// Let us say that the we have a "ge" constraint, and the min value is equal to the rs.
|
||||
// Then we know what values of the variables are. For each positive coeff of the row it has to be
|
||||
// the low boundary of the var and for a negative - the upper.
|
||||
|
||||
// this routing also pins the variables to the boundaries
|
||||
bool row_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index );
|
||||
|
||||
void remove_fixed_or_zero_columns();
|
||||
|
||||
void remove_fixed_or_zero_columns_from_row(unsigned i, std::unordered_map<unsigned, T> & row);
|
||||
|
||||
unsigned try_to_remove_some_rows();
|
||||
|
||||
void cleanup();
|
||||
|
||||
void map_external_rows_to_core_solver_rows();
|
||||
|
||||
void map_external_columns_to_core_solver_columns();
|
||||
|
||||
unsigned number_of_core_structurals() {
|
||||
return static_cast<unsigned>(m_core_solver_columns_to_external_columns.size());
|
||||
}
|
||||
|
||||
void restore_column_scales_to_one() {
|
||||
for (unsigned i = 0; i < m_column_scale.size(); i++) m_column_scale[i] = numeric_traits<T>::one();
|
||||
}
|
||||
|
||||
void unscale();
|
||||
|
||||
void fill_A_from_A_values();
|
||||
|
||||
void fill_matrix_A_and_init_right_side();
|
||||
|
||||
void count_slacks_and_artificials();
|
||||
|
||||
void count_slacks_and_artificials_for_row(unsigned i);
|
||||
|
||||
T low_bound_shift_for_row(unsigned i);
|
||||
|
||||
void fill_m_b();
|
||||
|
||||
T get_column_value_with_core_solver(unsigned column, lp_core_solver_base<T, X> * core_solver) const;
|
||||
void set_scaled_cost(unsigned j);
|
||||
void print_statistics_on_A(std::ostream & out) {
|
||||
out << "extended A[" << this->m_A->row_count() << "," << this->m_A->column_count() << "]" << std::endl;
|
||||
}
|
||||
|
||||
struct row_tighten_stats {
|
||||
unsigned n_of_new_bounds = 0;
|
||||
unsigned n_of_fixed = 0;
|
||||
bool is_obsolete = false;
|
||||
};
|
||||
|
||||
|
||||
|
||||
public:
|
||||
lp_settings & settings() { return m_settings;}
|
||||
void print_model(std::ostream & s) const {
|
||||
s << "objective = " << get_current_cost() << std::endl;
|
||||
s << "column values\n";
|
||||
for (auto & it : m_names_to_columns) {
|
||||
s << it.first << " = " << get_column_value(it.second) << std::endl;
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
554
src/util/lp/lp_solver.hpp
Normal file
554
src/util/lp/lp_solver.hpp
Normal file
|
@ -0,0 +1,554 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X> column_info<T> * lp_solver<T, X>::get_or_create_column_info(unsigned column) {
|
||||
auto it = m_map_from_var_index_to_column_info.find(column);
|
||||
return (it == m_map_from_var_index_to_column_info.end())? (m_map_from_var_index_to_column_info[column] = new column_info<T>(static_cast<unsigned>(-1))) : it->second;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
std::string lp_solver<T, X>::get_column_name(unsigned j) const { // j here is the core solver index
|
||||
auto it = this->m_core_solver_columns_to_external_columns.find(j);
|
||||
if (it == this->m_core_solver_columns_to_external_columns.end())
|
||||
return std::string("x")+T_to_string(j);
|
||||
unsigned external_j = it->second;
|
||||
auto t = this->m_map_from_var_index_to_column_info.find(external_j);
|
||||
if (t == this->m_map_from_var_index_to_column_info.end()) {
|
||||
return std::string("x") +T_to_string(external_j);
|
||||
}
|
||||
return t->second->get_name();
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_solver<T, X>::get_column_cost_value(unsigned j, column_info<T> * ci) const {
|
||||
if (ci->is_fixed()) {
|
||||
return ci->get_cost() * ci->get_fixed_value();
|
||||
}
|
||||
return ci->get_cost() * get_column_value(j);
|
||||
}
|
||||
template <typename T, typename X> void lp_solver<T, X>::add_constraint(lp_relation relation, T right_side, unsigned row_index) {
|
||||
lean_assert(m_constraints.find(row_index) == m_constraints.end());
|
||||
lp_constraint<T, X> cs(right_side, relation);
|
||||
m_constraints[row_index] = cs;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::give_symbolic_name_to_column(std::string name, unsigned column) {
|
||||
auto it = m_map_from_var_index_to_column_info.find(column);
|
||||
column_info<T> *ci;
|
||||
if (it == m_map_from_var_index_to_column_info.end()){
|
||||
m_map_from_var_index_to_column_info[column] = ci = new column_info<T>;
|
||||
} else {
|
||||
ci = it->second;
|
||||
}
|
||||
ci->set_name(name);
|
||||
m_names_to_columns[name] = column;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> T lp_solver<T, X>::get_column_value_by_name(std::string name) const {
|
||||
auto it = m_names_to_columns.find(name);
|
||||
if (it == m_names_to_columns.end()) {
|
||||
std::stringstream s;
|
||||
s << "get_column_value_by_name " << name;
|
||||
throw_exception(s.str());
|
||||
}
|
||||
return get_column_value(it -> second);
|
||||
}
|
||||
|
||||
// returns -1 if not found
|
||||
template <typename T, typename X> int lp_solver<T, X>::get_column_index_by_name(std::string name) const {
|
||||
auto t = m_names_to_columns.find(name);
|
||||
if (t == m_names_to_columns.end()) {
|
||||
return -1;
|
||||
}
|
||||
return t->second;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> lp_solver<T, X>::~lp_solver(){
|
||||
if (m_A != nullptr) {
|
||||
delete m_A;
|
||||
}
|
||||
for (auto t : m_map_from_var_index_to_column_info) {
|
||||
delete t.second;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::flip_costs() {
|
||||
for (auto t : m_map_from_var_index_to_column_info) {
|
||||
column_info<T> *ci = t.second;
|
||||
ci->set_cost(-ci->get_cost());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_solver<T, X>::problem_is_empty() {
|
||||
for (auto & c : m_A_values)
|
||||
if (c.second.size())
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::scale() {
|
||||
if (numeric_traits<T>::precise() || m_settings.use_scaling == false) {
|
||||
m_column_scale.clear();
|
||||
m_column_scale.resize(m_A->column_count(), one_of_type<T>());
|
||||
return;
|
||||
}
|
||||
|
||||
T smin = T(m_settings.scaling_minimum);
|
||||
T smax = T(m_settings.scaling_maximum);
|
||||
|
||||
scaler<T, X> scaler(m_b, *m_A, smin, smax, m_column_scale, this->m_settings);
|
||||
if (!scaler.scale()) {
|
||||
unscale();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::print_rows_scale_stats(std::ostream & out) {
|
||||
out << "rows max" << std::endl;
|
||||
for (unsigned i = 0; i < m_A->row_count(); i++) {
|
||||
print_row_scale_stats(i, out);
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::print_columns_scale_stats(std::ostream & out) {
|
||||
out << "columns max" << std::endl;
|
||||
for (unsigned i = 0; i < m_A->column_count(); i++) {
|
||||
print_column_scale_stats(i, out);
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::print_row_scale_stats(unsigned i, std::ostream & out) {
|
||||
out << "(" << std::min(m_A->get_min_abs_in_row(i), abs(m_b[i])) << " ";
|
||||
out << std::max(m_A->get_max_abs_in_row(i), abs(m_b[i])) << ")";
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::print_column_scale_stats(unsigned j, std::ostream & out) {
|
||||
out << "(" << m_A->get_min_abs_in_row(j) << " ";
|
||||
out << m_A->get_max_abs_in_column(j) << ")";
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::print_scale_stats(std::ostream & out) {
|
||||
print_rows_scale_stats(out);
|
||||
print_columns_scale_stats(out);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::get_max_abs_in_row(std::unordered_map<unsigned, T> & row_map) {
|
||||
T ret = numeric_traits<T>::zero();
|
||||
for (auto jp : row_map) {
|
||||
T ac = numeric_traits<T>::abs(jp->second);
|
||||
if (ac > ret) {
|
||||
ret = ac;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::pin_vars_on_row_with_sign(std::unordered_map<unsigned, T> & row, T sign ) {
|
||||
for (auto t : row) {
|
||||
unsigned j = t.first;
|
||||
column_info<T> * ci = m_map_from_var_index_to_column_info[j];
|
||||
T a = t.second;
|
||||
if (a * sign > numeric_traits<T>::zero()) {
|
||||
lean_assert(ci->upper_bound_is_set());
|
||||
ci->set_fixed_value(ci->get_upper_bound());
|
||||
} else {
|
||||
lean_assert(ci->low_bound_is_set());
|
||||
ci->set_fixed_value(ci->get_low_bound());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_solver<T, X>::get_minimal_row_value(std::unordered_map<unsigned, T> & row, T & low_bound) {
|
||||
low_bound = numeric_traits<T>::zero();
|
||||
for (auto & t : row) {
|
||||
T a = t.second;
|
||||
column_info<T> * ci = m_map_from_var_index_to_column_info[t.first];
|
||||
if (a > numeric_traits<T>::zero()) {
|
||||
if (ci->low_bound_is_set()) {
|
||||
low_bound += ci->get_low_bound() * a;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (ci->upper_bound_is_set()) {
|
||||
low_bound += ci->get_upper_bound() * a;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_solver<T, X>::get_maximal_row_value(std::unordered_map<unsigned, T> & row, T & low_bound) {
|
||||
low_bound = numeric_traits<T>::zero();
|
||||
for (auto & t : row) {
|
||||
T a = t.second;
|
||||
column_info<T> * ci = m_map_from_var_index_to_column_info[t.first];
|
||||
if (a < numeric_traits<T>::zero()) {
|
||||
if (ci->low_bound_is_set()) {
|
||||
low_bound += ci->get_low_bound() * a;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (ci->upper_bound_is_set()) {
|
||||
low_bound += ci->get_upper_bound() * a;
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_solver<T, X>::row_is_zero(std::unordered_map<unsigned, T> & row) {
|
||||
for (auto & t : row) {
|
||||
if (!is_zero(t.second))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_solver<T, X>::row_e_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index) {
|
||||
T rs = m_constraints[row_index].m_rs;
|
||||
if (row_is_zero(row)) {
|
||||
if (!is_zero(rs))
|
||||
m_status = INFEASIBLE;
|
||||
return true;
|
||||
}
|
||||
|
||||
T low_bound;
|
||||
bool lb = get_minimal_row_value(row, low_bound);
|
||||
if (lb) {
|
||||
T diff = low_bound - rs;
|
||||
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)){
|
||||
// low_bound > rs + m_settings.refactor_epsilon
|
||||
m_status = INFEASIBLE;
|
||||
return true;
|
||||
}
|
||||
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
|
||||
pin_vars_down_on_row(row);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
T upper_bound;
|
||||
bool ub = get_maximal_row_value(row, upper_bound);
|
||||
if (ub) {
|
||||
T diff = rs - upper_bound;
|
||||
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)) {
|
||||
// upper_bound < rs - m_settings.refactor_tolerance
|
||||
m_status = INFEASIBLE;
|
||||
return true;
|
||||
}
|
||||
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
|
||||
pin_vars_up_on_row(row);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_solver<T, X>::row_ge_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index) {
|
||||
T rs = m_constraints[row_index].m_rs;
|
||||
if (row_is_zero(row)) {
|
||||
if (rs > zero_of_type<X>())
|
||||
m_status = INFEASIBLE;
|
||||
return true;
|
||||
}
|
||||
|
||||
T upper_bound;
|
||||
if (get_maximal_row_value(row, upper_bound)) {
|
||||
T diff = rs - upper_bound;
|
||||
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)) {
|
||||
// upper_bound < rs - m_settings.refactor_tolerance
|
||||
m_status = INFEASIBLE;
|
||||
return true;
|
||||
}
|
||||
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
|
||||
pin_vars_up_on_row(row);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool lp_solver<T, X>::row_le_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index) {
|
||||
T low_bound;
|
||||
T rs = m_constraints[row_index].m_rs;
|
||||
if (row_is_zero(row)) {
|
||||
if (rs < zero_of_type<X>())
|
||||
m_status = INFEASIBLE;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (get_minimal_row_value(row, low_bound)) {
|
||||
T diff = low_bound - rs;
|
||||
if (!val_is_smaller_than_eps(diff, m_settings.refactor_tolerance)){
|
||||
// low_bound > rs + m_settings.refactor_tolerance
|
||||
m_status = lp_status::INFEASIBLE;
|
||||
return true;
|
||||
}
|
||||
if (val_is_smaller_than_eps(-diff, m_settings.refactor_tolerance)){
|
||||
pin_vars_down_on_row(row);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// analyse possible max and min values that are derived from var boundaries
|
||||
// Let us say that the we have a "ge" constraint, and the min value is equal to the rs.
|
||||
// Then we know what values of the variables are. For each positive coeff of the row it has to be
|
||||
// the low boundary of the var and for a negative - the upper.
|
||||
|
||||
// this routing also pins the variables to the boundaries
|
||||
template <typename T, typename X> bool lp_solver<T, X>::row_is_obsolete(std::unordered_map<unsigned, T> & row, unsigned row_index ) {
|
||||
auto & constraint = m_constraints[row_index];
|
||||
switch (constraint.m_relation) {
|
||||
case lp_relation::Equal:
|
||||
return row_e_is_obsolete(row, row_index);
|
||||
|
||||
case lp_relation::Greater_or_equal:
|
||||
return row_ge_is_obsolete(row, row_index);
|
||||
|
||||
case lp_relation::Less_or_equal:
|
||||
return row_le_is_obsolete(row, row_index);
|
||||
}
|
||||
lean_unreachable();
|
||||
return false; // it is unreachable
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::remove_fixed_or_zero_columns() {
|
||||
for (auto & i_row : m_A_values) {
|
||||
remove_fixed_or_zero_columns_from_row(i_row.first, i_row.second);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::remove_fixed_or_zero_columns_from_row(unsigned i, std::unordered_map<unsigned, T> & row) {
|
||||
auto & constraint = m_constraints[i];
|
||||
vector<unsigned> removed;
|
||||
for (auto & col : row) {
|
||||
unsigned j = col.first;
|
||||
lean_assert(m_map_from_var_index_to_column_info.find(j) != m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> * ci = m_map_from_var_index_to_column_info[j];
|
||||
if (ci->is_fixed()) {
|
||||
removed.push_back(j);
|
||||
T aj = col.second;
|
||||
constraint.m_rs -= aj * ci->get_fixed_value();
|
||||
} else {
|
||||
if (numeric_traits<T>::is_zero(col.second)){
|
||||
removed.push_back(j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (auto j : removed) {
|
||||
row.erase(j);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> unsigned lp_solver<T, X>::try_to_remove_some_rows() {
|
||||
vector<unsigned> rows_to_delete;
|
||||
for (auto & t : m_A_values) {
|
||||
if (row_is_obsolete(t.second, t.first)) {
|
||||
rows_to_delete.push_back(t.first);
|
||||
}
|
||||
|
||||
if (m_status == lp_status::INFEASIBLE) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
if (rows_to_delete.size() > 0) {
|
||||
for (unsigned k : rows_to_delete) {
|
||||
m_A_values.erase(k);
|
||||
}
|
||||
}
|
||||
remove_fixed_or_zero_columns();
|
||||
return static_cast<unsigned>(rows_to_delete.size());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::cleanup() {
|
||||
int n = 0; // number of deleted rows
|
||||
int d;
|
||||
while ((d = try_to_remove_some_rows() > 0))
|
||||
n += d;
|
||||
|
||||
if (n == 1) {
|
||||
LP_OUT(m_settings, "deleted one row" << std::endl);
|
||||
} else if (n) {
|
||||
LP_OUT(m_settings, "deleted " << n << " rows" << std::endl);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::map_external_rows_to_core_solver_rows() {
|
||||
unsigned size = 0;
|
||||
for (auto & row : m_A_values) {
|
||||
m_external_rows_to_core_solver_rows[row.first] = size;
|
||||
m_core_solver_rows_to_external_rows[size] = row.first;
|
||||
size++;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::map_external_columns_to_core_solver_columns() {
|
||||
unsigned size = 0;
|
||||
for (auto & row : m_A_values) {
|
||||
for (auto & col : row.second) {
|
||||
if (col.second == numeric_traits<T>::zero() || m_map_from_var_index_to_column_info[col.first]->is_fixed()) {
|
||||
throw_exception("found fixed column");
|
||||
}
|
||||
unsigned j = col.first;
|
||||
auto column_info_it = m_map_from_var_index_to_column_info.find(j);
|
||||
lean_assert(column_info_it != m_map_from_var_index_to_column_info.end());
|
||||
|
||||
auto j_column = column_info_it->second->get_column_index();
|
||||
if (!is_valid(j_column)) { // j is a newcomer
|
||||
m_map_from_var_index_to_column_info[j]->set_column_index(size);
|
||||
m_core_solver_columns_to_external_columns[size++] = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::unscale() {
|
||||
delete m_A;
|
||||
m_A = nullptr;
|
||||
fill_A_from_A_values();
|
||||
restore_column_scales_to_one();
|
||||
fill_m_b();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::fill_A_from_A_values() {
|
||||
m_A = new static_matrix<T, X>(static_cast<unsigned>(m_A_values.size()), number_of_core_structurals());
|
||||
for (auto & t : m_A_values) {
|
||||
auto row_it = m_external_rows_to_core_solver_rows.find(t.first);
|
||||
lean_assert(row_it != m_external_rows_to_core_solver_rows.end());
|
||||
unsigned row = row_it->second;
|
||||
for (auto k : t.second) {
|
||||
auto column_info_it = m_map_from_var_index_to_column_info.find(k.first);
|
||||
lean_assert(column_info_it != m_map_from_var_index_to_column_info.end());
|
||||
column_info<T> *ci = column_info_it->second;
|
||||
unsigned col = ci->get_column_index();
|
||||
lean_assert(is_valid(col));
|
||||
bool col_is_flipped = m_map_from_var_index_to_column_info[k.first]->is_flipped();
|
||||
if (!col_is_flipped) {
|
||||
(*m_A)(row, col) = k.second;
|
||||
} else {
|
||||
(*m_A)(row, col) = - k.second;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::fill_matrix_A_and_init_right_side() {
|
||||
map_external_rows_to_core_solver_rows();
|
||||
map_external_columns_to_core_solver_columns();
|
||||
lean_assert(m_A == nullptr);
|
||||
fill_A_from_A_values();
|
||||
m_b.resize(m_A->row_count());
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::count_slacks_and_artificials() {
|
||||
for (int i = row_count() - 1; i >= 0; i--) {
|
||||
count_slacks_and_artificials_for_row(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::count_slacks_and_artificials_for_row(unsigned i) {
|
||||
lean_assert(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
|
||||
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[i]];
|
||||
switch (constraint.m_relation) {
|
||||
case Equal:
|
||||
m_artificials++;
|
||||
break;
|
||||
case Greater_or_equal:
|
||||
m_slacks++;
|
||||
if (this->m_b[i] > 0) {
|
||||
m_artificials++;
|
||||
}
|
||||
break;
|
||||
case Less_or_equal:
|
||||
m_slacks++;
|
||||
if (this->m_b[i] < 0) {
|
||||
m_artificials++;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_solver<T, X>::low_bound_shift_for_row(unsigned i) {
|
||||
T ret = numeric_traits<T>::zero();
|
||||
|
||||
auto row = this->m_A_values.find(i);
|
||||
if (row == this->m_A_values.end()) {
|
||||
throw_exception("cannot find row");
|
||||
}
|
||||
for (auto col : row->second) {
|
||||
ret += col.second * this->m_map_from_var_index_to_column_info[col.first]->get_shift();
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::fill_m_b() {
|
||||
for (int i = this->row_count() - 1; i >= 0; i--) {
|
||||
lean_assert(this->m_constraints.find(this->m_core_solver_rows_to_external_rows[i]) != this->m_constraints.end());
|
||||
unsigned external_i = this->m_core_solver_rows_to_external_rows[i];
|
||||
auto & constraint = this->m_constraints[external_i];
|
||||
this->m_b[i] = constraint.m_rs - low_bound_shift_for_row(external_i);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> T lp_solver<T, X>::get_column_value_with_core_solver(unsigned column, lp_core_solver_base<T, X> * core_solver) const {
|
||||
auto cit = this->m_map_from_var_index_to_column_info.find(column);
|
||||
if (cit == this->m_map_from_var_index_to_column_info.end()) {
|
||||
return numeric_traits<T>::zero();
|
||||
}
|
||||
|
||||
column_info<T> * ci = cit->second;
|
||||
|
||||
if (ci->is_fixed()) {
|
||||
return ci->get_fixed_value();
|
||||
}
|
||||
|
||||
unsigned cj = ci->get_column_index();
|
||||
if (cj != static_cast<unsigned>(-1)) {
|
||||
T v = core_solver->get_var_value(cj) * this->m_column_scale[cj];
|
||||
if (ci->is_free()) {
|
||||
return v;
|
||||
}
|
||||
if (!ci->is_flipped()) {
|
||||
return v + ci->get_low_bound();
|
||||
}
|
||||
|
||||
// the flipped case when there is only upper bound
|
||||
return -v + ci->get_upper_bound(); //
|
||||
}
|
||||
|
||||
return numeric_traits<T>::zero(); // returns zero for out of boundary columns
|
||||
}
|
||||
|
||||
template <typename T, typename X> void lp_solver<T, X>::set_scaled_cost(unsigned j) {
|
||||
// grab original costs but modify it with the column scales
|
||||
lean_assert(j < this->m_column_scale.size());
|
||||
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
|
||||
T cost = ci->get_cost();
|
||||
if (ci->is_flipped()){
|
||||
cost *= -1;
|
||||
}
|
||||
lean_assert(ci->is_fixed() == false);
|
||||
this->m_costs[j] = cost * this->m_column_scale[j];
|
||||
}
|
||||
}
|
40
src/util/lp/lp_solver_instances.cpp
Normal file
40
src/util/lp/lp_solver_instances.cpp
Normal file
|
@ -0,0 +1,40 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include "util/lp/lp_solver.hpp"
|
||||
template void lean::lp_solver<double, double>::add_constraint(lean::lp_relation, double, unsigned int);
|
||||
template void lean::lp_solver<double, double>::cleanup();
|
||||
template void lean::lp_solver<double, double>::count_slacks_and_artificials();
|
||||
template void lean::lp_solver<double, double>::fill_m_b();
|
||||
template void lean::lp_solver<double, double>::fill_matrix_A_and_init_right_side();
|
||||
template void lean::lp_solver<double, double>::flip_costs();
|
||||
template double lean::lp_solver<double, double>::get_column_cost_value(unsigned int, lean::column_info<double>*) const;
|
||||
template int lean::lp_solver<double, double>::get_column_index_by_name(std::string) const;
|
||||
template double lean::lp_solver<double, double>::get_column_value_with_core_solver(unsigned int, lean::lp_core_solver_base<double, double>*) const;
|
||||
template lean::column_info<double>* lean::lp_solver<double, double>::get_or_create_column_info(unsigned int);
|
||||
template void lean::lp_solver<double, double>::give_symbolic_name_to_column(std::string, unsigned int);
|
||||
template void lean::lp_solver<double, double>::print_statistics_on_A(std::ostream & out);
|
||||
template bool lean::lp_solver<double, double>::problem_is_empty();
|
||||
template void lean::lp_solver<double, double>::scale();
|
||||
template void lean::lp_solver<double, double>::set_scaled_cost(unsigned int);
|
||||
template lean::lp_solver<double, double>::~lp_solver();
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::add_constraint(lean::lp_relation, lean::mpq, unsigned int);
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::cleanup();
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::count_slacks_and_artificials();
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::fill_m_b();
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::fill_matrix_A_and_init_right_side();
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::flip_costs();
|
||||
template lean::mpq lean::lp_solver<lean::mpq, lean::mpq>::get_column_cost_value(unsigned int, lean::column_info<lean::mpq>*) const;
|
||||
template int lean::lp_solver<lean::mpq, lean::mpq>::get_column_index_by_name(std::string) const;
|
||||
template lean::mpq lean::lp_solver<lean::mpq, lean::mpq>::get_column_value_by_name(std::string) const;
|
||||
template lean::mpq lean::lp_solver<lean::mpq, lean::mpq>::get_column_value_with_core_solver(unsigned int, lean::lp_core_solver_base<lean::mpq, lean::mpq>*) const;
|
||||
template lean::column_info<lean::mpq>* lean::lp_solver<lean::mpq, lean::mpq>::get_or_create_column_info(unsigned int);
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::give_symbolic_name_to_column(std::string, unsigned int);
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::print_statistics_on_A(std::ostream & out);
|
||||
template bool lean::lp_solver<lean::mpq, lean::mpq>::problem_is_empty();
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::scale();
|
||||
template void lean::lp_solver<lean::mpq, lean::mpq>::set_scaled_cost(unsigned int);
|
||||
template lean::lp_solver<lean::mpq, lean::mpq>::~lp_solver();
|
||||
template double lean::lp_solver<double, double>::get_column_value_by_name(std::string) const;
|
11
src/util/lp/lp_utils.cpp
Normal file
11
src/util/lp/lp_utils.cpp
Normal file
|
@ -0,0 +1,11 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_utils.h"
|
||||
#ifdef lp_for_z3
|
||||
namespace lean {
|
||||
double numeric_traits<double>::g_zero = 0.0;
|
||||
double numeric_traits<double>::g_one = 1.0;
|
||||
}
|
||||
#endif
|
141
src/util/lp/lp_utils.h
Normal file
141
src/util/lp/lp_utils.h
Normal file
|
@ -0,0 +1,141 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
This file should be present in z3 and in Lean.
|
||||
*/
|
||||
#pragma once
|
||||
#include <string>
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/debug.h"
|
||||
#include <unordered_map>
|
||||
template <typename A, typename B>
|
||||
bool try_get_val(const std::unordered_map<A,B> & map, const A& key, B & val) {
|
||||
const auto it = map.find(key);
|
||||
if (it == map.end()) return false;
|
||||
val = it->second;
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename A, typename B>
|
||||
bool contains(const std::unordered_map<A, B> & map, const A& key) {
|
||||
return map.find(key) != map.end();
|
||||
}
|
||||
|
||||
#ifdef lp_for_z3
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
#define LEAN_DEBUG 1
|
||||
#endif
|
||||
|
||||
namespace lean {
|
||||
inline void throw_exception(const std::string & str) {
|
||||
throw default_exception(str);
|
||||
}
|
||||
typedef z3_exception exception;
|
||||
|
||||
#define lean_assert(_x_) { SASSERT(_x_); }
|
||||
inline void lean_unreachable() { lean_assert(false); }
|
||||
template <typename X> inline X zero_of_type() { return numeric_traits<X>::zero(); }
|
||||
template <typename X> inline X one_of_type() { return numeric_traits<X>::one(); }
|
||||
template <typename X> inline bool is_zero(const X & v) { return numeric_traits<X>::is_zero(v); }
|
||||
template <typename X> inline bool is_pos(const X & v) { return numeric_traits<X>::is_pos(v); }
|
||||
template <typename X> inline bool is_neg(const X & v) { return numeric_traits<X>::is_neg(v); }
|
||||
|
||||
template <typename X> inline bool precise() { return numeric_traits<X>::precise(); }
|
||||
}
|
||||
namespace std {
|
||||
template<>
|
||||
struct hash<rational> {
|
||||
inline size_t operator()(const rational & v) const {
|
||||
return v.hash();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
template <class T>
|
||||
inline void hash_combine(std::size_t & seed, const T & v) {
|
||||
seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template<typename S, typename T> struct hash<pair<S, T>> {
|
||||
inline size_t operator()(const pair<S, T> & v) const {
|
||||
size_t seed = 0;
|
||||
hash_combine(seed, v.first);
|
||||
hash_combine(seed, v.second);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct hash<lean::numeric_pair<lean::mpq>> {
|
||||
inline size_t operator()(const lean::numeric_pair<lean::mpq> & v) const {
|
||||
size_t seed = 0;
|
||||
hash_combine(seed, v.x);
|
||||
hash_combine(seed, v.y);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
#else // else of #if lp_for_z3
|
||||
#include <utility>
|
||||
#include <functional>
|
||||
//include "util/numerics/mpq.h"
|
||||
//include "util/numerics/numeric_traits.h"
|
||||
//include "util/numerics/double.h"
|
||||
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic push
|
||||
#pragma clang diagnostic ignored "-Wmismatched-tags"
|
||||
#endif
|
||||
namespace std {
|
||||
template<>
|
||||
struct hash<lean::mpq> {
|
||||
inline size_t operator()(const lean::mpq & v) const {
|
||||
return v.hash();
|
||||
}
|
||||
};
|
||||
}
|
||||
namespace lean {
|
||||
template <typename X> inline bool precise() { return numeric_traits<X>::precise();}
|
||||
template <typename X> inline X one_of_type() { return numeric_traits<X>::one(); }
|
||||
template <typename X> inline bool is_zero(const X & v) { return numeric_traits<X>::is_zero(v); }
|
||||
template <typename X> inline double get_double(const X & v) { return numeric_traits<X>::get_double(v); }
|
||||
template <typename T> inline T zero_of_type() {return numeric_traits<T>::zero();}
|
||||
inline void throw_exception(std::string str) { throw exception(str); }
|
||||
template <typename T> inline T from_string(std::string const & ) { lean_unreachable();}
|
||||
template <> double inline from_string<double>(std::string const & str) { return atof(str.c_str());}
|
||||
template <> mpq inline from_string<mpq>(std::string const & str) {
|
||||
return mpq(atof(str.c_str()));
|
||||
}
|
||||
|
||||
} // closing lean
|
||||
template <class T>
|
||||
inline void hash_combine(std::size_t & seed, const T & v) {
|
||||
seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
|
||||
}
|
||||
|
||||
namespace std {
|
||||
template<typename S, typename T> struct hash<pair<S, T>> {
|
||||
inline size_t operator()(const pair<S, T> & v) const {
|
||||
size_t seed = 0;
|
||||
hash_combine(seed, v.first);
|
||||
hash_combine(seed, v.second);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
template<>
|
||||
struct hash<lean::numeric_pair<lean::mpq>> {
|
||||
inline size_t operator()(const lean::numeric_pair<lean::mpq> & v) const {
|
||||
size_t seed = 0;
|
||||
hash_combine(seed, v.x);
|
||||
hash_combine(seed, v.y);
|
||||
return seed;
|
||||
}
|
||||
};
|
||||
} // std
|
||||
#ifdef __CLANG__
|
||||
#pragma clang diagnostic pop
|
||||
#endif
|
||||
#endif
|
359
src/util/lp/lu.h
Normal file
359
src/util/lp/lu.h
Normal file
|
@ -0,0 +1,359 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include "util/lp/sparse_matrix.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include <string>
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include "util/lp/row_eta_matrix.h"
|
||||
#include "util/lp/square_dense_submatrix.h"
|
||||
#include "util/lp/dense_matrix.h"
|
||||
namespace lean {
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X> // print the nr x nc submatrix at the top left corner
|
||||
void print_submatrix(sparse_matrix<T, X> & m, unsigned mr, unsigned nc);
|
||||
|
||||
template<typename T, typename X>
|
||||
void print_matrix(static_matrix<T, X> &m, std::ostream & out);
|
||||
|
||||
template <typename T, typename X>
|
||||
void print_matrix(sparse_matrix<T, X>& m, std::ostream & out);
|
||||
#endif
|
||||
|
||||
template <typename T, typename X>
|
||||
X dot_product(const vector<T> & a, const vector<X> & b) {
|
||||
lean_assert(a.size() == b.size());
|
||||
auto r = zero_of_type<X>();
|
||||
for (unsigned i = 0; i < a.size(); i++) {
|
||||
r += a[i] * b[i];
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
class one_elem_on_diag: public tail_matrix<T, X> {
|
||||
unsigned m_i;
|
||||
T m_val;
|
||||
public:
|
||||
one_elem_on_diag(unsigned i, T val) : m_i(i), m_val(val) {
|
||||
#ifdef LEAN_DEBUG
|
||||
m_one_over_val = numeric_traits<T>::one() / m_val;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool is_dense() const { return false; }
|
||||
|
||||
one_elem_on_diag(const one_elem_on_diag & o);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned m_m;
|
||||
unsigned m_n;
|
||||
virtual void set_number_of_rows(unsigned m) { m_m = m; m_n = m; }
|
||||
virtual void set_number_of_columns(unsigned n) { m_m = n; m_n = n; }
|
||||
T m_one_over_val;
|
||||
|
||||
T get_elem (unsigned i, unsigned j) const;
|
||||
|
||||
unsigned row_count() const { return m_m; } // not defined }
|
||||
unsigned column_count() const { return m_m; } // not defined }
|
||||
#endif
|
||||
void apply_from_left(vector<X> & w, lp_settings &) {
|
||||
w[m_i] /= m_val;
|
||||
}
|
||||
|
||||
void apply_from_right(vector<T> & w) {
|
||||
w[m_i] /= m_val;
|
||||
}
|
||||
|
||||
void apply_from_right(indexed_vector<T> & w) {
|
||||
if (is_zero(w.m_data[m_i]))
|
||||
return;
|
||||
auto & v = w.m_data[m_i] /= m_val;
|
||||
if (lp_settings::is_eps_small_general(v, 1e-14)) {
|
||||
w.erase_from_index(m_i);
|
||||
v = zero_of_type<T>();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void apply_from_left_to_T(indexed_vector<T> & w, lp_settings & settings);
|
||||
|
||||
void conjugate_by_permutation(permutation_matrix<T, X> & p) {
|
||||
// this = p * this * p(-1)
|
||||
#ifdef LEAN_DEBUG
|
||||
// auto rev = p.get_reverse();
|
||||
// auto deb = ((*this) * rev);
|
||||
// deb = p * deb;
|
||||
#endif
|
||||
m_i = p.apply_reverse(m_i);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(*this == deb);
|
||||
#endif
|
||||
}
|
||||
}; // end of one_elem_on_diag
|
||||
|
||||
enum class LU_status { OK, Degenerated};
|
||||
|
||||
// This class supports updates of the columns of B, and solves systems Bx=b,and yB=c
|
||||
// Using Suhl-Suhl method described in the dissertation of Achim Koberstein, Chapter 5
|
||||
template <typename T, typename X>
|
||||
class lu {
|
||||
LU_status m_status = LU_status::OK;
|
||||
public:
|
||||
// the fields
|
||||
unsigned m_dim;
|
||||
static_matrix<T, X> const &m_A;
|
||||
permutation_matrix<T, X> m_Q;
|
||||
permutation_matrix<T, X> m_R;
|
||||
permutation_matrix<T, X> m_r_wave;
|
||||
sparse_matrix<T, X> m_U;
|
||||
square_dense_submatrix<T, X>* m_dense_LU;
|
||||
|
||||
vector<tail_matrix<T, X> *> m_tail;
|
||||
lp_settings & m_settings;
|
||||
bool m_failure = false;
|
||||
indexed_vector<T> m_row_eta_work_vector;
|
||||
indexed_vector<T> m_w_for_extension;
|
||||
indexed_vector<T> m_y_copy;
|
||||
indexed_vector<unsigned> m_ii; //to optimize the work with the m_index fields
|
||||
unsigned m_refactor_counter = 0;
|
||||
// constructor
|
||||
// if A is an m by n matrix then basis has length m and values in [0,n); the values are all different
|
||||
// they represent the set of m columns
|
||||
lu(static_matrix<T, X> const & A,
|
||||
vector<unsigned>& basis,
|
||||
lp_settings & settings);
|
||||
void debug_test_of_basis(static_matrix<T, X> const & A, vector<unsigned> & basis);
|
||||
void solve_Bd_when_w_is_ready(vector<T> & d, indexed_vector<T>& w );
|
||||
void solve_By(indexed_vector<X> & y);
|
||||
|
||||
void solve_By(vector<X> & y);
|
||||
|
||||
void solve_By_for_T_indexed_only(indexed_vector<T>& y, const lp_settings &);
|
||||
|
||||
template <typename L>
|
||||
void solve_By_when_y_is_ready(indexed_vector<L> & y);
|
||||
void solve_By_when_y_is_ready_for_X(vector<X> & y);
|
||||
void solve_By_when_y_is_ready_for_T(vector<T> & y, vector<unsigned> & index);
|
||||
void print_indexed_vector(indexed_vector<T> & w, std::ofstream & f);
|
||||
|
||||
void print_matrix_compact(std::ostream & f);
|
||||
|
||||
void print(indexed_vector<T> & w, const vector<unsigned>& basis);
|
||||
void solve_Bd(unsigned a_column, vector<T> & d, indexed_vector<T> & w);
|
||||
void solve_Bd(unsigned a_column, indexed_vector<T> & d, indexed_vector<T> & w);
|
||||
void solve_Bd_faster(unsigned a_column, indexed_vector<T> & d); // d is the right side on the input and the solution at the exit
|
||||
|
||||
void solve_yB(vector<T>& y);
|
||||
|
||||
void solve_yB_indexed(indexed_vector<T>& y);
|
||||
|
||||
void add_delta_to_solution_indexed(indexed_vector<T>& y);
|
||||
|
||||
void add_delta_to_solution(const vector<T>& yc, vector<T>& y);
|
||||
|
||||
|
||||
void find_error_of_yB(vector<T>& yc, const vector<T>& y,
|
||||
const vector<unsigned>& basis);
|
||||
|
||||
void find_error_of_yB_indexed(const indexed_vector<T>& y,
|
||||
const vector<int>& heading, const lp_settings& settings);
|
||||
|
||||
|
||||
void solve_yB_with_error_check(vector<T> & y, const vector<unsigned>& basis);
|
||||
|
||||
void solve_yB_with_error_check_indexed(indexed_vector<T> & y, const vector<int>& heading, const vector<unsigned> & basis, const lp_settings &);
|
||||
|
||||
void apply_Q_R_to_U(permutation_matrix<T, X> & r_wave);
|
||||
|
||||
|
||||
LU_status get_status() { return m_status; }
|
||||
|
||||
void set_status(LU_status status) {
|
||||
m_status = status;
|
||||
}
|
||||
|
||||
~lu();
|
||||
|
||||
void init_vector_y(vector<X> & y);
|
||||
|
||||
void perform_transformations_on_w(indexed_vector<T>& w);
|
||||
|
||||
void init_vector_w(unsigned entering, indexed_vector<T> & w);
|
||||
void apply_lp_list_to_w(indexed_vector<T> & w);
|
||||
void apply_lp_list_to_y(vector<X>& y);
|
||||
|
||||
void swap_rows(int j, int k);
|
||||
|
||||
void swap_columns(int j, int pivot_column);
|
||||
|
||||
void push_matrix_to_tail(tail_matrix<T, X>* tm) {
|
||||
m_tail.push_back(tm);
|
||||
}
|
||||
|
||||
bool pivot_the_row(int row);
|
||||
|
||||
eta_matrix<T, X> * get_eta_matrix_for_pivot(unsigned j);
|
||||
// we're processing the column j now
|
||||
eta_matrix<T, X> * get_eta_matrix_for_pivot(unsigned j, sparse_matrix<T, X>& copy_of_U);
|
||||
|
||||
// see page 407 of Chvatal
|
||||
unsigned transform_U_to_V_by_replacing_column(indexed_vector<T> & w, unsigned leaving_column_of_U);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
void check_vector_w(unsigned entering);
|
||||
|
||||
void check_apply_matrix_to_vector(matrix<T, X> *lp, T *w);
|
||||
|
||||
void check_apply_lp_lists_to_w(T * w);
|
||||
|
||||
// provide some access operators for testing
|
||||
permutation_matrix<T, X> & Q() { return m_Q; }
|
||||
permutation_matrix<T, X> & R() { return m_R; }
|
||||
matrix<T, X> & U() { return m_U; }
|
||||
unsigned tail_size() { return m_tail.size(); }
|
||||
|
||||
tail_matrix<T, X> * get_lp_matrix(unsigned i) {
|
||||
return m_tail[i];
|
||||
}
|
||||
|
||||
T B_(unsigned i, unsigned j, const vector<unsigned>& basis) {
|
||||
return m_A.get_elem(i, basis[j]);
|
||||
}
|
||||
|
||||
unsigned dimension() { return m_dim; }
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
unsigned get_number_of_nonzeroes() {
|
||||
return m_U.get_number_of_nonzeroes();
|
||||
}
|
||||
|
||||
|
||||
void process_column(int j);
|
||||
|
||||
bool is_correct(const vector<unsigned>& basis);
|
||||
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
dense_matrix<T, X> tail_product();
|
||||
dense_matrix<T, X> get_left_side(const vector<unsigned>& basis);
|
||||
|
||||
dense_matrix<T, X> get_right_side();
|
||||
#endif
|
||||
|
||||
// needed for debugging purposes
|
||||
void copy_w(T *buffer, indexed_vector<T> & w);
|
||||
|
||||
// needed for debugging purposes
|
||||
void restore_w(T *buffer, indexed_vector<T> & w);
|
||||
bool all_columns_and_rows_are_active();
|
||||
|
||||
bool too_dense(unsigned j) const;
|
||||
|
||||
void pivot_in_dense_mode(unsigned i);
|
||||
|
||||
void create_initial_factorization();
|
||||
|
||||
void calculate_r_wave_and_update_U(unsigned bump_start, unsigned bump_end, permutation_matrix<T, X> & r_wave);
|
||||
|
||||
void scan_last_row_to_work_vector(unsigned lowest_row_of_the_bump);
|
||||
|
||||
bool diagonal_element_is_off(T /* diag_element */) { return false; }
|
||||
|
||||
void pivot_and_solve_the_system(unsigned replaced_column, unsigned lowest_row_of_the_bump);
|
||||
// see Achim Koberstein's thesis page 58, but here we solve the system and pivot to the last
|
||||
// row at the same time
|
||||
row_eta_matrix<T, X> *get_row_eta_matrix_and_set_row_vector(unsigned replaced_column, unsigned lowest_row_of_the_bump, const T & pivot_elem_for_checking);
|
||||
|
||||
void replace_column(T pivot_elem, indexed_vector<T> & w, unsigned leaving_column_of_U);
|
||||
|
||||
void calculate_Lwave_Pwave_for_bump(unsigned replaced_column, unsigned lowest_row_of_the_bump);
|
||||
|
||||
void calculate_Lwave_Pwave_for_last_row(unsigned lowest_row_of_the_bump, T diagonal_element);
|
||||
|
||||
void prepare_entering(unsigned entering, indexed_vector<T> & w) {
|
||||
init_vector_w(entering, w);
|
||||
}
|
||||
bool need_to_refactor() { return m_refactor_counter >= 200; }
|
||||
|
||||
void adjust_dimension_with_matrix_A() {
|
||||
lean_assert(m_A.row_count() >= m_dim);
|
||||
m_dim = m_A.row_count();
|
||||
m_U.resize(m_dim);
|
||||
m_Q.resize(m_dim);
|
||||
m_R.resize(m_dim);
|
||||
m_row_eta_work_vector.resize(m_dim);
|
||||
}
|
||||
|
||||
|
||||
std::unordered_set<unsigned> get_set_of_columns_to_replace_for_add_last_rows(const vector<int> & heading) const {
|
||||
std::unordered_set<unsigned> columns_to_replace;
|
||||
unsigned m = m_A.row_count();
|
||||
unsigned m_prev = m_U.dimension();
|
||||
|
||||
lean_assert(m_A.column_count() == heading.size());
|
||||
|
||||
for (unsigned i = m_prev; i < m; i++) {
|
||||
for (const row_cell<T> & c : m_A.m_rows[i]) {
|
||||
int h = heading[c.m_j];
|
||||
if (h < 0) {
|
||||
continue;
|
||||
}
|
||||
columns_to_replace.insert(c.m_j);
|
||||
}
|
||||
}
|
||||
return columns_to_replace;
|
||||
}
|
||||
|
||||
void add_last_rows_to_B(const vector<int> & heading, const std::unordered_set<unsigned> & columns_to_replace) {
|
||||
unsigned m = m_A.row_count();
|
||||
lean_assert(m_A.column_count() == heading.size());
|
||||
adjust_dimension_with_matrix_A();
|
||||
m_w_for_extension.resize(m);
|
||||
// At this moment the LU is correct
|
||||
// for B extended by only by ones at the diagonal in the lower right corner
|
||||
|
||||
for (unsigned j :columns_to_replace) {
|
||||
lean_assert(heading[j] >= 0);
|
||||
replace_column_with_only_change_at_last_rows(j, heading[j]);
|
||||
if (get_status() == LU_status::Degenerated)
|
||||
break;
|
||||
}
|
||||
}
|
||||
// column j is a basis column, and there is a change in the last rows
|
||||
void replace_column_with_only_change_at_last_rows(unsigned j, unsigned column_to_change_in_U) {
|
||||
init_vector_w(j, m_w_for_extension);
|
||||
replace_column(zero_of_type<T>(), m_w_for_extension, column_to_change_in_U);
|
||||
}
|
||||
|
||||
bool has_dense_submatrix() const {
|
||||
for (auto m : m_tail)
|
||||
if (m->is_dense())
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
}; // end of lu
|
||||
|
||||
template <typename T, typename X>
|
||||
void init_factorization(lu<T, X>* & factorization, static_matrix<T, X> & m_A, vector<unsigned> & m_basis, lp_settings &m_settings);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> get_B(lu<T, X>& f, const vector<unsigned>& basis);
|
||||
#endif
|
||||
}
|
940
src/util/lp/lu.hpp
Normal file
940
src/util/lp/lu.hpp
Normal file
|
@ -0,0 +1,940 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <set>
|
||||
#include "util/vector.h"
|
||||
#include <utility>
|
||||
#include "util/debug.h"
|
||||
#include "util/lp/lu.h"
|
||||
namespace lean {
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X> // print the nr x nc submatrix at the top left corner
|
||||
void print_submatrix(sparse_matrix<T, X> & m, unsigned mr, unsigned nc, std::ostream & out) {
|
||||
vector<vector<std::string>> A;
|
||||
vector<unsigned> widths;
|
||||
for (unsigned i = 0; i < m.row_count() && i < mr ; i++) {
|
||||
A.push_back(vector<std::string>());
|
||||
for (unsigned j = 0; j < m.column_count() && j < nc; j++) {
|
||||
A[i].push_back(T_to_string(static_cast<T>(m(i, j))));
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < m.column_count() && j < nc; j++) {
|
||||
widths.push_back(get_width_of_column(j, A));
|
||||
}
|
||||
|
||||
print_matrix_with_widths(A, widths, out);
|
||||
}
|
||||
|
||||
template<typename T, typename X>
|
||||
void print_matrix(static_matrix<T, X> &m, std::ostream & out) {
|
||||
vector<vector<std::string>> A;
|
||||
vector<unsigned> widths;
|
||||
std::set<std::pair<unsigned, unsigned>> domain = m.get_domain();
|
||||
for (unsigned i = 0; i < m.row_count(); i++) {
|
||||
A.push_back(vector<std::string>());
|
||||
for (unsigned j = 0; j < m.column_count(); j++) {
|
||||
A[i].push_back(T_to_string(static_cast<T>(m(i, j))));
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < m.column_count(); j++) {
|
||||
widths.push_back(get_width_of_column(j, A));
|
||||
}
|
||||
|
||||
print_matrix_with_widths(A, widths, out);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void print_matrix(sparse_matrix<T, X>& m, std::ostream & out) {
|
||||
vector<vector<std::string>> A;
|
||||
vector<unsigned> widths;
|
||||
for (unsigned i = 0; i < m.row_count(); i++) {
|
||||
A.push_back(vector<std::string>());
|
||||
for (unsigned j = 0; j < m.column_count(); j++) {
|
||||
A[i].push_back(T_to_string(static_cast<T>(m(i, j))));
|
||||
}
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < m.column_count(); j++) {
|
||||
widths.push_back(get_width_of_column(j, A));
|
||||
}
|
||||
|
||||
print_matrix_with_widths(A, widths, out);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
one_elem_on_diag<T, X>::one_elem_on_diag(const one_elem_on_diag & o) {
|
||||
m_i = o.m_i;
|
||||
m_val = o.m_val;
|
||||
#ifdef LEAN_DEBUG
|
||||
m_m = m_n = o.m_m;
|
||||
m_one_over_val = numeric_traits<T>::one() / o.m_val;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
T one_elem_on_diag<T, X>::get_elem(unsigned i, unsigned j) const {
|
||||
if (i == j){
|
||||
if (j == m_i) {
|
||||
return m_one_over_val;
|
||||
}
|
||||
return numeric_traits<T>::one();
|
||||
}
|
||||
|
||||
return numeric_traits<T>::zero();
|
||||
}
|
||||
#endif
|
||||
template <typename T, typename X>
|
||||
void one_elem_on_diag<T, X>::apply_from_left_to_T(indexed_vector<T> & w, lp_settings & settings) {
|
||||
T & t = w[m_i];
|
||||
if (numeric_traits<T>::is_zero(t)) {
|
||||
return;
|
||||
}
|
||||
t /= m_val;
|
||||
if (numeric_traits<T>::precise()) return;
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(t)) {
|
||||
w.erase_from_index(m_i);
|
||||
t = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
|
||||
// This class supports updates of the columns of B, and solves systems Bx=b,and yB=c
|
||||
// Using Suhl-Suhl method described in the dissertation of Achim Koberstein, Chapter 5
|
||||
template <typename T, typename X>
|
||||
lu<T, X>::lu(static_matrix<T, X> const & A,
|
||||
vector<unsigned>& basis,
|
||||
lp_settings & settings):
|
||||
m_dim(A.row_count()),
|
||||
m_A(A),
|
||||
m_Q(m_dim),
|
||||
m_R(m_dim),
|
||||
m_r_wave(m_dim),
|
||||
m_U(A, basis), // create the square matrix that eventually will be factorized
|
||||
m_settings(settings),
|
||||
m_row_eta_work_vector(A.row_count()){
|
||||
lean_assert(!(numeric_traits<T>::precise() && settings.use_tableau()));
|
||||
#ifdef LEAN_DEBUG
|
||||
debug_test_of_basis(A, basis);
|
||||
#endif
|
||||
++m_settings.st().m_num_factorizations;
|
||||
create_initial_factorization();
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(check_correctness());
|
||||
#endif
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::debug_test_of_basis(static_matrix<T, X> const & A, vector<unsigned> & basis) {
|
||||
std::set<unsigned> set;
|
||||
for (unsigned i = 0; i < A.row_count(); i++) {
|
||||
lean_assert(basis[i]< A.column_count());
|
||||
set.insert(basis[i]);
|
||||
}
|
||||
lean_assert(set.size() == A.row_count());
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_By(indexed_vector<X> & y) {
|
||||
lean_assert(false); // not implemented
|
||||
// init_vector_y(y);
|
||||
// solve_By_when_y_is_ready(y);
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_By(vector<X> & y) {
|
||||
init_vector_y(y);
|
||||
solve_By_when_y_is_ready_for_X(y);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_By_when_y_is_ready_for_X(vector<X> & y) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
m_U.solve_U_y(y);
|
||||
m_R.apply_reverse_from_left_to_X(y); // see 24.3 from Chvatal
|
||||
return;
|
||||
}
|
||||
m_U.double_solve_U_y(y);
|
||||
m_R.apply_reverse_from_left_to_X(y); // see 24.3 from Chvatal
|
||||
unsigned i = m_dim;
|
||||
while (i--) {
|
||||
if (is_zero(y[i])) continue;
|
||||
if (m_settings.abs_val_is_smaller_than_drop_tolerance(y[i])){
|
||||
y[i] = zero_of_type<X>();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_By_when_y_is_ready_for_T(vector<T> & y, vector<unsigned> & index) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
m_U.solve_U_y(y);
|
||||
m_R.apply_reverse_from_left_to_T(y); // see 24.3 from Chvatal
|
||||
unsigned j = m_dim;
|
||||
while (j--) {
|
||||
if (!is_zero(y[j]))
|
||||
index.push_back(j);
|
||||
}
|
||||
return;
|
||||
}
|
||||
m_U.double_solve_U_y(y);
|
||||
m_R.apply_reverse_from_left_to_T(y); // see 24.3 from Chvatal
|
||||
unsigned i = m_dim;
|
||||
while (i--) {
|
||||
if (is_zero(y[i])) continue;
|
||||
if (m_settings.abs_val_is_smaller_than_drop_tolerance(y[i])){
|
||||
y[i] = zero_of_type<T>();
|
||||
} else {
|
||||
index.push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_By_for_T_indexed_only(indexed_vector<T> & y, const lp_settings & settings) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
vector<unsigned> active_rows;
|
||||
m_U.solve_U_y_indexed_only(y, settings, active_rows);
|
||||
m_R.apply_reverse_from_left(y); // see 24.3 from Chvatal
|
||||
return;
|
||||
}
|
||||
m_U.double_solve_U_y(y, m_settings);
|
||||
m_R.apply_reverse_from_left(y); // see 24.3 from Chvatal
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::print_matrix_compact(std::ostream & f) {
|
||||
f << "matrix_start" << std::endl;
|
||||
f << "nrows " << m_A.row_count() << std::endl;
|
||||
f << "ncolumns " << m_A.column_count() << std::endl;
|
||||
for (unsigned i = 0; i < m_A.row_count(); i++) {
|
||||
auto & row = m_A.m_rows[i];
|
||||
f << "row " << i << std::endl;
|
||||
for (auto & t : row) {
|
||||
f << "column " << t.m_j << " value " << t.m_value << std::endl;
|
||||
}
|
||||
f << "row_end" << std::endl;
|
||||
}
|
||||
f << "matrix_end" << std::endl;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::print(indexed_vector<T> & w, const vector<unsigned>& basis) {
|
||||
std::string dump_file_name("/tmp/lu");
|
||||
remove(dump_file_name.c_str());
|
||||
std::ofstream f(dump_file_name);
|
||||
if (!f.is_open()) {
|
||||
LP_OUT(m_settings, "cannot open file " << dump_file_name << std::endl);
|
||||
return;
|
||||
}
|
||||
LP_OUT(m_settings, "writing lu dump to " << dump_file_name << std::endl);
|
||||
print_matrix_compact(f);
|
||||
print_vector(basis, f);
|
||||
print_indexed_vector(w, f);
|
||||
f.close();
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_Bd(unsigned a_column, indexed_vector<T> & d, indexed_vector<T> & w) {
|
||||
init_vector_w(a_column, w);
|
||||
|
||||
if (w.m_index.size() * ratio_of_index_size_to_all_size<T>() < d.m_data.size()) { // this const might need some tuning
|
||||
d = w;
|
||||
solve_By_for_T_indexed_only(d, m_settings);
|
||||
} else {
|
||||
d.m_data = w.m_data;
|
||||
d.m_index.clear();
|
||||
solve_By_when_y_is_ready_for_T(d.m_data, d.m_index);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_Bd_faster(unsigned a_column, indexed_vector<T> & d) { // puts the a_column into d
|
||||
init_vector_w(a_column, d);
|
||||
solve_By_for_T_indexed_only(d, m_settings);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_yB(vector<T>& y) {
|
||||
// first solve yU = cb*R(-1)
|
||||
m_R.apply_reverse_from_right_to_T(y); // got y = cb*R(-1)
|
||||
m_U.solve_y_U(y); // got y*U=cb*R(-1)
|
||||
m_Q.apply_reverse_from_right_to_T(y); //
|
||||
for (auto e = m_tail.rbegin(); e != m_tail.rend(); ++e) {
|
||||
#ifdef LEAN_DEBUG
|
||||
(*e)->set_number_of_columns(m_dim);
|
||||
#endif
|
||||
(*e)->apply_from_right(y);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_yB_indexed(indexed_vector<T>& y) {
|
||||
lean_assert(y.is_OK());
|
||||
// first solve yU = cb*R(-1)
|
||||
m_R.apply_reverse_from_right_to_T(y); // got y = cb*R(-1)
|
||||
lean_assert(y.is_OK());
|
||||
m_U.solve_y_U_indexed(y, m_settings); // got y*U=cb*R(-1)
|
||||
lean_assert(y.is_OK());
|
||||
m_Q.apply_reverse_from_right_to_T(y);
|
||||
lean_assert(y.is_OK());
|
||||
for (auto e = m_tail.rbegin(); e != m_tail.rend(); ++e) {
|
||||
#ifdef LEAN_DEBUG
|
||||
(*e)->set_number_of_columns(m_dim);
|
||||
#endif
|
||||
(*e)->apply_from_right(y);
|
||||
lean_assert(y.is_OK());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::add_delta_to_solution(const vector<T>& yc, vector<T>& y){
|
||||
unsigned i = static_cast<unsigned>(y.size());
|
||||
while (i--)
|
||||
y[i]+=yc[i];
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::add_delta_to_solution_indexed(indexed_vector<T>& y) {
|
||||
// the delta sits in m_y_copy, put result into y
|
||||
lean_assert(y.is_OK());
|
||||
lean_assert(m_y_copy.is_OK());
|
||||
m_ii.clear();
|
||||
m_ii.resize(y.data_size());
|
||||
for (unsigned i : y.m_index)
|
||||
m_ii.set_value(1, i);
|
||||
for (unsigned i : m_y_copy.m_index) {
|
||||
y.m_data[i] += m_y_copy[i];
|
||||
if (m_ii[i] == 0)
|
||||
m_ii.set_value(1, i);
|
||||
}
|
||||
lean_assert(m_ii.is_OK());
|
||||
y.m_index.clear();
|
||||
|
||||
for (unsigned i : m_ii.m_index) {
|
||||
T & v = y.m_data[i];
|
||||
if (!lp_settings::is_eps_small_general(v, 1e-14))
|
||||
y.m_index.push_back(i);
|
||||
else if (!numeric_traits<T>::is_zero(v))
|
||||
v = zero_of_type<T>();
|
||||
}
|
||||
|
||||
lean_assert(y.is_OK());
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::find_error_of_yB(vector<T>& yc, const vector<T>& y, const vector<unsigned>& m_basis) {
|
||||
unsigned i = m_dim;
|
||||
while (i--) {
|
||||
yc[i] -= m_A.dot_product_with_column(y, m_basis[i]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::find_error_of_yB_indexed(const indexed_vector<T>& y, const vector<int>& heading, const lp_settings& settings) {
|
||||
#if 0 == 1
|
||||
// it is a non efficient version
|
||||
indexed_vector<T> yc = m_y_copy;
|
||||
yc.m_index.clear();
|
||||
lean_assert(!numeric_traits<T>::precise());
|
||||
{
|
||||
|
||||
vector<unsigned> d_basis(y.m_data.size());
|
||||
for (unsigned j = 0; j < heading.size(); j++) {
|
||||
if (heading[j] >= 0) {
|
||||
d_basis[heading[j]] = j;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
unsigned i = m_dim;
|
||||
while (i--) {
|
||||
T & v = yc.m_data[i] -= m_A.dot_product_with_column(y.m_data, d_basis[i]);
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(v))
|
||||
v = zero_of_type<T>();
|
||||
else
|
||||
yc.m_index.push_back(i);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
lean_assert(m_ii.is_OK());
|
||||
m_ii.clear();
|
||||
m_ii.resize(y.data_size());
|
||||
lean_assert(m_y_copy.is_OK());
|
||||
// put the error into m_y_copy
|
||||
for (auto k : y.m_index) {
|
||||
auto & row = m_A.m_rows[k];
|
||||
const T & y_k = y.m_data[k];
|
||||
for (auto & c : row) {
|
||||
unsigned j = c.m_j;
|
||||
int hj = heading[j];
|
||||
if (hj < 0) continue;
|
||||
if (m_ii.m_data[hj] == 0)
|
||||
m_ii.set_value(1, hj);
|
||||
m_y_copy.m_data[hj] -= c.get_val() * y_k;
|
||||
}
|
||||
}
|
||||
// add the index of m_y_copy to m_ii
|
||||
for (unsigned i : m_y_copy.m_index) {
|
||||
if (m_ii.m_data[i] == 0)
|
||||
m_ii.set_value(1, i);
|
||||
}
|
||||
|
||||
// there is no guarantee that m_y_copy is OK here, but its index
|
||||
// is contained in m_ii index
|
||||
m_y_copy.m_index.clear();
|
||||
// setup the index of m_y_copy
|
||||
for (auto k : m_ii.m_index) {
|
||||
T& v = m_y_copy.m_data[k];
|
||||
if (settings.abs_val_is_smaller_than_drop_tolerance(v))
|
||||
v = zero_of_type<T>();
|
||||
else {
|
||||
m_y_copy.set_value(v, k);
|
||||
}
|
||||
}
|
||||
lean_assert(m_y_copy.is_OK());
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// solves y*B = y
|
||||
// y is the input
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_yB_with_error_check_indexed(indexed_vector<T> & y, const vector<int>& heading, const vector<unsigned> & basis, const lp_settings & settings) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (y.m_index.size() * ratio_of_index_size_to_all_size<T>() * 3 < m_A.column_count()) {
|
||||
solve_yB_indexed(y);
|
||||
} else {
|
||||
solve_yB(y.m_data);
|
||||
y.restore_index_and_clean_from_data();
|
||||
}
|
||||
return;
|
||||
}
|
||||
lean_assert(m_y_copy.is_OK());
|
||||
lean_assert(y.is_OK());
|
||||
if (y.m_index.size() * ratio_of_index_size_to_all_size<T>() < m_A.column_count()) {
|
||||
m_y_copy = y;
|
||||
solve_yB_indexed(y);
|
||||
lean_assert(y.is_OK());
|
||||
if (y.m_index.size() * ratio_of_index_size_to_all_size<T>() >= m_A.column_count()) {
|
||||
find_error_of_yB(m_y_copy.m_data, y.m_data, basis);
|
||||
solve_yB(m_y_copy.m_data);
|
||||
add_delta_to_solution(m_y_copy.m_data, y.m_data);
|
||||
y.restore_index_and_clean_from_data();
|
||||
m_y_copy.clear_all();
|
||||
} else {
|
||||
find_error_of_yB_indexed(y, heading, settings); // this works with m_y_copy
|
||||
solve_yB_indexed(m_y_copy);
|
||||
add_delta_to_solution_indexed(y);
|
||||
}
|
||||
lean_assert(m_y_copy.is_OK());
|
||||
} else {
|
||||
solve_yB_with_error_check(y.m_data, basis);
|
||||
y.restore_index_and_clean_from_data();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// solves y*B = y
|
||||
// y is the input
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::solve_yB_with_error_check(vector<T> & y, const vector<unsigned>& basis) {
|
||||
if (numeric_traits<T>::precise()) {
|
||||
solve_yB(y);
|
||||
return;
|
||||
}
|
||||
auto & yc = m_y_copy.m_data;
|
||||
yc =y; // copy y aside
|
||||
solve_yB(y);
|
||||
find_error_of_yB(yc, y, basis);
|
||||
solve_yB(yc);
|
||||
add_delta_to_solution(yc, y);
|
||||
m_y_copy.clear_all();
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::apply_Q_R_to_U(permutation_matrix<T, X> & r_wave) {
|
||||
m_U.multiply_from_right(r_wave);
|
||||
m_U.multiply_from_left_with_reverse(r_wave);
|
||||
}
|
||||
|
||||
|
||||
// Solving yB = cb to find the entering variable,
|
||||
// where cb is the cost vector projected to B.
|
||||
// The result is stored in cb.
|
||||
|
||||
// solving Bd = a ( to find the column d of B^{-1} A_N corresponding to the entering
|
||||
// variable
|
||||
template <typename T, typename X>
|
||||
lu<T, X>::~lu(){
|
||||
for (auto t : m_tail) {
|
||||
delete t;
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::init_vector_y(vector<X> & y) {
|
||||
apply_lp_list_to_y(y);
|
||||
m_Q.apply_reverse_from_left_to_X(y);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::perform_transformations_on_w(indexed_vector<T>& w) {
|
||||
apply_lp_list_to_w(w);
|
||||
m_Q.apply_reverse_from_left(w);
|
||||
// TBD does not compile: lean_assert(numeric_traits<T>::precise() || check_vector_for_small_values(w, m_settings));
|
||||
}
|
||||
|
||||
// see Chvatal 24.3
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::init_vector_w(unsigned entering, indexed_vector<T> & w) {
|
||||
w.clear();
|
||||
m_A.copy_column_to_indexed_vector(entering, w); // w = a, the column
|
||||
perform_transformations_on_w(w);
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::apply_lp_list_to_w(indexed_vector<T> & w) {
|
||||
for (unsigned i = 0; i < m_tail.size(); i++) {
|
||||
m_tail[i]->apply_from_left_to_T(w, m_settings);
|
||||
// TBD does not compile: lean_assert(check_vector_for_small_values(w, m_settings));
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::apply_lp_list_to_y(vector<X>& y) {
|
||||
for (unsigned i = 0; i < m_tail.size(); i++) {
|
||||
m_tail[i]->apply_from_left(y, m_settings);
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::swap_rows(int j, int k) {
|
||||
if (j != k) {
|
||||
m_Q.transpose_from_left(j, k);
|
||||
m_U.swap_rows(j, k);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::swap_columns(int j, int pivot_column) {
|
||||
if (j == pivot_column)
|
||||
return;
|
||||
m_R.transpose_from_right(j, pivot_column);
|
||||
m_U.swap_columns(j, pivot_column);
|
||||
}
|
||||
template <typename T, typename X>
|
||||
bool lu<T, X>::pivot_the_row(int row) {
|
||||
eta_matrix<T, X> * eta_matrix = get_eta_matrix_for_pivot(row);
|
||||
if (get_status() != LU_status::OK) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (eta_matrix == nullptr) {
|
||||
m_U.shorten_active_matrix(row, nullptr);
|
||||
return true;
|
||||
}
|
||||
if (!m_U.pivot_with_eta(row, eta_matrix, m_settings))
|
||||
return false;
|
||||
eta_matrix->conjugate_by_permutation(m_Q);
|
||||
push_matrix_to_tail(eta_matrix);
|
||||
return true;
|
||||
}
|
||||
// we're processing the column j now
|
||||
template <typename T, typename X>
|
||||
eta_matrix<T, X> * lu<T, X>::get_eta_matrix_for_pivot(unsigned j) {
|
||||
eta_matrix<T, X> *ret;
|
||||
if(!m_U.fill_eta_matrix(j, &ret)) {
|
||||
set_status(LU_status::Degenerated);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
// we're processing the column j now
|
||||
template <typename T, typename X>
|
||||
eta_matrix<T, X> * lu<T, X>::get_eta_matrix_for_pivot(unsigned j, sparse_matrix<T, X>& copy_of_U) {
|
||||
eta_matrix<T, X> *ret;
|
||||
copy_of_U.fill_eta_matrix(j, &ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
// see page 407 of Chvatal
|
||||
template <typename T, typename X>
|
||||
unsigned lu<T, X>::transform_U_to_V_by_replacing_column(indexed_vector<T> & w,
|
||||
unsigned leaving_column) {
|
||||
unsigned column_to_replace = m_R.apply_reverse(leaving_column);
|
||||
m_U.replace_column(column_to_replace, w, m_settings);
|
||||
return column_to_replace;
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::check_vector_w(unsigned entering) {
|
||||
T * w = new T[m_dim];
|
||||
m_A.copy_column_to_vector(entering, w);
|
||||
check_apply_lp_lists_to_w(w);
|
||||
delete [] w;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::check_apply_matrix_to_vector(matrix<T, X> *lp, T *w) {
|
||||
if (lp != nullptr) {
|
||||
lp -> set_number_of_rows(m_dim);
|
||||
lp -> set_number_of_columns(m_dim);
|
||||
apply_to_vector(*lp, w);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::check_apply_lp_lists_to_w(T * w) {
|
||||
for (unsigned i = 0; i < m_tail.size(); i++) {
|
||||
check_apply_matrix_to_vector(m_tail[i], w);
|
||||
}
|
||||
permutation_matrix<T, X> qr = m_Q.get_reverse();
|
||||
apply_to_vector(qr, w);
|
||||
for (int i = m_dim - 1; i >= 0; i--) {
|
||||
lean_assert(abs(w[i] - w[i]) < 0.0000001);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::process_column(int j) {
|
||||
unsigned pi, pj;
|
||||
bool success = m_U.get_pivot_for_column(pi, pj, m_settings.c_partial_pivoting, j);
|
||||
if (!success) {
|
||||
LP_OUT(m_settings, "get_pivot returned false: cannot find the pivot for column " << j << std::endl);
|
||||
m_failure = true;
|
||||
return;
|
||||
}
|
||||
|
||||
if (static_cast<int>(pi) == -1) {
|
||||
LP_OUT(m_settings, "cannot find the pivot for column " << j << std::endl);
|
||||
m_failure = true;
|
||||
return;
|
||||
}
|
||||
swap_columns(j, pj);
|
||||
swap_rows(j, pi);
|
||||
if (!pivot_the_row(j)) {
|
||||
// LP_OUT(m_settings, "pivot_the_row(" << j << ") failed" << std::endl);
|
||||
m_failure = true;
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
bool lu<T, X>::is_correct(const vector<unsigned>& basis) {
|
||||
#ifdef LEAN_DEBUG
|
||||
if (get_status() != LU_status::OK) {
|
||||
return false;
|
||||
}
|
||||
dense_matrix<T, X> left_side = get_left_side(basis);
|
||||
dense_matrix<T, X> right_side = get_right_side();
|
||||
return left_side == right_side;
|
||||
#else
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> lu<T, X>::tail_product() {
|
||||
lean_assert(tail_size() > 0);
|
||||
dense_matrix<T, X> left_side = permutation_matrix<T, X>(m_dim);
|
||||
for (unsigned i = 0; i < tail_size(); i++) {
|
||||
matrix<T, X>* lp = get_lp_matrix(i);
|
||||
lp->set_number_of_rows(m_dim);
|
||||
lp->set_number_of_columns(m_dim);
|
||||
left_side = ((*lp) * left_side);
|
||||
}
|
||||
return left_side;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> lu<T, X>::get_left_side(const vector<unsigned>& basis) {
|
||||
dense_matrix<T, X> left_side = get_B(*this, basis);
|
||||
for (unsigned i = 0; i < tail_size(); i++) {
|
||||
matrix<T, X>* lp = get_lp_matrix(i);
|
||||
lp->set_number_of_rows(m_dim);
|
||||
lp->set_number_of_columns(m_dim);
|
||||
left_side = ((*lp) * left_side);
|
||||
}
|
||||
return left_side;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> lu<T, X>::get_right_side() {
|
||||
auto ret = U() * R();
|
||||
ret = Q() * ret;
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
|
||||
// needed for debugging purposes
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::copy_w(T *buffer, indexed_vector<T> & w) {
|
||||
unsigned i = m_dim;
|
||||
while (i--) {
|
||||
buffer[i] = w[i];
|
||||
}
|
||||
}
|
||||
|
||||
// needed for debugging purposes
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::restore_w(T *buffer, indexed_vector<T> & w) {
|
||||
unsigned i = m_dim;
|
||||
while (i--) {
|
||||
w[i] = buffer[i];
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
bool lu<T, X>::all_columns_and_rows_are_active() {
|
||||
unsigned i = m_dim;
|
||||
while (i--) {
|
||||
lean_assert(m_U.col_is_active(i));
|
||||
lean_assert(m_U.row_is_active(i));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
template <typename T, typename X>
|
||||
bool lu<T, X>::too_dense(unsigned j) const {
|
||||
unsigned r = m_dim - j;
|
||||
if (r < 5)
|
||||
return false;
|
||||
// if (j * 5 < m_dim * 4) // start looking for dense only at the bottom of the rows
|
||||
// return false;
|
||||
// return r * r * m_settings.density_threshold <= m_U.get_number_of_nonzeroes_below_row(j);
|
||||
return r * r * m_settings.density_threshold <= m_U.get_n_of_active_elems();
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::pivot_in_dense_mode(unsigned i) {
|
||||
int j = m_dense_LU->find_pivot_column_in_row(i);
|
||||
if (j == -1) {
|
||||
m_failure = true;
|
||||
return;
|
||||
}
|
||||
if (i != static_cast<unsigned>(j)) {
|
||||
swap_columns(i, j);
|
||||
m_dense_LU->swap_columns(i, j);
|
||||
}
|
||||
m_dense_LU->pivot(i, m_settings);
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::create_initial_factorization(){
|
||||
m_U.prepare_for_factorization();
|
||||
unsigned j;
|
||||
for (j = 0; j < m_dim; j++) {
|
||||
process_column(j);
|
||||
if (m_failure) {
|
||||
set_status(LU_status::Degenerated);
|
||||
return;
|
||||
}
|
||||
if (too_dense(j)) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (j == m_dim) {
|
||||
// TBD does not compile: lean_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
|
||||
// lean_assert(is_correct());
|
||||
// lean_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
|
||||
return;
|
||||
}
|
||||
j++;
|
||||
m_dense_LU = new square_dense_submatrix<T, X>(&m_U, j);
|
||||
for (; j < m_dim; j++) {
|
||||
pivot_in_dense_mode(j);
|
||||
if (m_failure) {
|
||||
set_status(LU_status::Degenerated);
|
||||
return;
|
||||
}
|
||||
}
|
||||
m_dense_LU->update_parent_matrix(m_settings);
|
||||
lean_assert(m_dense_LU->is_L_matrix());
|
||||
m_dense_LU->conjugate_by_permutation(m_Q);
|
||||
push_matrix_to_tail(m_dense_LU);
|
||||
m_refactor_counter = 0;
|
||||
// lean_assert(is_correct());
|
||||
// lean_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::calculate_r_wave_and_update_U(unsigned bump_start, unsigned bump_end, permutation_matrix<T, X> & r_wave) {
|
||||
if (bump_start > bump_end) {
|
||||
set_status(LU_status::Degenerated);
|
||||
return;
|
||||
}
|
||||
if (bump_start == bump_end) {
|
||||
return;
|
||||
}
|
||||
|
||||
r_wave[bump_start] = bump_end; // sending the offensive column to the end of the bump
|
||||
|
||||
for ( unsigned i = bump_start + 1 ; i <= bump_end; i++ ) {
|
||||
r_wave[i] = i - 1;
|
||||
}
|
||||
|
||||
m_U.multiply_from_right(r_wave);
|
||||
m_U.multiply_from_left_with_reverse(r_wave);
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::scan_last_row_to_work_vector(unsigned lowest_row_of_the_bump) {
|
||||
vector<indexed_value<T>> & last_row_vec = m_U.get_row_values(m_U.adjust_row(lowest_row_of_the_bump));
|
||||
for (auto & iv : last_row_vec) {
|
||||
if (is_zero(iv.m_value)) continue;
|
||||
lean_assert(!m_settings.abs_val_is_smaller_than_drop_tolerance(iv.m_value));
|
||||
unsigned adjusted_col = m_U.adjust_column_inverse(iv.m_index);
|
||||
if (adjusted_col < lowest_row_of_the_bump) {
|
||||
m_row_eta_work_vector.set_value(-iv.m_value, adjusted_col);
|
||||
} else {
|
||||
m_row_eta_work_vector.set_value(iv.m_value, adjusted_col); // preparing to calculate the real value in the matrix
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::pivot_and_solve_the_system(unsigned replaced_column, unsigned lowest_row_of_the_bump) {
|
||||
// we have the system right side at m_row_eta_work_vector now
|
||||
// solve the system column wise
|
||||
for (unsigned j = replaced_column; j < lowest_row_of_the_bump; j++) {
|
||||
T v = m_row_eta_work_vector[j];
|
||||
if (numeric_traits<T>::is_zero(v)) continue; // this column does not contribute to the solution
|
||||
unsigned aj = m_U.adjust_row(j);
|
||||
vector<indexed_value<T>> & row = m_U.get_row_values(aj);
|
||||
for (auto & iv : row) {
|
||||
unsigned col = m_U.adjust_column_inverse(iv.m_index);
|
||||
lean_assert(col >= j || numeric_traits<T>::is_zero(iv.m_value));
|
||||
if (col == j) continue;
|
||||
if (numeric_traits<T>::is_zero(iv.m_value)) {
|
||||
continue;
|
||||
}
|
||||
// the -v is for solving the system ( to zero the last row), and +v is for pivoting
|
||||
T delta = col < lowest_row_of_the_bump? -v * iv.m_value: v * iv.m_value;
|
||||
lean_assert(numeric_traits<T>::is_zero(delta) == false);
|
||||
|
||||
|
||||
|
||||
// m_row_eta_work_vector.add_value_at_index_with_drop_tolerance(col, delta);
|
||||
if (numeric_traits<T>::is_zero(m_row_eta_work_vector[col])) {
|
||||
if (!m_settings.abs_val_is_smaller_than_drop_tolerance(delta)){
|
||||
m_row_eta_work_vector.set_value(delta, col);
|
||||
}
|
||||
} else {
|
||||
T t = (m_row_eta_work_vector[col] += delta);
|
||||
if (m_settings.abs_val_is_smaller_than_drop_tolerance(t)){
|
||||
m_row_eta_work_vector[col] = numeric_traits<T>::zero();
|
||||
auto it = std::find(m_row_eta_work_vector.m_index.begin(), m_row_eta_work_vector.m_index.end(), col);
|
||||
if (it != m_row_eta_work_vector.m_index.end())
|
||||
m_row_eta_work_vector.m_index.erase(it);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// see Achim Koberstein's thesis page 58, but here we solve the system and pivot to the last
|
||||
// row at the same time
|
||||
template <typename T, typename X>
|
||||
row_eta_matrix<T, X> *lu<T, X>::get_row_eta_matrix_and_set_row_vector(unsigned replaced_column, unsigned lowest_row_of_the_bump, const T & pivot_elem_for_checking) {
|
||||
if (replaced_column == lowest_row_of_the_bump) return nullptr;
|
||||
scan_last_row_to_work_vector(lowest_row_of_the_bump);
|
||||
pivot_and_solve_the_system(replaced_column, lowest_row_of_the_bump);
|
||||
if (numeric_traits<T>::precise() == false && !is_zero(pivot_elem_for_checking)) {
|
||||
T denom = std::max(T(1), abs(pivot_elem_for_checking));
|
||||
if (
|
||||
!m_settings.abs_val_is_smaller_than_pivot_tolerance((m_row_eta_work_vector[lowest_row_of_the_bump] - pivot_elem_for_checking) / denom)) {
|
||||
set_status(LU_status::Degenerated);
|
||||
// LP_OUT(m_settings, "diagonal element is off" << std::endl);
|
||||
return nullptr;
|
||||
}
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
auto ret = new row_eta_matrix<T, X>(replaced_column, lowest_row_of_the_bump, m_dim);
|
||||
#else
|
||||
auto ret = new row_eta_matrix<T, X>(replaced_column, lowest_row_of_the_bump);
|
||||
#endif
|
||||
|
||||
for (auto j : m_row_eta_work_vector.m_index) {
|
||||
if (j < lowest_row_of_the_bump) {
|
||||
auto & v = m_row_eta_work_vector[j];
|
||||
if (!is_zero(v)) {
|
||||
if (!m_settings.abs_val_is_smaller_than_drop_tolerance(v)){
|
||||
ret->push_back(j, v);
|
||||
}
|
||||
v = numeric_traits<T>::zero();
|
||||
}
|
||||
}
|
||||
} // now the lowest_row_of_the_bump contains the rest of the row to the right of the bump with correct values
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::replace_column(T pivot_elem_for_checking, indexed_vector<T> & w, unsigned leaving_column_of_U){
|
||||
m_refactor_counter++;
|
||||
unsigned replaced_column = transform_U_to_V_by_replacing_column( w, leaving_column_of_U);
|
||||
unsigned lowest_row_of_the_bump = m_U.lowest_row_in_column(replaced_column);
|
||||
m_r_wave.init(m_dim);
|
||||
calculate_r_wave_and_update_U(replaced_column, lowest_row_of_the_bump, m_r_wave);
|
||||
auto row_eta = get_row_eta_matrix_and_set_row_vector(replaced_column, lowest_row_of_the_bump, pivot_elem_for_checking);
|
||||
|
||||
if (get_status() == LU_status::Degenerated) {
|
||||
m_row_eta_work_vector.clear_all();
|
||||
return;
|
||||
}
|
||||
m_Q.multiply_by_permutation_from_right(m_r_wave);
|
||||
m_R.multiply_by_permutation_reverse_from_left(m_r_wave);
|
||||
if (row_eta != nullptr) {
|
||||
row_eta->conjugate_by_permutation(m_Q);
|
||||
push_matrix_to_tail(row_eta);
|
||||
}
|
||||
calculate_Lwave_Pwave_for_bump(replaced_column, lowest_row_of_the_bump);
|
||||
// lean_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
|
||||
// lean_assert(w.is_OK() && m_row_eta_work_vector.is_OK());
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::calculate_Lwave_Pwave_for_bump(unsigned replaced_column, unsigned lowest_row_of_the_bump){
|
||||
T diagonal_elem;
|
||||
if (replaced_column < lowest_row_of_the_bump) {
|
||||
diagonal_elem = m_row_eta_work_vector[lowest_row_of_the_bump];
|
||||
// lean_assert(m_row_eta_work_vector.is_OK());
|
||||
m_U.set_row_from_work_vector_and_clean_work_vector_not_adjusted(m_U.adjust_row(lowest_row_of_the_bump), m_row_eta_work_vector, m_settings);
|
||||
} else {
|
||||
diagonal_elem = m_U(lowest_row_of_the_bump, lowest_row_of_the_bump); // todo - get it more efficiently
|
||||
}
|
||||
if (m_settings.abs_val_is_smaller_than_pivot_tolerance(diagonal_elem)) {
|
||||
set_status(LU_status::Degenerated);
|
||||
return;
|
||||
}
|
||||
|
||||
calculate_Lwave_Pwave_for_last_row(lowest_row_of_the_bump, diagonal_elem);
|
||||
// lean_assert(m_U.is_upper_triangular_and_maximums_are_set_correctly_in_rows(m_settings));
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void lu<T, X>::calculate_Lwave_Pwave_for_last_row(unsigned lowest_row_of_the_bump, T diagonal_element) {
|
||||
auto l = new one_elem_on_diag<T, X>(lowest_row_of_the_bump, diagonal_element);
|
||||
#ifdef LEAN_DEBUG
|
||||
l->set_number_of_columns(m_dim);
|
||||
#endif
|
||||
push_matrix_to_tail(l);
|
||||
m_U.divide_row_by_constant(lowest_row_of_the_bump, diagonal_element, m_settings);
|
||||
l->conjugate_by_permutation(m_Q);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void init_factorization(lu<T, X>* & factorization, static_matrix<T, X> & m_A, vector<unsigned> & m_basis, lp_settings &m_settings) {
|
||||
if (factorization != nullptr)
|
||||
delete factorization;
|
||||
factorization = new lu<T, X>(m_A, m_basis, m_settings);
|
||||
// if (factorization->get_status() != LU_status::OK)
|
||||
// LP_OUT(m_settings, "failing in init_factorization" << std::endl);
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
dense_matrix<T, X> get_B(lu<T, X>& f, const vector<unsigned>& basis) {
|
||||
lean_assert(basis.size() == f.dimension());
|
||||
lean_assert(basis.size() == f.m_U.dimension());
|
||||
dense_matrix<T, X> B(f.dimension(), f.dimension());
|
||||
for (unsigned i = 0; i < f.dimension(); i++)
|
||||
for (unsigned j = 0; j < f.dimension(); j++)
|
||||
B.set_elem(i, j, f.B_(i, j, basis));
|
||||
|
||||
return B;
|
||||
}
|
||||
#endif
|
||||
}
|
63
src/util/lp/lu_instances.cpp
Normal file
63
src/util/lp/lu_instances.cpp
Normal file
|
@ -0,0 +1,63 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <utility>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include "util/lp/lu.hpp"
|
||||
template double lean::dot_product<double, double>(vector<double> const&, vector<double> const&);
|
||||
template lean::lu<double, double>::lu(lean::static_matrix<double, double> const&, vector<unsigned int>&, lean::lp_settings&);
|
||||
template void lean::lu<double, double>::push_matrix_to_tail(lean::tail_matrix<double, double>*);
|
||||
template void lean::lu<double, double>::replace_column(double, lean::indexed_vector<double>&, unsigned);
|
||||
template void lean::lu<double, double>::solve_Bd(unsigned int, lean::indexed_vector<double>&, lean::indexed_vector<double>&);
|
||||
template lean::lu<double, double>::~lu();
|
||||
template void lean::lu<lean::mpq, lean::mpq>::push_matrix_to_tail(lean::tail_matrix<lean::mpq, lean::mpq>*);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_Bd(unsigned int, lean::indexed_vector<lean::mpq>&, lean::indexed_vector<lean::mpq>&);
|
||||
template lean::lu<lean::mpq, lean::mpq>::~lu();
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::push_matrix_to_tail(lean::tail_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >*);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_Bd(unsigned int, lean::indexed_vector<lean::mpq>&, lean::indexed_vector<lean::mpq>&);
|
||||
template lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::~lu();
|
||||
template lean::mpq lean::dot_product<lean::mpq, lean::mpq>(vector<lean::mpq > const&, vector<lean::mpq > const&);
|
||||
template void lean::init_factorization<double, double>(lean::lu<double, double>*&, lean::static_matrix<double, double>&, vector<unsigned int>&, lean::lp_settings&);
|
||||
template void lean::init_factorization<lean::mpq, lean::mpq>(lean::lu<lean::mpq, lean::mpq>*&, lean::static_matrix<lean::mpq, lean::mpq>&, vector<unsigned int>&, lean::lp_settings&);
|
||||
template void lean::init_factorization<lean::mpq, lean::numeric_pair<lean::mpq> >(lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >*&, lean::static_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&, vector<unsigned int>&, lean::lp_settings&);
|
||||
#ifdef LEAN_DEBUG
|
||||
template void lean::print_matrix<double, double>(lean::sparse_matrix<double, double>&, std::ostream & out);
|
||||
template void lean::print_matrix<lean::mpq, lean::mpq>(lean::static_matrix<lean::mpq, lean::mpq>&, std::ostream&);
|
||||
template void lean::print_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >(lean::static_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&, std::ostream&);
|
||||
template void lean::print_matrix<double, double>(lean::static_matrix<double, double>&, std::ostream & out);
|
||||
template bool lean::lu<double, double>::is_correct(const vector<unsigned>& basis);
|
||||
template bool lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::is_correct( vector<unsigned int> const &);
|
||||
template lean::dense_matrix<double, double> lean::get_B<double, double>(lean::lu<double, double>&, const vector<unsigned>& basis);
|
||||
template lean::dense_matrix<lean::mpq, lean::mpq> lean::get_B<lean::mpq, lean::mpq>(lean::lu<lean::mpq, lean::mpq>&, vector<unsigned int> const&);
|
||||
|
||||
#endif
|
||||
|
||||
template bool lean::lu<double, double>::pivot_the_row(int); // NOLINT
|
||||
template void lean::lu<double, double>::init_vector_w(unsigned int, lean::indexed_vector<double>&);
|
||||
template void lean::lu<double, double>::solve_By(vector<double>&);
|
||||
template void lean::lu<double, double>::solve_By_when_y_is_ready_for_X(vector<double>&);
|
||||
template void lean::lu<double, double>::solve_yB_with_error_check(vector<double>&, const vector<unsigned>& basis);
|
||||
template void lean::lu<double, double>::solve_yB_with_error_check_indexed(lean::indexed_vector<double>&, vector<int> const&, const vector<unsigned> & basis, const lp_settings&);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::replace_column(lean::mpq, lean::indexed_vector<lean::mpq>&, unsigned);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_By(vector<lean::mpq >&);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_By_when_y_is_ready_for_X(vector<lean::mpq >&);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_yB_with_error_check(vector<lean::mpq >&, const vector<unsigned>& basis);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_yB_with_error_check_indexed(lean::indexed_vector<lean::mpq>&, vector< int > const&, const vector<unsigned> & basis, const lp_settings&);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_yB_with_error_check_indexed(lean::indexed_vector<lean::mpq>&, vector< int > const&, const vector<unsigned> & basis, const lp_settings&);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::init_vector_w(unsigned int, lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::replace_column(lean::mpq, lean::indexed_vector<lean::mpq>&, unsigned);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_Bd_faster(unsigned int, lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_By(vector<lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_By_when_y_is_ready_for_X(vector<lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_yB_with_error_check(vector<lean::mpq >&, const vector<unsigned>& basis);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_By(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::lu<double, double>::solve_By(lean::indexed_vector<double>&);
|
||||
template void lean::lu<double, double>::solve_yB_indexed(lean::indexed_vector<double>&);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_yB_indexed(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::lu<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_yB_indexed(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::lu<lean::mpq, lean::mpq>::solve_By_for_T_indexed_only(lean::indexed_vector<lean::mpq>&, lean::lp_settings const&);
|
||||
template void lean::lu<double, double>::solve_By_for_T_indexed_only(lean::indexed_vector<double>&, lean::lp_settings const&);
|
44
src/util/lp/matrix.h
Normal file
44
src/util/lp/matrix.h
Normal file
|
@ -0,0 +1,44 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#ifdef Z3DEBUG
|
||||
#pragma once
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/vector.h"
|
||||
#include <string>
|
||||
#include "util/lp/lp_settings.h"
|
||||
namespace lean {
|
||||
// used for debugging purposes only
|
||||
template <typename T, typename X>
|
||||
class matrix {
|
||||
public:
|
||||
virtual T get_elem (unsigned i, unsigned j) const = 0;
|
||||
virtual unsigned row_count() const = 0;
|
||||
virtual unsigned column_count() const = 0;
|
||||
virtual void set_number_of_rows(unsigned m) = 0;
|
||||
virtual void set_number_of_columns(unsigned n) = 0;
|
||||
|
||||
virtual ~matrix() {}
|
||||
|
||||
bool is_equal(const matrix<T, X>& other);
|
||||
bool operator == (matrix<T, X> const & other) {
|
||||
return is_equal(other);
|
||||
}
|
||||
T operator()(unsigned i, unsigned j) const { return get_elem(i, j); }
|
||||
};
|
||||
|
||||
template <typename T, typename X>
|
||||
void apply_to_vector(matrix<T, X> & m, T * w);
|
||||
|
||||
|
||||
|
||||
unsigned get_width_of_column(unsigned j, vector<vector<std::string>> & A);
|
||||
void print_matrix_with_widths(vector<vector<std::string>> & A, vector<unsigned> & ws, std::ostream & out);
|
||||
void print_string_matrix(vector<vector<std::string>> & A);
|
||||
|
||||
template <typename T, typename X>
|
||||
void print_matrix(matrix<T, X> const * m, std::ostream & out);
|
||||
|
||||
}
|
||||
#endif
|
105
src/util/lp/matrix.hpp
Normal file
105
src/util/lp/matrix.hpp
Normal file
|
@ -0,0 +1,105 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#ifdef Z3DEBUG
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include "util/lp/matrix.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
bool matrix<T, X>::is_equal(const matrix<T, X>& other) {
|
||||
if (other.row_count() != row_count() || other.column_count() != column_count())
|
||||
return false;
|
||||
for (unsigned i = 0; i < row_count(); i++) {
|
||||
for (unsigned j = 0; j < column_count(); j++) {
|
||||
auto a = get_elem(i, j);
|
||||
auto b = other.get_elem(i, j);
|
||||
if (numeric_traits<T>::precise()) {
|
||||
if (a != b) return false;
|
||||
} else if (fabs(numeric_traits<T>::get_double(a - b)) > 0.000001) {
|
||||
// cout << "returning false from operator== of matrix comparison" << endl;
|
||||
// cout << "this matrix is " << endl;
|
||||
// print_matrix(*this);
|
||||
// cout << "other matrix is " << endl;
|
||||
// print_matrix(other);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void apply_to_vector(matrix<T, X> & m, T * w) {
|
||||
// here m is a square matrix
|
||||
unsigned dim = m.row_count();
|
||||
|
||||
T * wc = new T[dim];
|
||||
|
||||
for (unsigned i = 0; i < dim; i++) {
|
||||
wc[i] = w[i];
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < dim; i++) {
|
||||
T t = numeric_traits<T>::zero();
|
||||
for (unsigned j = 0; j < dim; j++) {
|
||||
t += m(i, j) * wc[j];
|
||||
}
|
||||
w[i] = t;
|
||||
}
|
||||
delete [] wc;
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned get_width_of_column(unsigned j, vector<vector<std::string>> & A) {
|
||||
unsigned r = 0;
|
||||
for (unsigned i = 0; i < A.size(); i++) {
|
||||
vector<std::string> & t = A[i];
|
||||
std::string str= t[j];
|
||||
unsigned s = str.size();
|
||||
if (r < s) {
|
||||
r = s;
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void print_matrix_with_widths(vector<vector<std::string>> & A, vector<unsigned> & ws, std::ostream & out) {
|
||||
for (unsigned i = 0; i < A.size(); i++) {
|
||||
for (unsigned j = 0; j < A[i].size(); j++) {
|
||||
print_blanks(ws[j] - A[i][j].size(), out);
|
||||
out << A[i][j] << " ";
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void print_string_matrix(vector<vector<std::string>> & A, std::ostream & out) {
|
||||
vector<unsigned> widths;
|
||||
|
||||
if (A.size() > 0)
|
||||
for (unsigned j = 0; j < A[0].size(); j++) {
|
||||
widths.push_back(get_width_of_column(j, A));
|
||||
}
|
||||
|
||||
print_matrix_with_widths(A, widths, out);
|
||||
out << std::endl;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void print_matrix(matrix<T, X> const * m, std::ostream & out) {
|
||||
vector<vector<std::string>> A(m->row_count());
|
||||
for (unsigned i = 0; i < m->row_count(); i++) {
|
||||
for (unsigned j = 0; j < m->column_count(); j++) {
|
||||
A[i].push_back(T_to_string(m->get_elem(i, j)));
|
||||
}
|
||||
}
|
||||
|
||||
print_string_matrix(A, out);
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
16
src/util/lp/matrix_instances.cpp
Normal file
16
src/util/lp/matrix_instances.cpp
Normal file
|
@ -0,0 +1,16 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lp_settings.h"
|
||||
#ifdef LEAN_DEBUG
|
||||
#include "util/lp/matrix.hpp"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include <string>
|
||||
template void lean::print_matrix<double, double>(lean::matrix<double, double> const*, std::ostream & out);
|
||||
template bool lean::matrix<double, double>::is_equal(lean::matrix<double, double> const&);
|
||||
template void lean::print_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >(lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> > const *, std::basic_ostream<char, std::char_traits<char> > &);
|
||||
template void lean::print_matrix<lean::mpq, lean::mpq>(lean::matrix<lean::mpq, lean::mpq> const*, std::ostream&);
|
||||
template bool lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::is_equal(lean::matrix<lean::mpq, lean::numeric_pair<lean::mpq> > const&);
|
||||
template bool lean::matrix<lean::mpq, lean::mpq>::is_equal(lean::matrix<lean::mpq, lean::mpq> const&);
|
||||
#endif
|
867
src/util/lp/mps_reader.h
Normal file
867
src/util/lp/mps_reader.h
Normal file
|
@ -0,0 +1,867 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
// reads an MPS file reperesenting a Mixed Integer Program
|
||||
#include <functional>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include "util/vector.h"
|
||||
#include <unordered_map>
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <locale>
|
||||
#include "util/lp/lp_primal_simplex.h"
|
||||
#include "util/lp/lp_dual_simplex.h"
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/lp_solver.h"
|
||||
namespace lean {
|
||||
inline bool my_white_space(const char & a) {
|
||||
return a == ' ' || a == '\t';
|
||||
}
|
||||
inline size_t number_of_whites(const std::string & s) {
|
||||
size_t i = 0;
|
||||
for(;i < s.size(); i++)
|
||||
if (!my_white_space(s[i])) return i;
|
||||
return i;
|
||||
}
|
||||
inline size_t number_of_whites_from_end(const std::string & s) {
|
||||
size_t ret = 0;
|
||||
for(int i = static_cast<int>(s.size()) - 1;i >= 0; i--)
|
||||
if (my_white_space(s[i])) ret++;else break;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
// trim from start
|
||||
inline std::string <rim(std::string &s) {
|
||||
s.erase(0, number_of_whites(s));
|
||||
return s;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
// trim from end
|
||||
inline std::string &rtrim(std::string &s) {
|
||||
// s.erase(std::find_if(s.rbegin(), s.rend(), std::not1(std::ptr_fun<int, int>(std::isspace))).base(), s.end());
|
||||
s.erase(s.end() - number_of_whites_from_end(s), s.end());
|
||||
return s;
|
||||
}
|
||||
// trim from both ends
|
||||
inline std::string &trim(std::string &s) {
|
||||
return ltrim(rtrim(s));
|
||||
}
|
||||
|
||||
inline std::string trim(std::string const &r) {
|
||||
std::string s = r;
|
||||
return ltrim(rtrim(s));
|
||||
}
|
||||
|
||||
|
||||
inline vector<std::string> string_split(const std::string &source, const char *delimiter, bool keep_empty) {
|
||||
vector<std::string> results;
|
||||
size_t prev = 0;
|
||||
size_t next = 0;
|
||||
while ((next = source.find_first_of(delimiter, prev)) != std::string::npos) {
|
||||
if (keep_empty || (next - prev != 0)) {
|
||||
results.push_back(source.substr(prev, next - prev));
|
||||
}
|
||||
prev = next + 1;
|
||||
}
|
||||
if (prev < source.size()) {
|
||||
results.push_back(source.substr(prev));
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
inline vector<std::string> split_and_trim(std::string line) {
|
||||
auto split = string_split(line, " \t", false);
|
||||
vector<std::string> ret;
|
||||
for (auto s : split) {
|
||||
ret.push_back(trim(s));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
class mps_reader {
|
||||
enum row_type { Cost, Less_or_equal, Greater_or_equal, Equal };
|
||||
struct bound {
|
||||
bool m_low_is_set = true;
|
||||
T m_low;
|
||||
bool m_upper_is_set = false;
|
||||
T m_upper;
|
||||
bool m_value_is_fixed = false;
|
||||
T m_fixed_value;
|
||||
bool m_free = false;
|
||||
// constructor
|
||||
bound() : m_low(numeric_traits<T>::zero()) {} // it seems all mps files I have seen have the default low value 0 on a variable
|
||||
};
|
||||
|
||||
struct column {
|
||||
std::string m_name;
|
||||
bound * m_bound = nullptr;
|
||||
unsigned m_index;
|
||||
column(std::string name, unsigned index): m_name(name), m_index(index) {
|
||||
}
|
||||
};
|
||||
|
||||
struct row {
|
||||
row_type m_type;
|
||||
std::string m_name;
|
||||
std::unordered_map<std::string, T> m_row_columns;
|
||||
T m_right_side = numeric_traits<T>::zero();
|
||||
unsigned m_index;
|
||||
T m_range = numeric_traits<T>::zero();
|
||||
row(row_type type, std::string name, unsigned index) : m_type(type), m_name(name), m_index(index) {
|
||||
}
|
||||
};
|
||||
|
||||
std::string m_file_name;
|
||||
bool m_is_OK = true;
|
||||
std::unordered_map<std::string, row *> m_rows;
|
||||
std::unordered_map<std::string, column *> m_columns;
|
||||
std::unordered_map<std::string, unsigned> m_names_to_var_index;
|
||||
std::string m_line;
|
||||
std::string m_name;
|
||||
std::string m_cost_row_name;
|
||||
std::ifstream m_file_stream;
|
||||
// needed to adjust the index row
|
||||
unsigned m_cost_line_count = 0;
|
||||
unsigned m_line_number = 0;
|
||||
std::ostream * m_message_stream = & std::cout;
|
||||
|
||||
void set_m_ok_to_false() {
|
||||
*m_message_stream << "setting m_is_OK to false" << std::endl;
|
||||
m_is_OK = false;
|
||||
}
|
||||
|
||||
std::string get_string_from_position(unsigned offset) {
|
||||
unsigned i = offset;
|
||||
for (; i < m_line.size(); i++){
|
||||
if (m_line[i] == ' ')
|
||||
break;
|
||||
}
|
||||
lean_assert(m_line.size() >= offset);
|
||||
lean_assert(m_line.size() >> i);
|
||||
lean_assert(i >= offset);
|
||||
return m_line.substr(offset, i - offset);
|
||||
}
|
||||
|
||||
void set_boundary_for_column(unsigned col, bound * b, lp_solver<T, X> * solver){
|
||||
if (b == nullptr) {
|
||||
solver->set_low_bound(col, numeric_traits<T>::zero());
|
||||
return;
|
||||
}
|
||||
|
||||
if (b->m_free) {
|
||||
return;
|
||||
}
|
||||
if (b->m_low_is_set) {
|
||||
solver->set_low_bound(col, b->m_low);
|
||||
}
|
||||
if (b->m_upper_is_set) {
|
||||
solver->set_upper_bound(col, b->m_upper);
|
||||
}
|
||||
|
||||
if (b->m_value_is_fixed) {
|
||||
solver->set_fixed_value(col, b->m_fixed_value);
|
||||
}
|
||||
}
|
||||
|
||||
bool all_white_space() {
|
||||
for (unsigned i = 0; i < m_line.size(); i++) {
|
||||
char c = m_line[i];
|
||||
if (c != ' ' && c != '\t') {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void read_line() {
|
||||
while (m_is_OK) {
|
||||
if (!getline(m_file_stream, m_line)) {
|
||||
m_line_number++;
|
||||
set_m_ok_to_false();
|
||||
*m_message_stream << "cannot read from file" << std::endl;
|
||||
}
|
||||
m_line_number++;
|
||||
if (m_line.size() != 0 && m_line[0] != '*' && !all_white_space())
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void read_name() {
|
||||
do {
|
||||
read_line();
|
||||
if (m_line.find("NAME") != 0) {
|
||||
continue;
|
||||
}
|
||||
m_line = m_line.substr(4);
|
||||
m_name = trim(m_line);
|
||||
break;
|
||||
} while (m_is_OK);
|
||||
}
|
||||
|
||||
void read_rows() {
|
||||
// look for start of the rows
|
||||
read_line();
|
||||
do {
|
||||
if (static_cast<int>(m_line.find("ROWS")) >= 0) {
|
||||
break;
|
||||
}
|
||||
} while (m_is_OK);
|
||||
do {
|
||||
read_line();
|
||||
if (m_line.find("COLUMNS") == 0) {
|
||||
break;
|
||||
}
|
||||
add_row();
|
||||
} while (m_is_OK);
|
||||
}
|
||||
|
||||
void read_column_by_columns(std::string column_name, std::string column_data) {
|
||||
// uph, let us try to work with columns
|
||||
if (column_data.size() >= 22) {
|
||||
std::string ss = column_data.substr(0, 8);
|
||||
std::string row_name = trim(ss);
|
||||
auto t = m_rows.find(row_name);
|
||||
|
||||
if (t == m_rows.end()) {
|
||||
*m_message_stream << "cannot find " << row_name << std::endl;
|
||||
goto fail;
|
||||
} else {
|
||||
row * row = t->second;
|
||||
row->m_row_columns[column_name] = numeric_traits<T>::from_string(column_data.substr(8));
|
||||
if (column_data.size() > 24) {
|
||||
column_data = column_data.substr(25);
|
||||
if (column_data.size() >= 22) {
|
||||
read_column_by_columns(column_name, column_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
fail:
|
||||
set_m_ok_to_false();
|
||||
*m_message_stream << "cannot understand this line" << std::endl;
|
||||
*m_message_stream << "line = " << m_line << ", line number is " << m_line_number << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void read_column(std::string column_name, std::string column_data){
|
||||
auto tokens = split_and_trim(column_data);
|
||||
for (unsigned i = 0; i < tokens.size() - 1; i+= 2) {
|
||||
auto row_name = tokens[i];
|
||||
if (row_name == "'MARKER'") return; // it is the integrality marker, no real data here
|
||||
auto t = m_rows.find(row_name);
|
||||
if (t == m_rows.end()) {
|
||||
read_column_by_columns(column_name, column_data);
|
||||
return;
|
||||
}
|
||||
row *r = t->second;
|
||||
r->m_row_columns[column_name] = numeric_traits<T>::from_string(tokens[i + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
void read_columns(){
|
||||
std::string column_name;
|
||||
do {
|
||||
read_line();
|
||||
if (m_line.find("RHS") == 0) {
|
||||
// cout << "found RHS" << std::endl;
|
||||
break;
|
||||
}
|
||||
if (m_line.size() < 22) {
|
||||
(*m_message_stream) << "line is too short for a column" << std::endl;
|
||||
(*m_message_stream) << m_line << std::endl;
|
||||
(*m_message_stream) << "line number is " << m_line_number << std::endl;
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
std::string column_name_tmp = trim(m_line.substr(4, 8));
|
||||
if (!column_name_tmp.empty()) {
|
||||
column_name = column_name_tmp;
|
||||
}
|
||||
auto col_it = m_columns.find(column_name);
|
||||
mps_reader::column * col;
|
||||
if (col_it == m_columns.end()) {
|
||||
col = new mps_reader::column(column_name, static_cast<unsigned>(m_columns.size()));
|
||||
m_columns[column_name] = col;
|
||||
// (*m_message_stream) << column_name << '[' << col->m_index << ']'<< std::endl;
|
||||
} else {
|
||||
col = col_it->second;
|
||||
}
|
||||
read_column(column_name, m_line.substr(14));
|
||||
} while (m_is_OK);
|
||||
}
|
||||
|
||||
void read_rhs() {
|
||||
do {
|
||||
read_line();
|
||||
if (m_line.find("BOUNDS") == 0 || m_line.find("ENDATA") == 0 || m_line.find("RANGES") == 0) {
|
||||
break;
|
||||
}
|
||||
fill_rhs();
|
||||
} while (m_is_OK);
|
||||
}
|
||||
|
||||
|
||||
void fill_rhs_by_columns(std::string rhsides) {
|
||||
// uph, let us try to work with columns
|
||||
if (rhsides.size() >= 22) {
|
||||
std::string ss = rhsides.substr(0, 8);
|
||||
std::string row_name = trim(ss);
|
||||
auto t = m_rows.find(row_name);
|
||||
|
||||
if (t == m_rows.end()) {
|
||||
(*m_message_stream) << "cannot find " << row_name << std::endl;
|
||||
goto fail;
|
||||
} else {
|
||||
row * row = t->second;
|
||||
row->m_right_side = numeric_traits<T>::from_string(rhsides.substr(8));
|
||||
if (rhsides.size() > 24) {
|
||||
rhsides = rhsides.substr(25);
|
||||
if (rhsides.size() >= 22) {
|
||||
fill_rhs_by_columns(rhsides);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
fail:
|
||||
set_m_ok_to_false();
|
||||
(*m_message_stream) << "cannot understand this line" << std::endl;
|
||||
(*m_message_stream) << "line = " << m_line << ", line number is " << m_line_number << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void fill_rhs() {
|
||||
if (m_line.size() < 14) {
|
||||
(*m_message_stream) << "line is too short" << std::endl;
|
||||
(*m_message_stream) << m_line << std::endl;
|
||||
(*m_message_stream) << "line number is " << m_line_number << std::endl;
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
std::string rhsides = m_line.substr(14);
|
||||
vector<std::string> splitted_line = split_and_trim(rhsides);
|
||||
|
||||
for (unsigned i = 0; i < splitted_line.size() - 1; i += 2) {
|
||||
auto t = m_rows.find(splitted_line[i]);
|
||||
if (t == m_rows.end()) {
|
||||
fill_rhs_by_columns(rhsides);
|
||||
return;
|
||||
}
|
||||
row * row = t->second;
|
||||
row->m_right_side = numeric_traits<T>::from_string(splitted_line[i + 1]);
|
||||
}
|
||||
}
|
||||
|
||||
void read_bounds() {
|
||||
if (m_line.find("BOUNDS") != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
do {
|
||||
read_line();
|
||||
if (m_line[0] != ' ') {
|
||||
break;
|
||||
}
|
||||
create_or_update_bound();
|
||||
} while (m_is_OK);
|
||||
}
|
||||
|
||||
void read_ranges() {
|
||||
if (m_line.find("RANGES") != 0) {
|
||||
return;
|
||||
}
|
||||
do {
|
||||
read_line();
|
||||
auto sl = split_and_trim(m_line);
|
||||
if (sl.size() < 2) {
|
||||
break;
|
||||
}
|
||||
read_range(sl);
|
||||
} while (m_is_OK);
|
||||
}
|
||||
|
||||
|
||||
void read_bound_by_columns(std::string colstr) {
|
||||
if (colstr.size() < 14) {
|
||||
(*m_message_stream) << "line is too short" << std::endl;
|
||||
(*m_message_stream) << m_line << std::endl;
|
||||
(*m_message_stream) << "line number is " << m_line_number << std::endl;
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
// uph, let us try to work with columns
|
||||
if (colstr.size() >= 22) {
|
||||
std::string ss = colstr.substr(0, 8);
|
||||
std::string column_name = trim(ss);
|
||||
auto t = m_columns.find(column_name);
|
||||
|
||||
if (t == m_columns.end()) {
|
||||
(*m_message_stream) << "cannot find " << column_name << std::endl;
|
||||
goto fail;
|
||||
} else {
|
||||
vector<std::string> bound_string;
|
||||
bound_string.push_back(column_name);
|
||||
if (colstr.size() > 14) {
|
||||
bound_string.push_back(colstr.substr(14));
|
||||
}
|
||||
mps_reader::column * col = t->second;
|
||||
bound * b = col->m_bound;
|
||||
if (b == nullptr) {
|
||||
col->m_bound = b = new bound();
|
||||
}
|
||||
update_bound(b, bound_string);
|
||||
}
|
||||
} else {
|
||||
fail:
|
||||
set_m_ok_to_false();
|
||||
(*m_message_stream) << "cannot understand this line" << std::endl;
|
||||
(*m_message_stream) << "line = " << m_line << ", line number is " << m_line_number << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
void update_bound(bound * b, vector<std::string> bound_string) {
|
||||
/*
|
||||
UP means an upper bound is applied to the variable. A bound of type LO means a lower bound is applied. A bound type of FX ("fixed") means that the variable has upper and lower bounds equal to a single value. A bound type of FR ("free") means the variable has neither lower nor upper bounds and so can take on negative values. A variation on that is MI for free negative, giving an upper bound of 0 but no lower bound. Bound type PL is for a free positive for zero to plus infinity, but as this is the normal default, it is seldom used. There are also bound types for use in MIP models - BV for binary, being 0 or 1. UI for upper integer and LI for lower integer. SC stands for semi-continuous and indicates that the variable may be zero, but if not must be equal to at least the value given.
|
||||
*/
|
||||
|
||||
std::string bound_type = get_string_from_position(1);
|
||||
if (bound_type == "BV") {
|
||||
b->m_upper_is_set = true;
|
||||
b->m_upper = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
if (bound_type == "UP" || bound_type == "UI" || bound_type == "LIMITMAX") {
|
||||
if (bound_string.size() <= 1){
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
b->m_upper_is_set = true;
|
||||
b->m_upper= numeric_traits<T>::from_string(bound_string[1]);
|
||||
} else if (bound_type == "LO" || bound_type == "LI") {
|
||||
if (bound_string.size() <= 1){
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
|
||||
b->m_low_is_set = true;
|
||||
b->m_low = numeric_traits<T>::from_string(bound_string[1]);
|
||||
} else if (bound_type == "FR") {
|
||||
b->m_free = true;
|
||||
} else if (bound_type == "FX") {
|
||||
if (bound_string.size() <= 1){
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
|
||||
b->m_value_is_fixed = true;
|
||||
b->m_fixed_value = numeric_traits<T>::from_string(bound_string[1]);
|
||||
} else if (bound_type == "PL") {
|
||||
b->m_low_is_set = true;
|
||||
b->m_low = 0;
|
||||
} else if (bound_type == "MI") {
|
||||
b->m_upper_is_set = true;
|
||||
b->m_upper = 0;
|
||||
} else {
|
||||
(*m_message_stream) << "unexpected bound type " << bound_type << " at line " << m_line_number << std::endl;
|
||||
set_m_ok_to_false();
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
void create_or_update_bound() {
|
||||
const unsigned name_offset = 14;
|
||||
lean_assert(m_line.size() >= 14);
|
||||
vector<std::string> bound_string = split_and_trim(m_line.substr(name_offset, m_line.size()));
|
||||
|
||||
if (bound_string.size() == 0) {
|
||||
set_m_ok_to_false();
|
||||
(*m_message_stream) << "error at line " << m_line_number << std::endl;
|
||||
throw m_line;
|
||||
}
|
||||
|
||||
std::string name = bound_string[0];
|
||||
auto it = m_columns.find(name);
|
||||
if (it == m_columns.end()){
|
||||
read_bound_by_columns(m_line.substr(14));
|
||||
return;
|
||||
}
|
||||
mps_reader::column * col = it->second;
|
||||
bound * b = col->m_bound;
|
||||
if (b == nullptr) {
|
||||
col->m_bound = b = new bound();
|
||||
}
|
||||
update_bound(b, bound_string);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void read_range_by_columns(std::string rhsides) {
|
||||
if (m_line.size() < 14) {
|
||||
(*m_message_stream) << "line is too short" << std::endl;
|
||||
(*m_message_stream) << m_line << std::endl;
|
||||
(*m_message_stream) << "line number is " << m_line_number << std::endl;
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
// uph, let us try to work with columns
|
||||
if (rhsides.size() >= 22) {
|
||||
std::string ss = rhsides.substr(0, 8);
|
||||
std::string row_name = trim(ss);
|
||||
auto t = m_rows.find(row_name);
|
||||
|
||||
if (t == m_rows.end()) {
|
||||
(*m_message_stream) << "cannot find " << row_name << std::endl;
|
||||
goto fail;
|
||||
} else {
|
||||
row * row = t->second;
|
||||
row->m_range = numeric_traits<T>::from_string(rhsides.substr(8));
|
||||
maybe_modify_current_row_and_add_row_for_range(row);
|
||||
if (rhsides.size() > 24) {
|
||||
rhsides = rhsides.substr(25);
|
||||
if (rhsides.size() >= 22) {
|
||||
read_range_by_columns(rhsides);
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
fail:
|
||||
set_m_ok_to_false();
|
||||
(*m_message_stream) << "cannot understand this line" << std::endl;
|
||||
(*m_message_stream) << "line = " << m_line << ", line number is " << m_line_number << std::endl;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void read_range(vector<std::string> & splitted_line){
|
||||
for (unsigned i = 1; i < splitted_line.size() - 1; i += 2) {
|
||||
auto it = m_rows.find(splitted_line[i]);
|
||||
if (it == m_rows.end()) {
|
||||
read_range_by_columns(m_line.substr(14));
|
||||
return;
|
||||
}
|
||||
row * row = it->second;
|
||||
row->m_range = numeric_traits<T>::from_string(splitted_line[i + 1]);
|
||||
maybe_modify_current_row_and_add_row_for_range(row);
|
||||
}
|
||||
}
|
||||
|
||||
void maybe_modify_current_row_and_add_row_for_range(row * row_with_range) {
|
||||
unsigned index= static_cast<unsigned>(m_rows.size() - m_cost_line_count);
|
||||
std::string row_name = row_with_range->m_name + "_range";
|
||||
row * other_bound_range_row;
|
||||
switch (row_with_range->m_type) {
|
||||
case row_type::Greater_or_equal:
|
||||
m_rows[row_name] = other_bound_range_row = new row(row_type::Less_or_equal, row_name, index);
|
||||
other_bound_range_row->m_right_side = row_with_range->m_right_side + abs(row_with_range->m_range);
|
||||
break;
|
||||
case row_type::Less_or_equal:
|
||||
m_rows[row_name] = other_bound_range_row = new row(row_type::Greater_or_equal, row_name, index);
|
||||
other_bound_range_row->m_right_side = row_with_range->m_right_side - abs(row_with_range->m_range);
|
||||
break;
|
||||
case row_type::Equal:
|
||||
if (row_with_range->m_range > 0) {
|
||||
row_with_range->m_type = row_type::Greater_or_equal; // the existing row type change
|
||||
m_rows[row_name] = other_bound_range_row = new row(row_type::Less_or_equal, row_name, index);
|
||||
} else { // row->m_range < 0;
|
||||
row_with_range->m_type = row_type::Less_or_equal; // the existing row type change
|
||||
m_rows[row_name] = other_bound_range_row = new row(row_type::Greater_or_equal, row_name, index);
|
||||
}
|
||||
other_bound_range_row->m_right_side = row_with_range->m_right_side + row_with_range->m_range;
|
||||
break;
|
||||
default:
|
||||
(*m_message_stream) << "unexpected bound type " << row_with_range->m_type << " at line " << m_line_number << std::endl;
|
||||
set_m_ok_to_false();
|
||||
throw;
|
||||
}
|
||||
|
||||
for (auto s : row_with_range->m_row_columns) {
|
||||
lean_assert(m_columns.find(s.first) != m_columns.end());
|
||||
other_bound_range_row->m_row_columns[s.first] = s.second;
|
||||
}
|
||||
}
|
||||
|
||||
void add_row() {
|
||||
if (m_line.length() < 2) {
|
||||
return;
|
||||
}
|
||||
|
||||
m_line = trim(m_line);
|
||||
char c = m_line[0];
|
||||
m_line = m_line.substr(1);
|
||||
m_line = trim(m_line);
|
||||
add_row(c);
|
||||
}
|
||||
|
||||
void add_row(char c) {
|
||||
unsigned index= static_cast<unsigned>(m_rows.size() - m_cost_line_count);
|
||||
switch (c) {
|
||||
case 'E':
|
||||
m_rows[m_line] = new row(row_type::Equal, m_line, index);
|
||||
break;
|
||||
case 'L':
|
||||
m_rows[m_line] = new row(row_type::Less_or_equal, m_line, index);
|
||||
break;
|
||||
case 'G':
|
||||
m_rows[m_line] = new row(row_type::Greater_or_equal, m_line, index);
|
||||
break;
|
||||
case 'N':
|
||||
m_rows[m_line] = new row(row_type::Cost, m_line, index);
|
||||
m_cost_row_name = m_line;
|
||||
m_cost_line_count++;
|
||||
break;
|
||||
}
|
||||
}
|
||||
unsigned range_count() {
|
||||
unsigned ret = 0;
|
||||
for (auto s : m_rows) {
|
||||
if (s.second->m_range != 0) {
|
||||
ret++;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
If rhs is a constraint's right-hand-side value and range is the constraint's range value, then the range interval is defined according to the following table:
|
||||
|
||||
sense interval
|
||||
G [rhs, rhs + |range|]
|
||||
L [rhs - |range|, rhs]
|
||||
E [rhs, rhs + |range|] if range ¡Ý 0 [rhs - |range|, rhs] if range < 0
|
||||
where |range| is range's absolute value.
|
||||
*/
|
||||
|
||||
lp_relation get_relation_from_row(row_type rt) {
|
||||
switch (rt) {
|
||||
case mps_reader::Less_or_equal: return lp_relation::Less_or_equal;
|
||||
case mps_reader::Greater_or_equal: return lp_relation::Greater_or_equal;
|
||||
case mps_reader::Equal: return lp_relation::Equal;
|
||||
default:
|
||||
(*m_message_stream) << "Unexpected rt " << rt << std::endl;
|
||||
set_m_ok_to_false();
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned solver_row_count() {
|
||||
return m_rows.size() - m_cost_line_count + range_count();
|
||||
}
|
||||
|
||||
void fill_solver_on_row(row * row, lp_solver<T, X> *solver) {
|
||||
if (row->m_name != m_cost_row_name) {
|
||||
solver->add_constraint(get_relation_from_row(row->m_type), row->m_right_side, row->m_index);
|
||||
for (auto s : row->m_row_columns) {
|
||||
lean_assert(m_columns.find(s.first) != m_columns.end());
|
||||
solver->set_row_column_coefficient(row->m_index, m_columns[s.first]->m_index, s.second);
|
||||
}
|
||||
} else {
|
||||
set_solver_cost(row, solver);
|
||||
}
|
||||
}
|
||||
|
||||
T abs(T & t) { return t < numeric_traits<T>::zero() ? -t: t; }
|
||||
|
||||
void fill_solver_on_rows(lp_solver<T, X> * solver) {
|
||||
for (auto row_it : m_rows) {
|
||||
fill_solver_on_row(row_it.second, solver);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void fill_solver_on_columns(lp_solver<T, X> * solver){
|
||||
for (auto s : m_columns) {
|
||||
mps_reader::column * col = s.second;
|
||||
unsigned index = col->m_index;
|
||||
set_boundary_for_column(index, col->m_bound, solver);
|
||||
// optional call
|
||||
solver->give_symbolic_name_to_column(col->m_name, col->m_index);
|
||||
}
|
||||
}
|
||||
|
||||
void fill_solver(lp_solver<T, X> *solver) {
|
||||
fill_solver_on_rows(solver);
|
||||
fill_solver_on_columns(solver);
|
||||
}
|
||||
|
||||
void set_solver_cost(row * row, lp_solver<T, X> *solver) {
|
||||
for (auto s : row->m_row_columns) {
|
||||
std::string name = s.first;
|
||||
lean_assert(m_columns.find(name) != m_columns.end());
|
||||
mps_reader::column * col = m_columns[name];
|
||||
solver->set_cost_for_column(col->m_index, s.second);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
void set_message_stream(std::ostream * o) {
|
||||
lean_assert(o != nullptr);
|
||||
m_message_stream = o;
|
||||
}
|
||||
vector<std::string> column_names() {
|
||||
vector<std::string> v;
|
||||
for (auto s : m_columns) {
|
||||
v.push_back(s.first);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
~mps_reader() {
|
||||
for (auto s : m_rows) {
|
||||
delete s.second;
|
||||
}
|
||||
for (auto s : m_columns) {
|
||||
auto col = s.second;
|
||||
auto b = col->m_bound;
|
||||
if (b != nullptr) {
|
||||
delete b;
|
||||
}
|
||||
delete col;
|
||||
}
|
||||
}
|
||||
|
||||
mps_reader(std::string file_name):
|
||||
m_file_name(file_name), m_file_stream(file_name) {
|
||||
}
|
||||
void read() {
|
||||
if (!m_file_stream.is_open()){
|
||||
set_m_ok_to_false();
|
||||
return;
|
||||
}
|
||||
|
||||
read_name();
|
||||
read_rows();
|
||||
read_columns();
|
||||
read_rhs();
|
||||
if (m_line.find("BOUNDS") == 0) {
|
||||
read_bounds();
|
||||
read_ranges();
|
||||
} else if (m_line.find("RANGES") == 0) {
|
||||
read_ranges();
|
||||
read_bounds();
|
||||
}
|
||||
}
|
||||
|
||||
bool is_ok() {
|
||||
return m_is_OK;
|
||||
}
|
||||
|
||||
lp_solver<T, X> * create_solver(bool dual) {
|
||||
lp_solver<T, X> * solver = dual? (lp_solver<T, X>*)new lp_dual_simplex<T, X>() : new lp_primal_simplex<T, X>();
|
||||
fill_solver(solver);
|
||||
return solver;
|
||||
}
|
||||
|
||||
lconstraint_kind get_lar_relation_from_row(row_type rt) {
|
||||
switch (rt) {
|
||||
case Less_or_equal: return LE;
|
||||
case Greater_or_equal: return GE;
|
||||
case Equal: return EQ;
|
||||
default:
|
||||
(*m_message_stream) << "Unexpected rt " << rt << std::endl;
|
||||
set_m_ok_to_false();
|
||||
throw;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned get_var_index(std::string s) {
|
||||
auto it = m_names_to_var_index.find(s);
|
||||
if (it != m_names_to_var_index.end())
|
||||
return it->second;
|
||||
unsigned ret = m_names_to_var_index.size();
|
||||
m_names_to_var_index[s] = ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
void fill_lar_solver_on_row(row * row, lar_solver *solver) {
|
||||
if (row->m_name != m_cost_row_name) {
|
||||
auto kind = get_lar_relation_from_row(row->m_type);
|
||||
vector<std::pair<mpq, var_index>> ls;
|
||||
for (auto s : row->m_row_columns) {
|
||||
var_index i = solver->add_var(get_var_index(s.first));
|
||||
ls.push_back(std::make_pair(s.second, i));
|
||||
}
|
||||
solver->add_constraint(ls, kind, row->m_right_side);
|
||||
} else {
|
||||
// ignore the cost row
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void fill_lar_solver_on_rows(lar_solver * solver) {
|
||||
for (auto row_it : m_rows) {
|
||||
fill_lar_solver_on_row(row_it.second, solver);
|
||||
}
|
||||
}
|
||||
|
||||
void create_low_constraint_for_var(column* col, bound * b, lar_solver *solver) {
|
||||
vector<std::pair<mpq, var_index>> ls;
|
||||
var_index i = solver->add_var(col->m_index);
|
||||
ls.push_back(std::make_pair(numeric_traits<T>::one(), i));
|
||||
solver->add_constraint(ls, GE, b->m_low);
|
||||
}
|
||||
|
||||
void create_upper_constraint_for_var(column* col, bound * b, lar_solver *solver) {
|
||||
var_index i = solver->add_var(col->m_index);
|
||||
vector<std::pair<mpq, var_index>> ls;
|
||||
ls.push_back(std::make_pair(numeric_traits<T>::one(), i));
|
||||
solver->add_constraint(ls, LE, b->m_upper);
|
||||
}
|
||||
|
||||
void create_equality_contraint_for_var(column* col, bound * b, lar_solver *solver) {
|
||||
var_index i = solver->add_var(col->m_index);
|
||||
vector<std::pair<mpq, var_index>> ls;
|
||||
ls.push_back(std::make_pair(numeric_traits<T>::one(), i));
|
||||
solver->add_constraint(ls, EQ, b->m_fixed_value);
|
||||
}
|
||||
|
||||
void fill_lar_solver_on_columns(lar_solver * solver) {
|
||||
for (auto s : m_columns) {
|
||||
mps_reader::column * col = s.second;
|
||||
solver->add_var(col->m_index);
|
||||
auto b = col->m_bound;
|
||||
if (b == nullptr) return;
|
||||
|
||||
if (b->m_free) continue;
|
||||
|
||||
if (b->m_low_is_set) {
|
||||
create_low_constraint_for_var(col, b, solver);
|
||||
}
|
||||
if (b->m_upper_is_set) {
|
||||
create_upper_constraint_for_var(col, b, solver);
|
||||
}
|
||||
if (b->m_value_is_fixed) {
|
||||
create_equality_contraint_for_var(col, b, solver);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void fill_lar_solver(lar_solver * solver) {
|
||||
fill_lar_solver_on_columns(solver);
|
||||
fill_lar_solver_on_rows(solver);
|
||||
}
|
||||
|
||||
lar_solver * create_lar_solver() {
|
||||
lar_solver * solver = new lar_solver();
|
||||
fill_lar_solver(solver);
|
||||
return solver;
|
||||
}
|
||||
};
|
||||
}
|
329
src/util/lp/numeric_pair.h
Normal file
329
src/util/lp/numeric_pair.h
Normal file
|
@ -0,0 +1,329 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
The idea is that it is only one different file in Lean and z3 source inside of LP
|
||||
*/
|
||||
#pragma once
|
||||
#define lp_for_z3
|
||||
#include <string>
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
#ifdef lp_for_z3
|
||||
#include "../rational.h"
|
||||
#include "../sstream.h"
|
||||
#include "../z3_exception.h"
|
||||
|
||||
#else
|
||||
// include "util/numerics/mpq.h"
|
||||
// include "util/numerics/numeric_traits.h"
|
||||
#endif
|
||||
namespace lean {
|
||||
#ifdef lp_for_z3 // rename rationals
|
||||
typedef rational mpq;
|
||||
#else
|
||||
typedef lean::mpq mpq;
|
||||
#endif
|
||||
|
||||
|
||||
template <typename T>
|
||||
std::string T_to_string(const T & t); // forward definition
|
||||
#ifdef lp_for_z3
|
||||
template <typename T> class numeric_traits {};
|
||||
|
||||
template <> class numeric_traits<unsigned> {
|
||||
public:
|
||||
static bool precise() { return true; }
|
||||
static unsigned const zero() { return 0; }
|
||||
static unsigned const one() { return 1; }
|
||||
static bool is_zero(unsigned v) { return v == 0; }
|
||||
static double const get_double(unsigned const & d) { return d; }
|
||||
};
|
||||
|
||||
template <> class numeric_traits<double> {
|
||||
public:
|
||||
static bool precise() { return false; }
|
||||
static double g_zero;
|
||||
static double const &zero() { return g_zero; }
|
||||
static double g_one;
|
||||
static double const &one() { return g_one; }
|
||||
static bool is_zero(double v) { return v == 0.0; }
|
||||
static double const & get_double(double const & d) { return d;}
|
||||
static double log(double const & d) { NOT_IMPLEMENTED_YET(); return d;}
|
||||
static double from_string(std::string const & str) { return atof(str.c_str()); }
|
||||
static bool is_pos(const double & d) {return d > 0.0;}
|
||||
static bool is_neg(const double & d) {return d < 0.0;}
|
||||
};
|
||||
|
||||
template<>
|
||||
class numeric_traits<rational> {
|
||||
public:
|
||||
static bool precise() { return true; }
|
||||
static rational const & zero() { return rational::zero(); }
|
||||
static rational const & one() { return rational::one(); }
|
||||
static bool is_zero(const rational & v) { return v.is_zero(); }
|
||||
static double const get_double(const rational & d) { return d.get_double();}
|
||||
static rational log(rational const& r) { UNREACHABLE(); return r; }
|
||||
static rational from_string(std::string const & str) { return rational(str.c_str()); }
|
||||
static bool is_pos(const rational & d) {return d.is_pos();}
|
||||
static bool is_neg(const rational & d) {return d.is_neg();}
|
||||
};
|
||||
#endif
|
||||
|
||||
template <typename X, typename Y>
|
||||
struct convert_struct {
|
||||
static X convert(const Y & y){ return X(y);}
|
||||
static bool is_epsilon_small(const X & x, const double & y) { return std::abs(numeric_traits<X>::get_double(x)) < y; }
|
||||
static bool below_bound_numeric(const X &, const X &, const Y &) { /*lean_unreachable();*/ return false;}
|
||||
static bool above_bound_numeric(const X &, const X &, const Y &) { /*lean_unreachable();*/ return false; }
|
||||
};
|
||||
|
||||
|
||||
template <>
|
||||
struct convert_struct<double, mpq> {
|
||||
static double convert(const mpq & q) {return q.get_double();}
|
||||
};
|
||||
|
||||
|
||||
template <>
|
||||
struct convert_struct<mpq, unsigned> {
|
||||
static mpq convert(unsigned q) {return mpq(q);}
|
||||
};
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
struct numeric_pair {
|
||||
T x;
|
||||
T y;
|
||||
// empty constructor
|
||||
numeric_pair() {}
|
||||
// another constructor
|
||||
|
||||
numeric_pair(T xp, T yp) : x(xp), y(yp) {}
|
||||
|
||||
|
||||
template <typename X>
|
||||
numeric_pair(const X & n) : x(n), y(0) {
|
||||
}
|
||||
|
||||
template <typename X>
|
||||
numeric_pair(const numeric_pair<X> & n) : x(n.x), y(n.y) {}
|
||||
|
||||
template <typename X, typename Y>
|
||||
numeric_pair(X xp, Y yp) : numeric_pair(convert_struct<T, X>::convert(xp), convert_struct<T, Y>::convert(yp)) {}
|
||||
|
||||
bool operator<(const numeric_pair& a) const {
|
||||
return x < a.x || (x == a.x && y < a.y);
|
||||
}
|
||||
|
||||
bool operator>(const numeric_pair& a) const {
|
||||
return x > a.x || (x == a.x && y > a.y);
|
||||
}
|
||||
|
||||
bool operator==(const numeric_pair& a) const {
|
||||
return a.x == x && a.y == y;
|
||||
}
|
||||
|
||||
bool operator!=(const numeric_pair& a) const {
|
||||
return !(*this == a);
|
||||
}
|
||||
|
||||
bool operator<=(const numeric_pair& a) const {
|
||||
return *this < a || *this == a;
|
||||
}
|
||||
|
||||
bool operator>=(const numeric_pair& a) const {
|
||||
return *this > a || a == *this;
|
||||
}
|
||||
|
||||
numeric_pair operator*(const T & a) const {
|
||||
return numeric_pair(a * x, a * y);
|
||||
}
|
||||
|
||||
numeric_pair operator/(const T & a) const {
|
||||
T a_as_T(a);
|
||||
return numeric_pair(x / a_as_T, y / a_as_T);
|
||||
}
|
||||
|
||||
numeric_pair operator/(const numeric_pair &) const {
|
||||
// lean_unreachable();
|
||||
}
|
||||
|
||||
|
||||
numeric_pair operator+(const numeric_pair & a) const {
|
||||
return numeric_pair(a.x + x, a.y + y);
|
||||
}
|
||||
|
||||
numeric_pair operator*(const numeric_pair & /*a*/) const {
|
||||
// lean_unreachable();
|
||||
}
|
||||
|
||||
numeric_pair& operator+=(const numeric_pair & a) {
|
||||
x += a.x;
|
||||
y += a.y;
|
||||
return *this;
|
||||
}
|
||||
|
||||
numeric_pair& operator-=(const numeric_pair & a) {
|
||||
x -= a.x;
|
||||
y -= a.y;
|
||||
return *this;
|
||||
}
|
||||
|
||||
numeric_pair& operator/=(const T & a) {
|
||||
x /= a;
|
||||
y /= a;
|
||||
return *this;
|
||||
}
|
||||
|
||||
numeric_pair& operator*=(const T & a) {
|
||||
x *= a;
|
||||
y *= a;
|
||||
return *this;
|
||||
}
|
||||
|
||||
numeric_pair operator-(const numeric_pair & a) const {
|
||||
return numeric_pair(x - a.x, y - a.y);
|
||||
}
|
||||
|
||||
numeric_pair operator-() const {
|
||||
return numeric_pair(-x, -y);
|
||||
}
|
||||
|
||||
static bool precize() { return lean::numeric_traits<T>::precize();}
|
||||
|
||||
bool is_zero() const { return x.is_zero() && y.is_zero(); }
|
||||
|
||||
bool is_pos() const { return x.is_pos() || (x.is_zero() && y.is_pos());}
|
||||
|
||||
bool is_neg() const { return x.is_neg() || (x.is_zero() && y.is_neg());}
|
||||
|
||||
std::string to_string() const {
|
||||
return std::string("(") + T_to_string(x) + ", " + T_to_string(y) + ")";
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename T>
|
||||
std::ostream& operator<<(std::ostream& os, numeric_pair<T> const & obj) {
|
||||
os << obj.to_string();
|
||||
return os;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
numeric_pair<T> operator*(const X & a, const numeric_pair<T> & r) {
|
||||
return numeric_pair<T>(a * r.x, a * r.y);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
numeric_pair<T> operator*(const numeric_pair<T> & r, const X & a) {
|
||||
return numeric_pair<T>(a * r.x, a * r.y);
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
numeric_pair<T> operator/(const numeric_pair<T> & r, const X & a) {
|
||||
return numeric_pair<T>(r.x / a, r.y / a);
|
||||
}
|
||||
|
||||
// template <numeric_pair, typename T> bool precise() { return numeric_traits<T>::precise();}
|
||||
template <typename T> double get_double(const lean::numeric_pair<T> & ) { /* lean_unreachable(); */ return 0;}
|
||||
template <typename T>
|
||||
class numeric_traits<lean::numeric_pair<T>> {
|
||||
public:
|
||||
static bool precise() { return numeric_traits<T>::precise();}
|
||||
static lean::numeric_pair<T> zero() { return lean::numeric_pair<T>(numeric_traits<T>::zero(), numeric_traits<T>::zero()); }
|
||||
static bool is_zero(const lean::numeric_pair<T> & v) { return numeric_traits<T>::is_zero(v.x) && numeric_traits<T>::is_zero(v.y); }
|
||||
static double get_double(const lean::numeric_pair<T> & v){ return numeric_traits<T>::get_double(v.x); } // just return the double of the first coordinate
|
||||
static double one() { /*lean_unreachable();*/ return 0;}
|
||||
static bool is_pos(const numeric_pair<T> &p) {
|
||||
return numeric_traits<T>::is_pos(p.x) ||
|
||||
(numeric_traits<T>::is_zero(p.x) && numeric_traits<T>::is_pos(p.y));
|
||||
}
|
||||
static bool is_neg(const numeric_pair<T> &p) {
|
||||
return numeric_traits<T>::is_neg(p.x) ||
|
||||
(numeric_traits<T>::is_zero(p.x) && numeric_traits<T>::is_neg(p.y));
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template <>
|
||||
struct convert_struct<double, numeric_pair<double>> {
|
||||
static double convert(const numeric_pair<double> & q) {return q.x;}
|
||||
};
|
||||
|
||||
typedef numeric_pair<mpq> impq;
|
||||
|
||||
template <typename X> bool is_epsilon_small(const X & v, const double& eps); // forward definition { return convert_struct<X, double>::is_epsilon_small(v, eps);}
|
||||
|
||||
template <typename T>
|
||||
struct convert_struct<numeric_pair<T>, double> {
|
||||
static numeric_pair<T> convert(const double & q) {
|
||||
return numeric_pair<T>(convert_struct<T, double>::convert(q), numeric_traits<T>::zero());
|
||||
}
|
||||
static bool is_epsilon_small(const numeric_pair<T> & p, const double & eps) {
|
||||
return convert_struct<T, double>::is_epsilon_small(p.x, eps) && convert_struct<T, double>::is_epsilon_small(p.y, eps);
|
||||
}
|
||||
static bool below_bound_numeric(const numeric_pair<T> &, const numeric_pair<T> &, const double &) {
|
||||
// lean_unreachable();
|
||||
return false;
|
||||
}
|
||||
static bool above_bound_numeric(const numeric_pair<T> &, const numeric_pair<T> &, const double &) {
|
||||
// lean_unreachable();
|
||||
return false;
|
||||
}
|
||||
};
|
||||
template <>
|
||||
struct convert_struct<numeric_pair<double>, double> {
|
||||
static numeric_pair<double> convert(const double & q) {
|
||||
return numeric_pair<double>(q, 0.0);
|
||||
}
|
||||
static bool is_epsilon_small(const numeric_pair<double> & p, const double & eps) {
|
||||
return std::abs(p.x) < eps && std::abs(p.y) < eps;
|
||||
}
|
||||
|
||||
static int compare_on_coord(const double & x, const double & bound, const double eps) {
|
||||
if (bound == 0) return (x < - eps)? -1: (x > eps? 1 : 0); // it is an important special case
|
||||
double relative = (bound > 0)? - eps: eps;
|
||||
return (x < bound * (1.0 + relative) - eps)? -1 : ((x > bound * (1.0 - relative) + eps)? 1 : 0);
|
||||
}
|
||||
|
||||
static bool below_bound_numeric(const numeric_pair<double> & x, const numeric_pair<double> & bound, const double & eps) {
|
||||
int r = compare_on_coord(x.x, bound.x, eps);
|
||||
if (r == 1) return false;
|
||||
if (r == -1) return true;
|
||||
// the first coordinates are almost the same
|
||||
return compare_on_coord(x.y, bound.y, eps) == -1;
|
||||
}
|
||||
|
||||
static bool above_bound_numeric(const numeric_pair<double> & x, const numeric_pair<double> & bound, const double & eps) {
|
||||
int r = compare_on_coord(x.x, bound.x, eps);
|
||||
if (r == -1) return false;
|
||||
if (r == 1) return true;
|
||||
// the first coordinates are almost the same
|
||||
return compare_on_coord(x.y, bound.y, eps) == 1;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct convert_struct<double, double> {
|
||||
static bool is_epsilon_small(const double& x, const double & eps) {
|
||||
return x < eps && x > -eps;
|
||||
}
|
||||
static double convert(const double & y){ return y;}
|
||||
static bool below_bound_numeric(const double & x, const double & bound, const double & eps) {
|
||||
if (bound == 0) return x < - eps;
|
||||
double relative = (bound > 0)? - eps: eps;
|
||||
return x < bound * (1.0 + relative) - eps;
|
||||
}
|
||||
static bool above_bound_numeric(const double & x, const double & bound, const double & eps) {
|
||||
if (bound == 0) return x > eps;
|
||||
double relative = (bound > 0)? eps: - eps;
|
||||
return x > bound * (1.0 + relative) + eps;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename X> bool is_epsilon_small(const X & v, const double &eps) { return convert_struct<X, double>::is_epsilon_small(v, eps);}
|
||||
template <typename X> bool below_bound_numeric(const X & x, const X & bound, const double& eps) { return convert_struct<X, double>::below_bound_numeric(x, bound, eps);}
|
||||
template <typename X> bool above_bound_numeric(const X & x, const X & bound, const double& eps) { return convert_struct<X, double>::above_bound_numeric(x, bound, eps);}
|
||||
}
|
173
src/util/lp/permutation_matrix.h
Normal file
173
src/util/lp/permutation_matrix.h
Normal file
|
@ -0,0 +1,173 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <algorithm>
|
||||
#include "util/debug.h"
|
||||
#include <string>
|
||||
#include "util/lp/sparse_vector.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/matrix.h"
|
||||
#include "util/lp/tail_matrix.h"
|
||||
namespace lean {
|
||||
#ifdef LEAN_DEBUG
|
||||
inline bool is_even(int k) { return (k/2)*2 == k; }
|
||||
#endif
|
||||
|
||||
template <typename T, typename X>
|
||||
class permutation_matrix : public tail_matrix<T, X> {
|
||||
vector<unsigned> m_permutation;
|
||||
vector<unsigned> m_rev;
|
||||
vector<unsigned> m_work_array;
|
||||
vector<T> m_T_buffer;
|
||||
vector<X> m_X_buffer;
|
||||
|
||||
|
||||
class ref {
|
||||
permutation_matrix & m_p;
|
||||
unsigned m_i;
|
||||
public:
|
||||
ref(permutation_matrix & m, unsigned i):m_p(m), m_i(i) {}
|
||||
|
||||
ref & operator=(unsigned v) { m_p.set_val(m_i, v); return *this; }
|
||||
|
||||
ref & operator=(ref const & v) {
|
||||
m_p.set_val(m_i, v.m_p.m_permutation[v.m_i]);
|
||||
return *this;
|
||||
}
|
||||
operator unsigned & () const { return m_p.m_permutation[m_i]; }
|
||||
};
|
||||
|
||||
public:
|
||||
permutation_matrix() {}
|
||||
permutation_matrix(unsigned length);
|
||||
|
||||
permutation_matrix(unsigned length, vector<unsigned> const & values);
|
||||
// create a unit permutation of the given length
|
||||
void init(unsigned length);
|
||||
unsigned get_rev(unsigned i) { return m_rev[i]; }
|
||||
bool is_dense() const { return false; }
|
||||
#ifdef LEAN_DEBUG
|
||||
permutation_matrix get_inverse() const {
|
||||
return permutation_matrix(size(), m_rev);
|
||||
}
|
||||
void print(std::ostream & out) const;
|
||||
#endif
|
||||
|
||||
ref operator[](unsigned i) { return ref(*this, i); }
|
||||
|
||||
unsigned operator[](unsigned i) const { return m_permutation[i]; }
|
||||
|
||||
void apply_from_left(vector<X> & w, lp_settings &);
|
||||
|
||||
void apply_from_left_to_T(indexed_vector<T> & w, lp_settings & settings);
|
||||
|
||||
void apply_from_right(vector<T> & w);
|
||||
|
||||
void apply_from_right(indexed_vector<T> & w);
|
||||
|
||||
template <typename L>
|
||||
void copy_aside(vector<L> & t, vector<unsigned> & tmp_index, indexed_vector<L> & w);
|
||||
|
||||
template <typename L>
|
||||
void clear_data(indexed_vector<L> & w);
|
||||
|
||||
template <typename L>
|
||||
void apply_reverse_from_left(indexed_vector<L> & w);
|
||||
|
||||
void apply_reverse_from_left_to_T(vector<T> & w);
|
||||
void apply_reverse_from_left_to_X(vector<X> & w);
|
||||
|
||||
void apply_reverse_from_right_to_T(vector<T> & w);
|
||||
void apply_reverse_from_right_to_T(indexed_vector<T> & w);
|
||||
void apply_reverse_from_right_to_X(vector<X> & w);
|
||||
|
||||
void set_val(unsigned i, unsigned pi) {
|
||||
lean_assert(i < size() && pi < size()); m_permutation[i] = pi; m_rev[pi] = i; }
|
||||
|
||||
void transpose_from_left(unsigned i, unsigned j);
|
||||
|
||||
unsigned apply_reverse(unsigned i) const { return m_rev[i]; }
|
||||
|
||||
void transpose_from_right(unsigned i, unsigned j);
|
||||
#ifdef LEAN_DEBUG
|
||||
T get_elem(unsigned i, unsigned j) const{
|
||||
return m_permutation[i] == j? numeric_traits<T>::one() : numeric_traits<T>::zero();
|
||||
}
|
||||
unsigned row_count() const{ return size(); }
|
||||
unsigned column_count() const { return size(); }
|
||||
virtual void set_number_of_rows(unsigned /*m*/) { }
|
||||
virtual void set_number_of_columns(unsigned /*n*/) { }
|
||||
#endif
|
||||
void multiply_by_permutation_from_left(permutation_matrix<T, X> & p);
|
||||
|
||||
// this is multiplication in the matrix sense
|
||||
void multiply_by_permutation_from_right(permutation_matrix<T, X> & p);
|
||||
|
||||
void multiply_by_reverse_from_right(permutation_matrix<T, X> & q);
|
||||
|
||||
void multiply_by_permutation_reverse_from_left(permutation_matrix<T, X> & r);
|
||||
|
||||
void shrink_by_one_identity();
|
||||
|
||||
bool is_identity() const;
|
||||
|
||||
unsigned size() const { return static_cast<unsigned>(m_rev.size()); }
|
||||
|
||||
unsigned * values() const { return m_permutation; }
|
||||
|
||||
void resize(unsigned size) {
|
||||
unsigned old_size = m_permutation.size();
|
||||
m_permutation.resize(size);
|
||||
m_rev.resize(size);
|
||||
m_T_buffer.resize(size);
|
||||
m_X_buffer.resize(size);
|
||||
for (unsigned i = old_size; i < size; i++) {
|
||||
m_permutation[i] = m_rev[i] = i;
|
||||
}
|
||||
}
|
||||
|
||||
}; // end of the permutation class
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
class permutation_generator {
|
||||
unsigned m_n;
|
||||
permutation_generator* m_lower;
|
||||
bool m_done = false;
|
||||
permutation_matrix<T, X> m_current;
|
||||
unsigned m_last;
|
||||
public:
|
||||
permutation_generator(unsigned n);
|
||||
permutation_generator(const permutation_generator & o);
|
||||
bool move_next();
|
||||
|
||||
~permutation_generator() {
|
||||
if (m_lower != nullptr) {
|
||||
delete m_lower;
|
||||
}
|
||||
}
|
||||
|
||||
permutation_matrix<T, X> *current() {
|
||||
return &m_current;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename X>
|
||||
inline unsigned number_of_inversions(permutation_matrix<T, X> & p);
|
||||
|
||||
template <typename T, typename X>
|
||||
int sign(permutation_matrix<T, X> & p) {
|
||||
return is_even(number_of_inversions(p))? 1: -1;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T det_val_on_perm(permutation_matrix<T, X>* u, const matrix<T, X>& m);
|
||||
|
||||
template <typename T, typename X>
|
||||
T determinant(const matrix<T, X>& m);
|
||||
#endif
|
||||
}
|
419
src/util/lp/permutation_matrix.hpp
Normal file
419
src/util/lp/permutation_matrix.hpp
Normal file
|
@ -0,0 +1,419 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X> permutation_matrix<T, X>::permutation_matrix(unsigned length): m_permutation(length), m_rev(length), m_T_buffer(length), m_X_buffer(length) {
|
||||
for (unsigned i = 0; i < length; i++) { // do not change the direction of the loop because of the vectorization bug in clang3.3
|
||||
m_permutation[i] = m_rev[i] = i;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> permutation_matrix<T, X>::permutation_matrix(unsigned length, vector<unsigned> const & values): m_permutation(length), m_rev(length) , m_T_buffer(length), m_X_buffer(length) {
|
||||
for (unsigned i = 0; i < length; i++) {
|
||||
set_val(i, values[i]);
|
||||
}
|
||||
}
|
||||
// create a unit permutation of the given length
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::init(unsigned length) {
|
||||
m_permutation.resize(length);
|
||||
m_rev.resize(length);
|
||||
m_T_buffer.resize(length);
|
||||
m_X_buffer.resize(length);
|
||||
for (unsigned i = 0; i < length; i++) {
|
||||
m_permutation[i] = m_rev[i] = i;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::print(std::ostream & out) const {
|
||||
out << "[";
|
||||
for (unsigned i = 0; i < size(); i++) {
|
||||
out << m_permutation[i];
|
||||
if (i < size() - 1) {
|
||||
out << ",";
|
||||
} else {
|
||||
out << "]";
|
||||
}
|
||||
}
|
||||
out << std::endl;
|
||||
}
|
||||
#endif
|
||||
|
||||
template <typename T, typename X>
|
||||
void permutation_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings & ) {
|
||||
#ifdef LEAN_DEBUG
|
||||
// dense_matrix<L, X> deb(*this);
|
||||
// L * deb_w = clone_vector<L>(w, row_count());
|
||||
// deb.apply_from_left(deb_w);
|
||||
#endif
|
||||
// std::cout << " apply_from_left " << std::endl;
|
||||
lean_assert(m_X_buffer.size() == w.size());
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
m_X_buffer[i] = w[m_permutation[i]];
|
||||
}
|
||||
i = size();
|
||||
while (i-- > 0) {
|
||||
w[i] = m_X_buffer[i];
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal<L>(deb_w, w, row_count()));
|
||||
// delete [] deb_w;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void permutation_matrix<T, X>::apply_from_left_to_T(indexed_vector<T> & w, lp_settings & ) {
|
||||
vector<T> t(w.m_index.size());
|
||||
vector<unsigned> tmp_index(w.m_index.size());
|
||||
copy_aside(t, tmp_index, w); // todo: is it too much copying
|
||||
clear_data(w);
|
||||
// set the new values
|
||||
for (unsigned i = static_cast<unsigned>(t.size()); i > 0;) {
|
||||
i--;
|
||||
unsigned j = m_rev[tmp_index[i]];
|
||||
w[j] = t[i];
|
||||
w.m_index[i] = j;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::apply_from_right(vector<T> & w) {
|
||||
#ifdef LEAN_DEBUG
|
||||
// dense_matrix<T, X> deb(*this);
|
||||
// T * deb_w = clone_vector<T>(w, row_count());
|
||||
// deb.apply_from_right(deb_w);
|
||||
#endif
|
||||
lean_assert(m_T_buffer.size() == w.size());
|
||||
for (unsigned i = 0; i < size(); i++) {
|
||||
m_T_buffer[i] = w[m_rev[i]];
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < size(); i++) {
|
||||
w[i] = m_T_buffer[i];
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal<T>(deb_w, w, row_count()));
|
||||
// delete [] deb_w;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
|
||||
#ifdef LEAN_DEBUG
|
||||
vector<T> wcopy(w.m_data);
|
||||
apply_from_right(wcopy);
|
||||
#endif
|
||||
vector<T> buffer(w.m_index.size());
|
||||
vector<unsigned> index_copy(w.m_index);
|
||||
for (unsigned i = 0; i < w.m_index.size(); i++) {
|
||||
buffer[i] = w.m_data[w.m_index[i]];
|
||||
}
|
||||
w.clear();
|
||||
|
||||
for (unsigned i = 0; i < index_copy.size(); i++) {
|
||||
unsigned j = index_copy[i];
|
||||
unsigned pj = m_permutation[j];
|
||||
w.set_value(buffer[i], pj);
|
||||
}
|
||||
lean_assert(w.is_OK());
|
||||
#ifdef LEAN_DEBUG
|
||||
lean_assert(vectors_are_equal(wcopy, w.m_data));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> template <typename L>
|
||||
void permutation_matrix<T, X>::copy_aside(vector<L> & t, vector<unsigned> & tmp_index, indexed_vector<L> & w) {
|
||||
for (unsigned i = static_cast<unsigned>(t.size()); i > 0;) {
|
||||
i--;
|
||||
unsigned j = w.m_index[i];
|
||||
t[i] = w[j]; // copy aside all non-zeroes
|
||||
tmp_index[i] = j; // and the indices too
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> template <typename L>
|
||||
void permutation_matrix<T, X>::clear_data(indexed_vector<L> & w) {
|
||||
// clear old non-zeroes
|
||||
for (unsigned i = static_cast<unsigned>(w.m_index.size()); i > 0;) {
|
||||
i--;
|
||||
unsigned j = w.m_index[i];
|
||||
w[j] = zero_of_type<L>();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>template <typename L>
|
||||
void permutation_matrix<T, X>::apply_reverse_from_left(indexed_vector<L> & w) {
|
||||
// the result will be w = p(-1) * w
|
||||
#ifdef LEAN_DEBUG
|
||||
// dense_matrix<L, X> deb(get_reverse());
|
||||
// L * deb_w = clone_vector<L>(w.m_data, row_count());
|
||||
// deb.apply_from_left(deb_w);
|
||||
#endif
|
||||
vector<L> t(w.m_index.size());
|
||||
vector<unsigned> tmp_index(w.m_index.size());
|
||||
|
||||
copy_aside(t, tmp_index, w);
|
||||
clear_data(w);
|
||||
|
||||
// set the new values
|
||||
for (unsigned i = static_cast<unsigned>(t.size()); i > 0;) {
|
||||
i--;
|
||||
unsigned j = m_permutation[tmp_index[i]];
|
||||
w[j] = t[i];
|
||||
w.m_index[i] = j;
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal<L>(deb_w, w.m_data, row_count()));
|
||||
// delete [] deb_w;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void permutation_matrix<T, X>::apply_reverse_from_left_to_T(vector<T> & w) {
|
||||
// the result will be w = p(-1) * w
|
||||
lean_assert(m_T_buffer.size() == w.size());
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
m_T_buffer[m_permutation[i]] = w[i];
|
||||
}
|
||||
i = size();
|
||||
while (i-- > 0) {
|
||||
w[i] = m_T_buffer[i];
|
||||
}
|
||||
}
|
||||
template <typename T, typename X>
|
||||
void permutation_matrix<T, X>::apply_reverse_from_left_to_X(vector<X> & w) {
|
||||
// the result will be w = p(-1) * w
|
||||
lean_assert(m_X_buffer.size() == w.size());
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
m_X_buffer[m_permutation[i]] = w[i];
|
||||
}
|
||||
i = size();
|
||||
while (i-- > 0) {
|
||||
w[i] = m_X_buffer[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void permutation_matrix<T, X>::apply_reverse_from_right_to_T(vector<T> & w) {
|
||||
// the result will be w = w * p(-1)
|
||||
lean_assert(m_T_buffer.size() == w.size());
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
m_T_buffer[i] = w[m_permutation[i]];
|
||||
}
|
||||
i = size();
|
||||
while (i-- > 0) {
|
||||
w[i] = m_T_buffer[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void permutation_matrix<T, X>::apply_reverse_from_right_to_T(indexed_vector<T> & w) {
|
||||
// the result will be w = w * p(-1)
|
||||
#ifdef LEAN_DEBUG
|
||||
// vector<T> wcopy(w.m_data);
|
||||
// apply_reverse_from_right_to_T(wcopy);
|
||||
#endif
|
||||
lean_assert(w.is_OK());
|
||||
vector<T> tmp;
|
||||
vector<unsigned> tmp_index(w.m_index);
|
||||
for (auto i : w.m_index) {
|
||||
tmp.push_back(w[i]);
|
||||
}
|
||||
w.clear();
|
||||
|
||||
for (unsigned k = 0; k < tmp_index.size(); k++) {
|
||||
unsigned j = tmp_index[k];
|
||||
w.set_value(tmp[k], m_rev[j]);
|
||||
}
|
||||
|
||||
// lean_assert(w.is_OK());
|
||||
// lean_assert(vectors_are_equal(w.m_data, wcopy));
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X>
|
||||
void permutation_matrix<T, X>::apply_reverse_from_right_to_X(vector<X> & w) {
|
||||
// the result will be w = w * p(-1)
|
||||
lean_assert(m_X_buffer.size() == w.size());
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
m_X_buffer[i] = w[m_permutation[i]];
|
||||
}
|
||||
i = size();
|
||||
while (i-- > 0) {
|
||||
w[i] = m_X_buffer[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_left(unsigned i, unsigned j) {
|
||||
// the result will be this = (i,j)*this
|
||||
lean_assert(i < size() && j < size() && i != j);
|
||||
auto pi = m_rev[i];
|
||||
auto pj = m_rev[j];
|
||||
set_val(pi, j);
|
||||
set_val(pj, i);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::transpose_from_right(unsigned i, unsigned j) {
|
||||
// the result will be this = this * (i,j)
|
||||
lean_assert(i < size() && j < size() && i != j);
|
||||
auto pi = m_permutation[i];
|
||||
auto pj = m_permutation[j];
|
||||
set_val(i, pj);
|
||||
set_val(j, pi);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_from_left(permutation_matrix<T, X> & p) {
|
||||
m_work_array = m_permutation;
|
||||
lean_assert(p.size() == size());
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
set_val(i, m_work_array[p[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
|
||||
}
|
||||
}
|
||||
|
||||
// this is multiplication in the matrix sense
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_from_right(permutation_matrix<T, X> & p) {
|
||||
m_work_array = m_permutation;
|
||||
lean_assert(p.size() == size());
|
||||
unsigned i = size();
|
||||
while (i-- > 0)
|
||||
set_val(i, p[m_work_array[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
|
||||
|
||||
}
|
||||
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_reverse_from_right(permutation_matrix<T, X> & q){ // todo : condensed permutations ?
|
||||
lean_assert(q.size() == size());
|
||||
m_work_array = m_permutation;
|
||||
// the result is this = this*q(-1)
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
set_val(i, q.m_rev[m_work_array[i]]); // we have m(P)*m(Q) = m(QP), where m is the matrix of the permutation
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void permutation_matrix<T, X>::multiply_by_permutation_reverse_from_left(permutation_matrix<T, X> & r){ // todo : condensed permutations?
|
||||
// the result is this = r(-1)*this
|
||||
m_work_array = m_permutation;
|
||||
// the result is this = this*q(-1)
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
set_val(i, m_work_array[r.m_rev[i]]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T, typename X> bool permutation_matrix<T, X>::is_identity() const {
|
||||
unsigned i = size();
|
||||
while (i-- > 0) {
|
||||
if (m_permutation[i] != i) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
permutation_generator<T, X>::permutation_generator(unsigned n): m_n(n), m_current(n) {
|
||||
lean_assert(n > 0);
|
||||
if (n > 1) {
|
||||
m_lower = new permutation_generator(n - 1);
|
||||
} else {
|
||||
m_lower = nullptr;
|
||||
}
|
||||
|
||||
m_last = 0;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
permutation_generator<T, X>::permutation_generator(const permutation_generator & o): m_n(o.m_n), m_done(o.m_done), m_current(o.m_current), m_last(o.m_last) {
|
||||
if (m_lower != nullptr) {
|
||||
m_lower = new permutation_generator(o.m_lower);
|
||||
} else {
|
||||
m_lower = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool
|
||||
permutation_generator<T, X>::move_next() {
|
||||
if (m_done) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_lower == nullptr) {
|
||||
if (m_last == 0) {
|
||||
m_last++;
|
||||
return true;
|
||||
} else {
|
||||
m_done = true;
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (m_last < m_n && m_last > 0) {
|
||||
m_current[m_last - 1] = m_current[m_last];
|
||||
m_current[m_last] = m_n - 1;
|
||||
m_last++;
|
||||
return true;
|
||||
} else {
|
||||
if (m_lower -> move_next()) {
|
||||
auto lower_curr = m_lower -> current();
|
||||
for ( unsigned i = 1; i < m_n; i++ ){
|
||||
m_current[i] = (*lower_curr)[i - 1];
|
||||
}
|
||||
m_current[0] = m_n - 1;
|
||||
m_last = 1;
|
||||
return true;
|
||||
} else {
|
||||
m_done = true;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
inline unsigned number_of_inversions(permutation_matrix<T, X> & p) {
|
||||
unsigned ret = 0;
|
||||
unsigned n = p.size();
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
for (unsigned j = i + 1; j < n; j++) {
|
||||
if (p[i] > p[j]) {
|
||||
ret++;
|
||||
}
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T det_val_on_perm(permutation_matrix<T, X>* u, const matrix<T, X>& m) {
|
||||
unsigned n = m.row_count();
|
||||
T ret = numeric_traits<T>::one();
|
||||
for (unsigned i = 0; i < n; i++) {
|
||||
unsigned j = (*u)[i];
|
||||
ret *= m(i, j);
|
||||
}
|
||||
return ret * sign(*u);
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
T determinant(const matrix<T, X>& m) {
|
||||
lean_assert(m.column_count() == m.row_count());
|
||||
unsigned n = m.row_count();
|
||||
permutation_generator<T, X> allp(n);
|
||||
T ret = numeric_traits<T>::zero();
|
||||
while (allp.move_next()){
|
||||
ret += det_val_on_perm(allp.current(), m);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
#endif
|
||||
}
|
60
src/util/lp/permutation_matrix_instances.cpp
Normal file
60
src/util/lp/permutation_matrix_instances.cpp
Normal file
|
@ -0,0 +1,60 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <memory>
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/permutation_matrix.hpp"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
template void lean::permutation_matrix<double, double>::apply_from_right(vector<double>&);
|
||||
template void lean::permutation_matrix<double, double>::init(unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::init(unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq>>::init(unsigned int);
|
||||
template bool lean::permutation_matrix<double, double>::is_identity() const;
|
||||
template void lean::permutation_matrix<double, double>::multiply_by_permutation_from_left(lean::permutation_matrix<double, double>&);
|
||||
template void lean::permutation_matrix<double, double>::multiply_by_permutation_reverse_from_left(lean::permutation_matrix<double, double>&);
|
||||
template void lean::permutation_matrix<double, double>::multiply_by_reverse_from_right(lean::permutation_matrix<double, double>&);
|
||||
template lean::permutation_matrix<double, double>::permutation_matrix(unsigned int, vector<unsigned int> const&);
|
||||
template void lean::permutation_matrix<double, double>::transpose_from_left(unsigned int, unsigned int);
|
||||
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::apply_from_right(vector<lean::mpq>&);
|
||||
template bool lean::permutation_matrix<lean::mpq, lean::mpq>::is_identity() const;
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::multiply_by_permutation_from_left(lean::permutation_matrix<lean::mpq, lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::multiply_by_permutation_from_right(lean::permutation_matrix<lean::mpq, lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::multiply_by_permutation_reverse_from_left(lean::permutation_matrix<lean::mpq, lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::multiply_by_reverse_from_right(lean::permutation_matrix<lean::mpq, lean::mpq>&);
|
||||
template lean::permutation_matrix<lean::mpq, lean::mpq>::permutation_matrix(unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::transpose_from_left(unsigned int, unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::transpose_from_right(unsigned int, unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_from_right(vector<lean::mpq>&);
|
||||
template bool lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::is_identity() const;
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::multiply_by_permutation_from_left(lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::multiply_by_permutation_from_right(lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::multiply_by_permutation_reverse_from_left(lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::multiply_by_reverse_from_right(lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >&);
|
||||
template lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::permutation_matrix(unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::transpose_from_left(unsigned int, unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::transpose_from_right(unsigned int, unsigned int);
|
||||
template void lean::permutation_matrix<double, double>::apply_reverse_from_left<double>(lean::indexed_vector<double>&);
|
||||
template void lean::permutation_matrix<double, double>::apply_reverse_from_left_to_T(vector<double>&);
|
||||
template void lean::permutation_matrix<double, double>::apply_reverse_from_right_to_T(vector<double>&);
|
||||
template void lean::permutation_matrix<double, double>::transpose_from_right(unsigned int, unsigned int);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::apply_reverse_from_left<lean::mpq>(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::apply_reverse_from_left_to_T(vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::apply_reverse_from_right_to_T(vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_left<lean::mpq>(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_left_to_T(vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_right_to_T(vector<lean::mpq >&);
|
||||
template void lean::permutation_matrix<double, double>::multiply_by_permutation_from_right(lean::permutation_matrix<double, double>&);
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
template bool lean::permutation_generator<double, double>::move_next();
|
||||
template lean::permutation_generator<double, double>::permutation_generator(unsigned int);
|
||||
#endif
|
||||
template lean::permutation_matrix<double, double>::permutation_matrix(unsigned int);
|
||||
template void lean::permutation_matrix<double, double>::apply_reverse_from_left_to_X(vector<double> &);
|
||||
template void lean::permutation_matrix< lean::mpq, lean::mpq>::apply_reverse_from_left_to_X(vector<lean::mpq> &);
|
||||
template void lean::permutation_matrix< lean::mpq, lean::numeric_pair< lean::mpq> >::apply_reverse_from_left_to_X(vector<lean::numeric_pair< lean::mpq>> &);
|
||||
template void lean::permutation_matrix<double, double>::apply_reverse_from_right_to_T(lean::indexed_vector<double>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::mpq>::apply_reverse_from_right_to_T(lean::indexed_vector<lean::mpq>&);
|
||||
template void lean::permutation_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::apply_reverse_from_right_to_T(lean::indexed_vector<lean::mpq>&);
|
138
src/util/lp/quick_xplain.cpp
Normal file
138
src/util/lp/quick_xplain.cpp
Normal file
|
@ -0,0 +1,138 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/lar_solver.h"
|
||||
namespace lean {
|
||||
quick_xplain::quick_xplain(vector<std::pair<mpq, constraint_index>> & explanation, const lar_solver & ls, lar_solver & qsol) :
|
||||
m_explanation(explanation),
|
||||
m_parent_solver(ls),
|
||||
m_qsol(qsol) {
|
||||
}
|
||||
void quick_xplain::add_constraint_to_qsol(unsigned j) {
|
||||
auto & lar_c = m_constraints_in_local_vars[j];
|
||||
auto ls = lar_c.get_left_side_coefficients();
|
||||
auto ci = m_qsol.add_constraint(ls, lar_c.m_kind, lar_c.m_right_side);
|
||||
m_local_ci_to_constraint_offsets[ci] = j;
|
||||
}
|
||||
|
||||
void quick_xplain::copy_constraint_and_add_constraint_vars(const lar_constraint& lar_c) {
|
||||
vector < std::pair<mpq, unsigned>> ls;
|
||||
for (auto & p : lar_c.get_left_side_coefficients()) {
|
||||
unsigned j = p.second;
|
||||
unsigned lj = m_qsol.add_var(j);
|
||||
ls.push_back(std::make_pair(p.first, lj));
|
||||
}
|
||||
m_constraints_in_local_vars.push_back(lar_constraint(ls, lar_c.m_kind, lar_c.m_right_side));
|
||||
|
||||
}
|
||||
|
||||
bool quick_xplain::infeasible() {
|
||||
m_qsol.solve();
|
||||
return m_qsol.get_status() == INFEASIBLE;
|
||||
}
|
||||
|
||||
// u - unexplored constraints
|
||||
// c and x are assumed, in other words, all constrains of x and c are already added to m_qsol
|
||||
void quick_xplain::minimize(const vector<unsigned>& u) {
|
||||
unsigned k = 0;
|
||||
unsigned initial_stack_size = m_qsol.constraint_stack_size();
|
||||
for (; k < u.size();k++) {
|
||||
m_qsol.push();
|
||||
add_constraint_to_qsol(u[k]);
|
||||
if (infeasible())
|
||||
break;
|
||||
}
|
||||
m_x.insert(u[k]);
|
||||
unsigned m = k / 2; // the split
|
||||
if (m < k) {
|
||||
m_qsol.pop(k + 1 - m);
|
||||
add_constraint_to_qsol(u[k]);
|
||||
if (!infeasible()) {
|
||||
vector<unsigned> un;
|
||||
for (unsigned j = m; j < k; j++)
|
||||
un.push_back(u[j]);
|
||||
minimize(un);
|
||||
}
|
||||
}
|
||||
if (m > 0) {
|
||||
lean_assert(m_qsol.constraint_stack_size() >= initial_stack_size);
|
||||
m_qsol.pop(m_qsol.constraint_stack_size() - initial_stack_size);
|
||||
for (auto j : m_x)
|
||||
add_constraint_to_qsol(j);
|
||||
if (!infeasible()) {
|
||||
vector<unsigned> un;
|
||||
for (unsigned j = 0; j < m; j++)
|
||||
un.push_back(u[j]);
|
||||
minimize(un);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void quick_xplain::run(vector<std::pair<mpq, constraint_index>> & explanation, const lar_solver & ls){
|
||||
if (explanation.size() <= 2) return;
|
||||
lar_solver qsol;
|
||||
lean_assert(ls.explanation_is_correct(explanation));
|
||||
quick_xplain q(explanation, ls, qsol);
|
||||
q.solve();
|
||||
}
|
||||
|
||||
void quick_xplain::copy_constraints_to_local_constraints() {
|
||||
for (auto & p : m_explanation) {
|
||||
const auto & lar_c = m_parent_solver.get_constraint(p.second);
|
||||
m_local_constraint_offset_to_external_ci.push_back(p.second);
|
||||
copy_constraint_and_add_constraint_vars(lar_c);
|
||||
}
|
||||
}
|
||||
|
||||
bool quick_xplain::is_feasible(const vector<unsigned> & x, unsigned k) const {
|
||||
lar_solver l;
|
||||
for (unsigned i : x) {
|
||||
if (i == k)
|
||||
continue;
|
||||
vector < std::pair<mpq, unsigned>> ls;
|
||||
const lar_constraint & c = m_constraints_in_local_vars[i];
|
||||
for (auto & p : c.get_left_side_coefficients()) {
|
||||
unsigned lj = l.add_var(p.second);
|
||||
ls.push_back(std::make_pair(p.first, lj));
|
||||
}
|
||||
l.add_constraint(ls, c.m_kind, c.m_right_side);
|
||||
}
|
||||
l.solve();
|
||||
return l.get_status() != INFEASIBLE;
|
||||
}
|
||||
|
||||
bool quick_xplain::x_is_minimal() const {
|
||||
vector<unsigned> x;
|
||||
for (auto j : m_x)
|
||||
x.push_back(j);
|
||||
|
||||
for (unsigned k = 0; k < x.size(); k++) {
|
||||
lean_assert(is_feasible(x, x[k]));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void quick_xplain::solve() {
|
||||
copy_constraints_to_local_constraints();
|
||||
m_qsol.push();
|
||||
lean_assert(m_qsol.constraint_count() == 0)
|
||||
vector<unsigned> u;
|
||||
for (unsigned k = 0; k < m_constraints_in_local_vars.size(); k++)
|
||||
u.push_back(k);
|
||||
minimize(u);
|
||||
while (m_qsol.constraint_count() > 0)
|
||||
m_qsol.pop();
|
||||
for (unsigned i : m_x)
|
||||
add_constraint_to_qsol(i);
|
||||
m_qsol.solve();
|
||||
lean_assert(m_qsol.get_status() == INFEASIBLE);
|
||||
m_qsol.get_infeasibility_explanation(m_explanation);
|
||||
lean_assert(m_qsol.explanation_is_correct(m_explanation));
|
||||
lean_assert(x_is_minimal());
|
||||
for (auto & p : m_explanation) {
|
||||
p.second = this->m_local_constraint_offset_to_external_ci[m_local_ci_to_constraint_offsets[p.second]];
|
||||
}
|
||||
}
|
||||
}
|
33
src/util/lp/quick_xplain.h
Normal file
33
src/util/lp/quick_xplain.h
Normal file
|
@ -0,0 +1,33 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <unordered_set>
|
||||
|
||||
namespace lean {
|
||||
class lar_solver; // forward definition
|
||||
|
||||
class quick_xplain {
|
||||
std::unordered_set<unsigned> m_x; // the minimal set of constraints, the core - it is empty at the begining
|
||||
vector<lar_constraint> m_constraints_in_local_vars;
|
||||
vector<std::pair<mpq, constraint_index>> & m_explanation;
|
||||
const lar_solver& m_parent_solver;
|
||||
lar_solver & m_qsol;
|
||||
vector<constraint_index> m_local_constraint_offset_to_external_ci;
|
||||
std::unordered_map<constraint_index, unsigned> m_local_ci_to_constraint_offsets;
|
||||
quick_xplain(vector<std::pair<mpq, constraint_index>> & explanation, const lar_solver & parent_lar_solver, lar_solver & qsol);
|
||||
void minimize(const vector<unsigned> & u);
|
||||
void add_constraint_to_qsol(unsigned j);
|
||||
void copy_constraint_and_add_constraint_vars(const lar_constraint& lar_c);
|
||||
void copy_constraints_to_local_constraints();
|
||||
bool infeasible();
|
||||
bool is_feasible(const vector<unsigned> & x, unsigned k) const;
|
||||
bool x_is_minimal() const;
|
||||
public:
|
||||
static void run(vector<std::pair<mpq, constraint_index>> & explanation,const lar_solver & ls);
|
||||
void solve();
|
||||
};
|
||||
}
|
77
src/util/lp/random_updater.h
Normal file
77
src/util/lp/random_updater.h
Normal file
|
@ -0,0 +1,77 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include <set>
|
||||
#include "util/vector.h"
|
||||
#include <unordered_map>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/linear_combination_iterator.h"
|
||||
// see http://research.microsoft.com/projects/z3/smt07.pdf
|
||||
// The class searches for a feasible solution with as many different values of variables as it can find
|
||||
namespace lean {
|
||||
template <typename T> struct numeric_pair; // forward definition
|
||||
class lar_core_solver; // forward definition
|
||||
class random_updater {
|
||||
unsigned range = 100000;
|
||||
struct interval {
|
||||
bool upper_bound_is_set = false;
|
||||
numeric_pair<mpq> upper_bound;
|
||||
bool low_bound_is_set = false;
|
||||
numeric_pair<mpq> low_bound;
|
||||
void set_low_bound(const numeric_pair<mpq> & v) {
|
||||
if (low_bound_is_set) {
|
||||
low_bound = std::max(v, low_bound);
|
||||
} else {
|
||||
low_bound = v;
|
||||
low_bound_is_set = true;
|
||||
}
|
||||
}
|
||||
void set_upper_bound(const numeric_pair<mpq> & v) {
|
||||
if (upper_bound_is_set) {
|
||||
upper_bound = std::min(v, upper_bound);
|
||||
} else {
|
||||
upper_bound = v;
|
||||
upper_bound_is_set = true;
|
||||
}
|
||||
}
|
||||
bool is_empty() const {return
|
||||
upper_bound_is_set && low_bound_is_set && low_bound >= upper_bound;
|
||||
}
|
||||
|
||||
bool low_bound_holds(const numeric_pair<mpq> & a) const {
|
||||
return low_bound_is_set == false || a >= low_bound;
|
||||
}
|
||||
bool upper_bound_holds(const numeric_pair<mpq> & a) const {
|
||||
return upper_bound_is_set == false || a <= upper_bound;
|
||||
}
|
||||
|
||||
bool contains(const numeric_pair<mpq> & a) const {
|
||||
return low_bound_holds(a) && upper_bound_holds(a);
|
||||
}
|
||||
std::string lbs() { return low_bound_is_set ? T_to_string(low_bound):std::string("inf");}
|
||||
std::string rbs() { return upper_bound_is_set? T_to_string(upper_bound):std::string("inf");}
|
||||
std::string to_str() { return std::string("[")+ lbs() + ", " + rbs() + "]";}
|
||||
};
|
||||
std::set<var_index> m_var_set;
|
||||
lar_core_solver & m_core_solver;
|
||||
linear_combination_iterator<mpq>* m_column_j; // the actual column
|
||||
interval find_shift_interval(unsigned j);
|
||||
interval get_interval_of_non_basic_var(unsigned j);
|
||||
void add_column_to_sets(unsigned j);
|
||||
void random_shift_var(unsigned j);
|
||||
std::unordered_map<numeric_pair<mpq>, unsigned> m_values; // it maps a value to the number of time it occurs
|
||||
void diminish_interval_to_leave_basic_vars_feasible(numeric_pair<mpq> &nb_x, interval & inter);
|
||||
void shift_var(unsigned j, interval & r);
|
||||
void diminish_interval_for_basic_var(numeric_pair<mpq> &nb_x, unsigned j, mpq & a, interval & r);
|
||||
numeric_pair<mpq> get_random_from_interval(interval & r);
|
||||
void add_value(numeric_pair<mpq>& v);
|
||||
void remove_value(numeric_pair<mpq> & v);
|
||||
public:
|
||||
random_updater(lar_core_solver & core_solver, const vector<unsigned> & column_list);
|
||||
void update();
|
||||
};
|
||||
}
|
205
src/util/lp/random_updater.hpp
Normal file
205
src/util/lp/random_updater.hpp
Normal file
|
@ -0,0 +1,205 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/random_updater.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include "util/vector.h"
|
||||
namespace lean {
|
||||
|
||||
|
||||
|
||||
random_updater::random_updater(
|
||||
lar_core_solver & lar_core_solver,
|
||||
const vector<unsigned> & column_indices) : m_core_solver(lar_core_solver) {
|
||||
for (unsigned j : column_indices)
|
||||
add_column_to_sets(j);
|
||||
}
|
||||
|
||||
random_updater::interval random_updater::get_interval_of_non_basic_var(unsigned j) {
|
||||
interval ret;
|
||||
switch (m_core_solver.get_column_type(j)) {
|
||||
case column_type::free_column:
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
ret.set_low_bound(m_core_solver.m_r_low_bounds[j]);
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
ret.set_upper_bound(m_core_solver.m_r_upper_bounds[j]);
|
||||
break;
|
||||
case column_type::boxed:
|
||||
case column_type::fixed:
|
||||
ret.set_low_bound(m_core_solver.m_r_low_bounds[j]);
|
||||
ret.set_upper_bound(m_core_solver.m_r_upper_bounds[j]);
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
void random_updater::diminish_interval_for_basic_var(numeric_pair<mpq>& nb_x, unsigned j,
|
||||
mpq & a,
|
||||
interval & r) {
|
||||
lean_assert(m_core_solver.m_r_heading[j] >= 0);
|
||||
numeric_pair<mpq> delta;
|
||||
lean_assert(a != zero_of_type<mpq>());
|
||||
switch (m_core_solver.get_column_type(j)) {
|
||||
case column_type::free_column:
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
|
||||
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
|
||||
if (a > 0) {
|
||||
r.set_upper_bound(nb_x + delta / a);
|
||||
} else {
|
||||
r.set_low_bound(nb_x + delta / a);
|
||||
}
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
|
||||
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
|
||||
if (a > 0) {
|
||||
r.set_low_bound(nb_x - delta / a);
|
||||
} else {
|
||||
r.set_upper_bound(nb_x - delta / a);
|
||||
}
|
||||
break;
|
||||
case column_type::boxed:
|
||||
if (a > 0) {
|
||||
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
|
||||
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
|
||||
r.set_upper_bound(nb_x + delta / a);
|
||||
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
|
||||
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
|
||||
r.set_low_bound(nb_x - delta / a);
|
||||
} else { // a < 0
|
||||
delta = m_core_solver.m_r_upper_bounds()[j] - m_core_solver.m_r_x[j];
|
||||
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
|
||||
r.set_upper_bound(nb_x - delta / a);
|
||||
delta = m_core_solver.m_r_x[j] - m_core_solver.m_r_low_bounds[j];
|
||||
lean_assert(delta >= zero_of_type<numeric_pair<mpq>>());
|
||||
r.set_low_bound(nb_x + delta / a);
|
||||
}
|
||||
break;
|
||||
case column_type::fixed:
|
||||
r.set_low_bound(nb_x);
|
||||
r.set_upper_bound(nb_x);
|
||||
break;
|
||||
default:
|
||||
lean_assert(false);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void random_updater::diminish_interval_to_leave_basic_vars_feasible(numeric_pair<mpq> &nb_x, interval & r) {
|
||||
m_column_j->reset();
|
||||
unsigned i;
|
||||
mpq a;
|
||||
while (m_column_j->next(a, i)) {
|
||||
diminish_interval_for_basic_var(nb_x, m_core_solver.m_r_basis[i], a, r);
|
||||
if (r.is_empty())
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
random_updater::interval random_updater::find_shift_interval(unsigned j) {
|
||||
interval ret = get_interval_of_non_basic_var(j);
|
||||
diminish_interval_to_leave_basic_vars_feasible(m_core_solver.m_r_x[j], ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
void random_updater::shift_var(unsigned j, interval & r) {
|
||||
lean_assert(r.contains(m_core_solver.m_r_x[j]));
|
||||
lean_assert(m_core_solver.m_r_solver.column_is_feasible(j));
|
||||
auto old_x = m_core_solver.m_r_x[j];
|
||||
remove_value(old_x);
|
||||
auto new_val = m_core_solver.m_r_x[j] = get_random_from_interval(r);
|
||||
add_value(new_val);
|
||||
|
||||
lean_assert(r.contains(m_core_solver.m_r_x[j]));
|
||||
lean_assert(m_core_solver.m_r_solver.column_is_feasible(j));
|
||||
auto delta = m_core_solver.m_r_x[j] - old_x;
|
||||
|
||||
unsigned i;
|
||||
m_column_j->reset();
|
||||
mpq a;
|
||||
while(m_column_j->next(a, i)) {
|
||||
unsigned bj = m_core_solver.m_r_basis[i];
|
||||
m_core_solver.m_r_x[bj] -= a * delta;
|
||||
lean_assert(m_core_solver.m_r_solver.column_is_feasible(bj));
|
||||
}
|
||||
lean_assert(m_core_solver.m_r_solver.A_mult_x_is_off() == false);
|
||||
}
|
||||
|
||||
numeric_pair<mpq> random_updater::get_random_from_interval(interval & r) {
|
||||
unsigned rand = my_random();
|
||||
if ((!r.low_bound_is_set) && (!r.upper_bound_is_set))
|
||||
return numeric_pair<mpq>(rand % range, 0);
|
||||
if (r.low_bound_is_set && (!r.upper_bound_is_set))
|
||||
return r.low_bound + numeric_pair<mpq>(rand % range, 0);
|
||||
if ((!r.low_bound_is_set) && r.upper_bound_is_set)
|
||||
return r.upper_bound - numeric_pair<mpq>(rand % range, 0);
|
||||
lean_assert(r.low_bound_is_set && r.upper_bound_is_set);
|
||||
return r.low_bound + (rand % range) * (r.upper_bound - r.low_bound)/ range;
|
||||
}
|
||||
|
||||
void random_updater::random_shift_var(unsigned j) {
|
||||
m_column_j = m_core_solver.get_column_iterator(j);
|
||||
if (m_column_j->size() >= 50) {
|
||||
delete m_column_j;
|
||||
return;
|
||||
}
|
||||
interval interv = find_shift_interval(j);
|
||||
if (interv.is_empty()) {
|
||||
delete m_column_j;
|
||||
return;
|
||||
}
|
||||
|
||||
shift_var(j, interv);
|
||||
delete m_column_j;
|
||||
}
|
||||
|
||||
void random_updater::update() {
|
||||
for (auto j : m_var_set) {
|
||||
if (m_var_set.size() <= m_values.size()) {
|
||||
break; // we are done
|
||||
}
|
||||
random_shift_var(j);
|
||||
}
|
||||
}
|
||||
|
||||
void random_updater::add_value(numeric_pair<mpq>& v) {
|
||||
auto it = m_values.find(v);
|
||||
if (it == m_values.end()) {
|
||||
m_values[v] = 1;
|
||||
} else {
|
||||
it->second++;
|
||||
}
|
||||
}
|
||||
|
||||
void random_updater::remove_value(numeric_pair<mpq>& v) {
|
||||
auto it = m_values.find(v);
|
||||
lean_assert(it != m_values.end());
|
||||
it->second--;
|
||||
if (it->second == 0)
|
||||
m_values.erase(it);
|
||||
}
|
||||
|
||||
void random_updater::add_column_to_sets(unsigned j) {
|
||||
if (m_core_solver.m_r_heading[j] < 0) {
|
||||
m_var_set.insert(j);
|
||||
add_value(m_core_solver.m_r_x[j]);
|
||||
} else {
|
||||
unsigned row = m_core_solver.m_r_heading[j];
|
||||
for (auto row_c : m_core_solver.m_r_A.m_rows[row]) {
|
||||
unsigned cj = row_c.m_j;
|
||||
if (m_core_solver.m_r_heading[cj] < 0) {
|
||||
m_var_set.insert(cj);
|
||||
add_value(m_core_solver.m_r_x[cj]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
5
src/util/lp/random_updater_instances.cpp
Normal file
5
src/util/lp/random_updater_instances.cpp
Normal file
|
@ -0,0 +1,5 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/random_updater.hpp"
|
74
src/util/lp/row_eta_matrix.h
Normal file
74
src/util/lp/row_eta_matrix.h
Normal file
|
@ -0,0 +1,74 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/debug.h"
|
||||
#include <string>
|
||||
#include "util/lp/sparse_vector.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
namespace lean {
|
||||
// This is the sum of a unit matrix and a lower triangular matrix
|
||||
// with non-zero elements only in one row
|
||||
template <typename T, typename X>
|
||||
class row_eta_matrix
|
||||
: public tail_matrix<T, X> {
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned m_dimension;
|
||||
#endif
|
||||
unsigned m_row_start;
|
||||
unsigned m_row;
|
||||
sparse_vector<T> m_row_vector;
|
||||
public:
|
||||
#ifdef LEAN_DEBUG
|
||||
row_eta_matrix(unsigned row_start, unsigned row, unsigned dim):
|
||||
#else
|
||||
row_eta_matrix(unsigned row_start, unsigned row):
|
||||
#endif
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
m_dimension(dim),
|
||||
#endif
|
||||
m_row_start(row_start), m_row(row) {
|
||||
}
|
||||
|
||||
bool is_dense() const { return false; }
|
||||
|
||||
void print(std::ostream & out) {
|
||||
print_matrix(*this, out);
|
||||
}
|
||||
|
||||
const T & get_diagonal_element() const {
|
||||
return m_row_vector.m_data[m_row];
|
||||
}
|
||||
|
||||
void apply_from_left(vector<X> & w, lp_settings &);
|
||||
|
||||
void apply_from_left_local_to_T(indexed_vector<T> & w, lp_settings & settings);
|
||||
void apply_from_left_local_to_X(indexed_vector<X> & w, lp_settings & settings);
|
||||
|
||||
void apply_from_left_to_T(indexed_vector<T> & w, lp_settings & settings) {
|
||||
apply_from_left_local_to_T(w, settings);
|
||||
}
|
||||
|
||||
void push_back(unsigned row_index, T val ) {
|
||||
lean_assert(row_index != m_row);
|
||||
m_row_vector.push_back(row_index, val);
|
||||
}
|
||||
|
||||
void apply_from_right(vector<T> & w);
|
||||
void apply_from_right(indexed_vector<T> & w);
|
||||
|
||||
void conjugate_by_permutation(permutation_matrix<T, X> & p);
|
||||
#ifdef LEAN_DEBUG
|
||||
T get_elem(unsigned row, unsigned col) const;
|
||||
unsigned row_count() const { return m_dimension; }
|
||||
unsigned column_count() const { return m_dimension; }
|
||||
void set_number_of_rows(unsigned m) { m_dimension = m; }
|
||||
void set_number_of_columns(unsigned n) { m_dimension = n; }
|
||||
#endif
|
||||
}; // end of row_eta_matrix
|
||||
}
|
171
src/util/lp/row_eta_matrix.hpp
Normal file
171
src/util/lp/row_eta_matrix.hpp
Normal file
|
@ -0,0 +1,171 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/row_eta_matrix.h"
|
||||
namespace lean {
|
||||
template <typename T, typename X>
|
||||
void row_eta_matrix<T, X>::apply_from_left(vector<X> & w, lp_settings &) {
|
||||
// #ifdef LEAN_DEBUG
|
||||
// dense_matrix<T> deb(*this);
|
||||
// auto clone_w = clone_vector<T>(w, m_dimension);
|
||||
// deb.apply_from_left(clone_w, settings);
|
||||
// #endif
|
||||
|
||||
auto & w_at_row = w[m_row];
|
||||
for (auto & it : m_row_vector.m_data) {
|
||||
w_at_row += w[it.first] * it.second;
|
||||
}
|
||||
// w[m_row] = w_at_row;
|
||||
// #ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal<T>(clone_w, w, m_dimension));
|
||||
// delete [] clone_w;
|
||||
// #endif
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void row_eta_matrix<T, X>::apply_from_left_local_to_T(indexed_vector<T> & w, lp_settings & settings) {
|
||||
auto w_at_row = w[m_row];
|
||||
bool was_zero_at_m_row = is_zero(w_at_row);
|
||||
|
||||
for (auto & it : m_row_vector.m_data) {
|
||||
w_at_row += w[it.first] * it.second;
|
||||
}
|
||||
|
||||
if (!settings.abs_val_is_smaller_than_drop_tolerance(w_at_row)){
|
||||
if (was_zero_at_m_row) {
|
||||
w.m_index.push_back(m_row);
|
||||
}
|
||||
w[m_row] = w_at_row;
|
||||
} else if (!was_zero_at_m_row){
|
||||
w[m_row] = zero_of_type<T>();
|
||||
auto it = std::find(w.m_index.begin(), w.m_index.end(), m_row);
|
||||
w.m_index.erase(it);
|
||||
}
|
||||
// TBD: lean_assert(check_vector_for_small_values(w, settings));
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void row_eta_matrix<T, X>::apply_from_left_local_to_X(indexed_vector<X> & w, lp_settings & settings) {
|
||||
auto w_at_row = w[m_row];
|
||||
bool was_zero_at_m_row = is_zero(w_at_row);
|
||||
|
||||
for (auto & it : m_row_vector.m_data) {
|
||||
w_at_row += w[it.first] * it.second;
|
||||
}
|
||||
|
||||
if (!settings.abs_val_is_smaller_than_drop_tolerance(w_at_row)){
|
||||
if (was_zero_at_m_row) {
|
||||
w.m_index.push_back(m_row);
|
||||
}
|
||||
w[m_row] = w_at_row;
|
||||
} else if (!was_zero_at_m_row){
|
||||
w[m_row] = zero_of_type<X>();
|
||||
auto it = std::find(w.m_index.begin(), w.m_index.end(), m_row);
|
||||
w.m_index.erase(it);
|
||||
}
|
||||
// TBD: does not compile lean_assert(check_vector_for_small_values(w, settings));
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void row_eta_matrix<T, X>::apply_from_right(vector<T> & w) {
|
||||
const T & w_row = w[m_row];
|
||||
if (numeric_traits<T>::is_zero(w_row)) return;
|
||||
#ifdef LEAN_DEBUG
|
||||
// dense_matrix<T> deb(*this);
|
||||
// auto clone_w = clone_vector<T>(w, m_dimension);
|
||||
// deb.apply_from_right(clone_w);
|
||||
#endif
|
||||
for (auto & it : m_row_vector.m_data) {
|
||||
w[it.first] += w_row * it.second;
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal<T>(clone_w, w, m_dimension));
|
||||
// delete clone_w;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void row_eta_matrix<T, X>::apply_from_right(indexed_vector<T> & w) {
|
||||
lean_assert(w.is_OK());
|
||||
const T & w_row = w[m_row];
|
||||
if (numeric_traits<T>::is_zero(w_row)) return;
|
||||
#ifdef LEAN_DEBUG
|
||||
// vector<T> wcopy(w.m_data);
|
||||
// apply_from_right(wcopy);
|
||||
#endif
|
||||
if (numeric_traits<T>::precise()) {
|
||||
for (auto & it : m_row_vector.m_data) {
|
||||
unsigned j = it.first;
|
||||
bool was_zero = numeric_traits<T>::is_zero(w[j]);
|
||||
const T & v = w[j] += w_row * it.second;
|
||||
|
||||
if (was_zero) {
|
||||
if (!numeric_traits<T>::is_zero(v))
|
||||
w.m_index.push_back(j);
|
||||
} else {
|
||||
if (numeric_traits<T>::is_zero(v))
|
||||
w.erase_from_index(j);
|
||||
}
|
||||
}
|
||||
} else { // the non precise version
|
||||
const double drop_eps = 1e-14;
|
||||
for (auto & it : m_row_vector.m_data) {
|
||||
unsigned j = it.first;
|
||||
bool was_zero = numeric_traits<T>::is_zero(w[j]);
|
||||
T & v = w[j] += w_row * it.second;
|
||||
|
||||
if (was_zero) {
|
||||
if (!lp_settings::is_eps_small_general(v, drop_eps))
|
||||
w.m_index.push_back(j);
|
||||
else
|
||||
v = zero_of_type<T>();
|
||||
} else {
|
||||
if (lp_settings::is_eps_small_general(v, drop_eps)) {
|
||||
w.erase_from_index(j);
|
||||
v = zero_of_type<T>();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(vectors_are_equal(wcopy, w.m_data));
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T, typename X>
|
||||
void row_eta_matrix<T, X>::conjugate_by_permutation(permutation_matrix<T, X> & p) {
|
||||
// this = p * this * p(-1)
|
||||
#ifdef LEAN_DEBUG
|
||||
// auto rev = p.get_reverse();
|
||||
// auto deb = ((*this) * rev);
|
||||
// deb = p * deb;
|
||||
#endif
|
||||
m_row = p.apply_reverse(m_row);
|
||||
// copy aside the column indices
|
||||
vector<unsigned> columns;
|
||||
for (auto & it : m_row_vector.m_data)
|
||||
columns.push_back(it.first);
|
||||
for (unsigned i = static_cast<unsigned>(columns.size()); i-- > 0;)
|
||||
m_row_vector.m_data[i].first = p.get_rev(columns[i]);
|
||||
#ifdef LEAN_DEBUG
|
||||
// lean_assert(deb == *this);
|
||||
#endif
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
template <typename T, typename X>
|
||||
T row_eta_matrix<T, X>::get_elem(unsigned row, unsigned col) const {
|
||||
if (row == m_row){
|
||||
if (col == row) {
|
||||
return numeric_traits<T>::one();
|
||||
}
|
||||
return m_row_vector[col];
|
||||
}
|
||||
|
||||
return col == row ? numeric_traits<T>::one() : numeric_traits<T>::zero();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
33
src/util/lp/row_eta_matrix_instances.cpp
Normal file
33
src/util/lp/row_eta_matrix_instances.cpp
Normal file
|
@ -0,0 +1,33 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include <memory>
|
||||
#include "util/lp/row_eta_matrix.hpp"
|
||||
#include "util/lp/lu.h"
|
||||
namespace lean {
|
||||
template void row_eta_matrix<double, double>::conjugate_by_permutation(permutation_matrix<double, double>&);
|
||||
template void row_eta_matrix<mpq, numeric_pair<mpq> >::conjugate_by_permutation(permutation_matrix<mpq, numeric_pair<mpq> >&);
|
||||
template void row_eta_matrix<mpq, mpq>::conjugate_by_permutation(permutation_matrix<mpq, mpq>&);
|
||||
#ifdef LEAN_DEBUG
|
||||
template mpq row_eta_matrix<mpq, mpq>::get_elem(unsigned int, unsigned int) const;
|
||||
template mpq row_eta_matrix<mpq, numeric_pair<mpq> >::get_elem(unsigned int, unsigned int) const;
|
||||
template double row_eta_matrix<double, double>::get_elem(unsigned int, unsigned int) const;
|
||||
#endif
|
||||
template void row_eta_matrix<mpq, mpq>::apply_from_left(vector<mpq>&, lp_settings&);
|
||||
template void row_eta_matrix<mpq, mpq>::apply_from_right(vector<mpq>&);
|
||||
template void row_eta_matrix<mpq, mpq>::apply_from_right(indexed_vector<mpq>&);
|
||||
template void row_eta_matrix<mpq, numeric_pair<mpq> >::apply_from_left(vector<numeric_pair<mpq>>&, lp_settings&);
|
||||
template void row_eta_matrix<mpq, numeric_pair<mpq> >::apply_from_right(vector<mpq>&);
|
||||
template void row_eta_matrix<mpq, numeric_pair<mpq> >::apply_from_right(indexed_vector<mpq>&);
|
||||
template void row_eta_matrix<double, double>::apply_from_left(vector<double>&, lp_settings&);
|
||||
template void row_eta_matrix<double, double>::apply_from_right(vector<double>&);
|
||||
template void row_eta_matrix<double, double>::apply_from_right(indexed_vector<double>&);
|
||||
template void row_eta_matrix<mpq, mpq>::apply_from_left_to_T(indexed_vector<mpq>&, lp_settings&);
|
||||
template void row_eta_matrix<mpq, mpq>::apply_from_left_local_to_T(indexed_vector<mpq>&, lp_settings&);
|
||||
template void row_eta_matrix<mpq, numeric_pair<mpq> >::apply_from_left_to_T(indexed_vector<mpq>&, lp_settings&);
|
||||
template void row_eta_matrix<mpq, numeric_pair<mpq> >::apply_from_left_local_to_T(indexed_vector<mpq>&, lp_settings&);
|
||||
template void row_eta_matrix<double, double>::apply_from_left_to_T(indexed_vector<double>&, lp_settings&);
|
||||
template void row_eta_matrix<double, double>::apply_from_left_local_to_T(indexed_vector<double>&, lp_settings&);
|
||||
}
|
79
src/util/lp/scaler.h
Normal file
79
src/util/lp/scaler.h
Normal file
|
@ -0,0 +1,79 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include <math.h>
|
||||
#include <algorithm>
|
||||
#include <stdio.h> /* printf, fopen */
|
||||
#include <stdlib.h> /* exit, EXIT_FAILURE */
|
||||
#include "util/lp/lp_utils.h"
|
||||
#include "util/lp/static_matrix.h"
|
||||
namespace lean {
|
||||
// for scaling an LP
|
||||
template <typename T, typename X>
|
||||
class scaler {
|
||||
vector<X> & m_b; // right side
|
||||
static_matrix<T, X> &m_A; // the constraint matrix
|
||||
const T & m_scaling_minimum;
|
||||
const T & m_scaling_maximum;
|
||||
vector<T>& m_column_scale;
|
||||
lp_settings & m_settings;
|
||||
public:
|
||||
// constructor
|
||||
scaler(vector<X> & b, static_matrix<T, X> &A, const T & scaling_minimum, const T & scaling_maximum, vector<T> & column_scale,
|
||||
lp_settings & settings):
|
||||
m_b(b),
|
||||
m_A(A),
|
||||
m_scaling_minimum(scaling_minimum),
|
||||
m_scaling_maximum(scaling_maximum),
|
||||
m_column_scale(column_scale),
|
||||
m_settings(settings) {
|
||||
lean_assert(m_column_scale.size() == 0);
|
||||
m_column_scale.resize(m_A.column_count(), numeric_traits<T>::one());
|
||||
}
|
||||
|
||||
T right_side_balance();
|
||||
|
||||
T get_balance() { return m_A.get_balance(); }
|
||||
|
||||
T A_min() const;
|
||||
|
||||
T A_max() const;
|
||||
|
||||
T get_A_ratio() const;
|
||||
|
||||
T get_max_ratio_on_rows() const;
|
||||
|
||||
T get_max_ratio_on_columns() const;
|
||||
|
||||
void scale_rows_with_geometric_mean();
|
||||
|
||||
void scale_columns_with_geometric_mean();
|
||||
|
||||
void scale_once_for_ratio();
|
||||
|
||||
bool scale_with_ratio();
|
||||
|
||||
void bring_row_maximums_to_one();
|
||||
|
||||
void bring_column_maximums_to_one();
|
||||
|
||||
void bring_rows_and_columns_maximums_to_one();
|
||||
|
||||
bool scale_with_log_balance();
|
||||
// Returns true if and only if the scaling was successful.
|
||||
// It is the caller responsibility to restore the matrix
|
||||
bool scale();
|
||||
|
||||
void scale_rows();
|
||||
|
||||
void scale_row(unsigned i);
|
||||
|
||||
void scale_column(unsigned i);
|
||||
|
||||
void scale_columns();
|
||||
};
|
||||
}
|
254
src/util/lp/scaler.hpp
Normal file
254
src/util/lp/scaler.hpp
Normal file
|
@ -0,0 +1,254 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include <algorithm>
|
||||
#include "util/lp/scaler.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
namespace lean {
|
||||
// for scaling an LP
|
||||
template <typename T, typename X> T scaler<T, X>::right_side_balance() {
|
||||
T ret = zero_of_type<T>();
|
||||
unsigned i = m_A.row_count();
|
||||
while (i--) {
|
||||
T rs = abs(convert_struct<T, X>::convert(m_b[i]));
|
||||
if (!is_zero<T>(rs)) {
|
||||
numeric_traits<T>::log(rs);
|
||||
ret += rs * rs;
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T scaler<T, X>::A_min() const {
|
||||
T min = zero_of_type<T>();
|
||||
for (unsigned i = 0; i < m_A.row_count(); i++) {
|
||||
T t = m_A.get_min_abs_in_row(i);
|
||||
min = i == 0 ? t : std::min(t, min);
|
||||
}
|
||||
return min;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T scaler<T, X>::A_max() const {
|
||||
T max = zero_of_type<T>();
|
||||
for (unsigned i = 0; i < m_A.row_count(); i++) {
|
||||
T t = m_A.get_max_abs_in_row(i);
|
||||
max = i == 0? t : std::max(t, max);
|
||||
}
|
||||
return max;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T scaler<T, X>::get_A_ratio() const {
|
||||
T min = A_min();
|
||||
T max = A_max();
|
||||
lean_assert(!m_settings.abs_val_is_smaller_than_zero_tolerance(min));
|
||||
T ratio = max / min;
|
||||
return ratio;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T scaler<T, X>::get_max_ratio_on_rows() const {
|
||||
T ret = T(1);
|
||||
unsigned i = m_A.row_count();
|
||||
while (i--) {
|
||||
T den = m_A.get_min_abs_in_row(i);
|
||||
lean_assert(!m_settings.abs_val_is_smaller_than_zero_tolerance(den));
|
||||
T t = m_A.get_max_abs_in_row(i)/ den;
|
||||
if (t > ret)
|
||||
ret = t;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> T scaler<T, X>::get_max_ratio_on_columns() const {
|
||||
T ret = T(1);
|
||||
unsigned i = m_A.column_count();
|
||||
while (i--) {
|
||||
T den = m_A.get_min_abs_in_column(i);
|
||||
if (m_settings.abs_val_is_smaller_than_zero_tolerance(den))
|
||||
continue; // got a zero column
|
||||
T t = m_A.get_max_abs_in_column(i)/den;
|
||||
if (t > ret)
|
||||
ret = t;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::scale_rows_with_geometric_mean() {
|
||||
unsigned i = m_A.row_count();
|
||||
while (i--) {
|
||||
T max = m_A.get_max_abs_in_row(i);
|
||||
T min = m_A.get_min_abs_in_row(i);
|
||||
lean_assert(max > zero_of_type<T>() && min > zero_of_type<T>());
|
||||
if (is_zero(max) || is_zero(min))
|
||||
continue;
|
||||
T gm = T(sqrt(numeric_traits<T>::get_double(max*min)));
|
||||
if (m_settings.is_eps_small_general(gm, 0.01)) {
|
||||
continue;
|
||||
}
|
||||
m_A.multiply_row(i, one_of_type<T>() / gm);
|
||||
m_b[i] /= gm;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::scale_columns_with_geometric_mean() {
|
||||
unsigned i = m_A.column_count();
|
||||
while (i--) {
|
||||
T max = m_A.get_max_abs_in_column(i);
|
||||
T min = m_A.get_min_abs_in_column(i);
|
||||
T den = T(sqrt(numeric_traits<T>::get_double(max*min)));
|
||||
if (m_settings.is_eps_small_general(den, 0.01))
|
||||
continue; // got a zero column
|
||||
T gm = T(1)/ den;
|
||||
T cs = m_column_scale[i] * gm;
|
||||
if (m_settings.is_eps_small_general(cs, 0.1))
|
||||
continue;
|
||||
m_A.multiply_column(i, gm);
|
||||
m_column_scale[i] = cs;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::scale_once_for_ratio() {
|
||||
T max_ratio_on_rows = get_max_ratio_on_rows();
|
||||
T max_ratio_on_columns = get_max_ratio_on_columns();
|
||||
bool scale_rows_first = max_ratio_on_rows > max_ratio_on_columns;
|
||||
// if max_ratio_on_columns is the largerst then the rows are in worser shape then columns
|
||||
if (scale_rows_first) {
|
||||
scale_rows_with_geometric_mean();
|
||||
scale_columns_with_geometric_mean();
|
||||
} else {
|
||||
scale_columns_with_geometric_mean();
|
||||
scale_rows_with_geometric_mean();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool scaler<T, X>::scale_with_ratio() {
|
||||
T ratio = get_A_ratio();
|
||||
// The ratio is greater than or equal to one. We would like to diminish it and bring it as close to 1 as possible
|
||||
unsigned reps = m_settings.reps_in_scaler;
|
||||
do {
|
||||
scale_once_for_ratio();
|
||||
T new_r = get_A_ratio();
|
||||
if (new_r >= T(0.9) * ratio)
|
||||
break;
|
||||
} while (reps--);
|
||||
|
||||
bring_rows_and_columns_maximums_to_one();
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::bring_row_maximums_to_one() {
|
||||
unsigned i = m_A.row_count();
|
||||
while (i--) {
|
||||
T t = m_A.get_max_abs_in_row(i);
|
||||
if (m_settings.abs_val_is_smaller_than_zero_tolerance(t)) continue;
|
||||
m_A.multiply_row(i, one_of_type<T>() / t);
|
||||
m_b[i] /= t;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::bring_column_maximums_to_one() {
|
||||
unsigned i = m_A.column_count();
|
||||
while (i--) {
|
||||
T max = m_A.get_max_abs_in_column(i);
|
||||
if (m_settings.abs_val_is_smaller_than_zero_tolerance(max)) continue;
|
||||
T t = T(1) / max;
|
||||
m_A.multiply_column(i, t);
|
||||
m_column_scale[i] *= t;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::bring_rows_and_columns_maximums_to_one() {
|
||||
if (get_max_ratio_on_rows() > get_max_ratio_on_columns()) {
|
||||
bring_row_maximums_to_one();
|
||||
bring_column_maximums_to_one();
|
||||
} else {
|
||||
bring_column_maximums_to_one();
|
||||
bring_row_maximums_to_one();
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> bool scaler<T, X>::scale_with_log_balance() {
|
||||
T balance = get_balance();
|
||||
T balance_before_scaling = balance;
|
||||
// todo : analyze the scale order : rows-columns, or columns-rows. Iterate if needed
|
||||
for (int i = 0; i < 10; i++) {
|
||||
scale_rows();
|
||||
scale_columns();
|
||||
T nb = get_balance();
|
||||
if (nb < T(0.9) * balance) {
|
||||
balance = nb;
|
||||
} else {
|
||||
balance = nb;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return balance <= balance_before_scaling;
|
||||
}
|
||||
// Returns true if and only if the scaling was successful.
|
||||
// It is the caller responsibility to restore the matrix
|
||||
template <typename T, typename X> bool scaler<T, X>::scale() {
|
||||
if (numeric_traits<T>::precise()) return true;
|
||||
if (m_settings.scale_with_ratio)
|
||||
return scale_with_ratio();
|
||||
return scale_with_log_balance();
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::scale_rows() {
|
||||
for (unsigned i = 0; i < m_A.row_count(); i++)
|
||||
scale_row(i);
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::scale_row(unsigned i) {
|
||||
T row_max = std::max(m_A.get_max_abs_in_row(i), abs(convert_struct<T, X>::convert(m_b[i])));
|
||||
T alpha = numeric_traits<T>::one();
|
||||
if (numeric_traits<T>::is_zero(row_max)) {
|
||||
return;
|
||||
}
|
||||
if (numeric_traits<T>::get_double(row_max) < m_scaling_minimum) {
|
||||
do {
|
||||
alpha *= 2;
|
||||
row_max *= 2;
|
||||
} while (numeric_traits<T>::get_double(row_max) < m_scaling_minimum);
|
||||
m_A.multiply_row(i, alpha);
|
||||
m_b[i] *= alpha;
|
||||
} else if (numeric_traits<T>::get_double(row_max) > m_scaling_maximum) {
|
||||
do {
|
||||
alpha /= 2;
|
||||
row_max /= 2;
|
||||
} while (numeric_traits<T>::get_double(row_max) > m_scaling_maximum);
|
||||
m_A.multiply_row(i, alpha);
|
||||
m_b[i] *= alpha;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::scale_column(unsigned i) {
|
||||
T column_max = m_A.get_max_abs_in_column(i);
|
||||
T alpha = numeric_traits<T>::one();
|
||||
|
||||
if (numeric_traits<T>::is_zero(column_max)){
|
||||
return; // the column has zeros only
|
||||
}
|
||||
|
||||
if (numeric_traits<T>::get_double(column_max) < m_scaling_minimum) {
|
||||
do {
|
||||
alpha *= 2;
|
||||
column_max *= 2;
|
||||
} while (numeric_traits<T>::get_double(column_max) < m_scaling_minimum);
|
||||
} else if (numeric_traits<T>::get_double(column_max) > m_scaling_maximum) {
|
||||
do {
|
||||
alpha /= 2;
|
||||
column_max /= 2;
|
||||
} while (numeric_traits<T>::get_double(column_max) > m_scaling_maximum);
|
||||
} else {
|
||||
return;
|
||||
}
|
||||
m_A.multiply_column(i, alpha);
|
||||
m_column_scale[i] = alpha;
|
||||
}
|
||||
|
||||
template <typename T, typename X> void scaler<T, X>::scale_columns() {
|
||||
for (unsigned i = 0; i < m_A.column_count(); i++) {
|
||||
scale_column(i);
|
||||
}
|
||||
}
|
||||
}
|
7
src/util/lp/scaler_instances.cpp
Normal file
7
src/util/lp/scaler_instances.cpp
Normal file
|
@ -0,0 +1,7 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/lp/scaler.hpp"
|
||||
template bool lean::scaler<double, double>::scale();
|
||||
template bool lean::scaler<lean::mpq, lean::mpq>::scale();
|
23
src/util/lp/signature_bound_evidence.h
Normal file
23
src/util/lp/signature_bound_evidence.h
Normal file
|
@ -0,0 +1,23 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#pragma once
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/lar_constraints.h"
|
||||
namespace lean {
|
||||
struct bound_signature {
|
||||
unsigned m_i;
|
||||
bool m_at_low;
|
||||
bound_signature(unsigned i, bool at_low) :m_i(i), m_at_low(m_at_low) {}
|
||||
bool at_upper_bound() const { return !m_at_low_bound;}
|
||||
bool at_low_bound() const { return m_at_low;}
|
||||
};
|
||||
template <typename X>
|
||||
struct signature_bound_evidence {
|
||||
vector<bound_signature> m_evidence;
|
||||
unsigned m_j; // found new bound
|
||||
bool m_low_bound;
|
||||
X m_bound;
|
||||
};
|
||||
}
|
417
src/util/lp/sparse_matrix.h
Normal file
417
src/util/lp/sparse_matrix.h
Normal file
|
@ -0,0 +1,417 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
#include "util/vector.h"
|
||||
#include "util/lp/permutation_matrix.h"
|
||||
#include <unordered_map>
|
||||
#include "util/lp/static_matrix.h"
|
||||
#include <set>
|
||||
#include <utility>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include <queue>
|
||||
#include "util/lp/indexed_value.h"
|
||||
#include "util/lp/indexed_vector.h"
|
||||
#include <functional>
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/eta_matrix.h"
|
||||
#include "util/lp/binary_heap_upair_queue.h"
|
||||
#include "util/lp/numeric_pair.h"
|
||||
#include "util/lp/int_set.h"
|
||||
namespace lean {
|
||||
// it is a square matrix
|
||||
template <typename T, typename X>
|
||||
class sparse_matrix
|
||||
#ifdef LEAN_DEBUG
|
||||
: public matrix<T, X>
|
||||
#endif
|
||||
{
|
||||
struct col_header {
|
||||
unsigned m_shortened_markovitz = 0;
|
||||
vector<indexed_value<T>> m_values; // the actual column values
|
||||
|
||||
col_header() {}
|
||||
|
||||
void shorten_markovich_by_one() {
|
||||
m_shortened_markovitz++;
|
||||
}
|
||||
|
||||
void zero_shortened_markovitz() {
|
||||
m_shortened_markovitz = 0;
|
||||
}
|
||||
};
|
||||
|
||||
unsigned m_n_of_active_elems = 0;
|
||||
binary_heap_upair_queue<unsigned> m_pivot_queue;
|
||||
public:
|
||||
vector<vector<indexed_value<T>>> m_rows;
|
||||
vector<col_header> m_columns;
|
||||
permutation_matrix<T, X> m_row_permutation;
|
||||
permutation_matrix<T, X> m_column_permutation;
|
||||
// m_work_pivot_vector[j] = offset of elementh of j-th column in the row we are pivoting to
|
||||
// if the column is not present then m_work_pivot_vector[j] is -1
|
||||
vector<int> m_work_pivot_vector;
|
||||
vector<bool> m_processed;
|
||||
unsigned get_n_of_active_elems() const { return m_n_of_active_elems; }
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
// dense_matrix<T> m_dense;
|
||||
#endif
|
||||
/*
|
||||
the rule is: row i is mapped to m_row_permutation[i] and
|
||||
column j is mapped to m_column_permutation.apply_reverse(j)
|
||||
*/
|
||||
|
||||
unsigned adjust_row(unsigned row) const{
|
||||
return m_row_permutation[row];
|
||||
}
|
||||
|
||||
unsigned adjust_column(unsigned col) const{
|
||||
return m_column_permutation.apply_reverse(col);
|
||||
}
|
||||
|
||||
unsigned adjust_row_inverse(unsigned row) const{
|
||||
return m_row_permutation.apply_reverse(row);
|
||||
}
|
||||
|
||||
unsigned adjust_column_inverse(unsigned col) const{
|
||||
return m_column_permutation[col];
|
||||
}
|
||||
|
||||
void copy_column_from_static_matrix(unsigned col, static_matrix<T, X> const &A, unsigned col_index_in_the_new_matrix);
|
||||
void copy_B(static_matrix<T, X> const &A, vector<unsigned> & basis);
|
||||
|
||||
public:
|
||||
// constructor that copies columns of the basis from A
|
||||
sparse_matrix(static_matrix<T, X> const &A, vector<unsigned> & basis);
|
||||
|
||||
class ref_matrix_element {
|
||||
sparse_matrix & m_matrix;
|
||||
unsigned m_row;
|
||||
unsigned m_col;
|
||||
public:
|
||||
ref_matrix_element(sparse_matrix & m, unsigned row, unsigned col):m_matrix(m), m_row(row), m_col(col) {}
|
||||
ref_matrix_element & operator=(T const & v) { m_matrix.set( m_row, m_col, v); return *this; }
|
||||
ref_matrix_element & operator=(ref_matrix_element const & v) { m_matrix.set(m_row, m_col, v.m_matrix.get(v.m_row, v.m_col)); return *this; }
|
||||
operator T () const { return m_matrix.get(m_row, m_col); }
|
||||
};
|
||||
|
||||
class ref_row {
|
||||
sparse_matrix & m_matrix;
|
||||
unsigned m_row;
|
||||
public:
|
||||
ref_row(sparse_matrix & m, unsigned row) : m_matrix(m), m_row(row) {}
|
||||
ref_matrix_element operator[](unsigned col) const { return ref_matrix_element(m_matrix, m_row, col); }
|
||||
};
|
||||
|
||||
void set_with_no_adjusting_for_row(unsigned row, unsigned col, T val);
|
||||
void set_with_no_adjusting_for_col(unsigned row, unsigned col, T val);
|
||||
|
||||
void set_with_no_adjusting(unsigned row, unsigned col, T val);
|
||||
|
||||
void set(unsigned row, unsigned col, T val);
|
||||
|
||||
T const & get_not_adjusted(unsigned row, unsigned col) const;
|
||||
T const & get(unsigned row, unsigned col) const;
|
||||
|
||||
ref_row operator[](unsigned row) { return ref_row(*this, row); }
|
||||
|
||||
ref_matrix_element operator()(unsigned row, unsigned col) { return ref_matrix_element(*this, row, col); }
|
||||
|
||||
T operator() (unsigned row, unsigned col) const { return get(row, col); }
|
||||
|
||||
vector<indexed_value<T>> & get_row_values(unsigned row) {
|
||||
return m_rows[row];
|
||||
}
|
||||
|
||||
vector<indexed_value<T>> const & get_row_values(unsigned row) const {
|
||||
return m_rows[row];
|
||||
}
|
||||
|
||||
vector<indexed_value<T>> & get_column_values(unsigned col) {
|
||||
return m_columns[col].m_values;
|
||||
}
|
||||
|
||||
vector<indexed_value<T>> const & get_column_values(unsigned col) const {
|
||||
return m_columns[col].m_values;
|
||||
}
|
||||
|
||||
// constructor creating a zero matrix of dim*dim
|
||||
sparse_matrix(unsigned dim);
|
||||
|
||||
|
||||
|
||||
unsigned dimension() const {return static_cast<unsigned>(m_row_permutation.size());}
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
unsigned row_count() const {return dimension();}
|
||||
unsigned column_count() const {return dimension();}
|
||||
#endif
|
||||
|
||||
void init_row_headers();
|
||||
|
||||
void init_column_headers();
|
||||
|
||||
unsigned lowest_row_in_column(unsigned j);
|
||||
|
||||
indexed_value<T> & column_iv_other(indexed_value<T> & iv) {
|
||||
return m_rows[iv.m_index][iv.m_other];
|
||||
}
|
||||
|
||||
indexed_value<T> & row_iv_other(indexed_value<T> & iv) {
|
||||
return m_columns[iv.m_index].m_values[iv.m_other];
|
||||
}
|
||||
|
||||
void remove_element(vector<indexed_value<T>> & row_vals, unsigned row_offset, vector<indexed_value<T>> & column_vals, unsigned column_offset);
|
||||
|
||||
void remove_element(vector<indexed_value<T>> & row_chunk, indexed_value<T> & row_el_iv);
|
||||
|
||||
void put_max_index_to_0(vector<indexed_value<T>> & row_vals, unsigned max_index);
|
||||
|
||||
void set_max_in_row(unsigned row) {
|
||||
set_max_in_row(m_rows[row]);
|
||||
}
|
||||
|
||||
|
||||
void set_max_in_row(vector<indexed_value<T>> & row_vals);
|
||||
|
||||
bool pivot_with_eta(unsigned i, eta_matrix<T, X> *eta_matrix, lp_settings & settings);
|
||||
|
||||
void scan_row_to_work_vector_and_remove_pivot_column(unsigned row, unsigned pivot_column);
|
||||
|
||||
// This method pivots row i to row i0 by muliplying row i by
|
||||
// alpha and adding it to row i0.
|
||||
// After pivoting the row i0 has a max abs value set correctly at the beginning of m_start,
|
||||
// Returns false if the resulting row is all zeroes, and true otherwise
|
||||
bool pivot_row_to_row(unsigned i, const T& alpha, unsigned i0, lp_settings & settings );
|
||||
|
||||
// set the max val as well
|
||||
// returns false if the resulting row is all zeroes, and true otherwise
|
||||
bool set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned i0, indexed_vector<T> & work_vec,
|
||||
lp_settings & settings);
|
||||
|
||||
|
||||
// set the max val as well
|
||||
// returns false if the resulting row is all zeroes, and true otherwise
|
||||
bool set_row_from_work_vector_and_clean_work_vector(unsigned i0);
|
||||
|
||||
void remove_zero_elements_and_set_data_on_existing_elements(unsigned row);
|
||||
|
||||
// work_vec here has not adjusted column indices
|
||||
void remove_zero_elements_and_set_data_on_existing_elements_not_adjusted(unsigned row, indexed_vector<T> & work_vec, lp_settings & settings);
|
||||
|
||||
void multiply_from_right(permutation_matrix<T, X>& p) {
|
||||
// m_dense = m_dense * p;
|
||||
m_column_permutation.multiply_by_permutation_from_right(p);
|
||||
// lean_assert(*this == m_dense);
|
||||
}
|
||||
|
||||
void multiply_from_left(permutation_matrix<T, X>& p) {
|
||||
// m_dense = p * m_dense;
|
||||
m_row_permutation.multiply_by_permutation_from_left(p);
|
||||
// lean_assert(*this == m_dense);
|
||||
}
|
||||
|
||||
void multiply_from_left_with_reverse(permutation_matrix<T, X>& p) {
|
||||
// m_dense = p * m_dense;
|
||||
m_row_permutation.multiply_by_permutation_reverse_from_left(p);
|
||||
// lean_assert(*this == m_dense);
|
||||
}
|
||||
|
||||
// adding delta columns at the end of the matrix
|
||||
void add_columns_at_the_end(unsigned delta);
|
||||
|
||||
void delete_column(int i);
|
||||
|
||||
void swap_columns(unsigned a, unsigned b) {
|
||||
// cout << "swaapoiiin" << std::endl;
|
||||
// dense_matrix<T, X> d(*this);
|
||||
m_column_permutation.transpose_from_left(a, b);
|
||||
// d.swap_columns(a, b);
|
||||
// lean_assert(*this == d);
|
||||
}
|
||||
|
||||
void swap_rows(unsigned a, unsigned b) {
|
||||
m_row_permutation.transpose_from_right(a, b);
|
||||
// m_dense.swap_rows(a, b);
|
||||
// lean_assert(*this == m_dense);
|
||||
}
|
||||
|
||||
void divide_row_by_constant(unsigned i, const T & t, lp_settings & settings);
|
||||
|
||||
bool close(T a, T b) {
|
||||
return // (numeric_traits<T>::precise() && numeric_traits<T>::is_zero(a - b))
|
||||
// ||
|
||||
fabs(numeric_traits<T>::get_double(a - b)) < 0.0000001;
|
||||
}
|
||||
|
||||
// solving x * this = y, and putting the answer into y
|
||||
// the matrix here has to be upper triangular
|
||||
void solve_y_U(vector<T> & y) const;
|
||||
|
||||
// solving x * this = y, and putting the answer into y
|
||||
// the matrix here has to be upper triangular
|
||||
void solve_y_U_indexed(indexed_vector<T> & y, const lp_settings &);
|
||||
|
||||
// fills the indices for such that y[i] can be not a zero
|
||||
// sort them so the smaller indices come first
|
||||
void fill_reachable_indices(std::set<unsigned> & rset, T *y);
|
||||
|
||||
template <typename L>
|
||||
void find_error_in_solution_U_y(vector<L>& y_orig, vector<L> & y);
|
||||
|
||||
template <typename L>
|
||||
void find_error_in_solution_U_y_indexed(indexed_vector<L>& y_orig, indexed_vector<L> & y, const vector<unsigned>& sorted_active_rows);
|
||||
|
||||
template <typename L>
|
||||
void add_delta_to_solution(const vector<L>& del, vector<L> & y);
|
||||
|
||||
template <typename L>
|
||||
void add_delta_to_solution(const indexed_vector<L>& del, indexed_vector<L> & y);
|
||||
|
||||
template <typename L>
|
||||
void double_solve_U_y(indexed_vector<L>& y, const lp_settings & settings);
|
||||
|
||||
template <typename L>
|
||||
void double_solve_U_y(vector<L>& y);
|
||||
// solving this * x = y, and putting the answer into y
|
||||
// the matrix here has to be upper triangular
|
||||
template <typename L>
|
||||
void solve_U_y(vector<L> & y);
|
||||
// solving this * x = y, and putting the answer into y
|
||||
// the matrix here has to be upper triangular
|
||||
template <typename L>
|
||||
void solve_U_y_indexed_only(indexed_vector<L> & y, const lp_settings&, vector<unsigned> & sorted_active_rows );
|
||||
|
||||
#ifdef LEAN_DEBUG
|
||||
T get_elem(unsigned i, unsigned j) const { return get(i, j); }
|
||||
unsigned get_number_of_rows() const { return dimension(); }
|
||||
unsigned get_number_of_columns() const { return dimension(); }
|
||||
virtual void set_number_of_rows(unsigned /*m*/) { }
|
||||
virtual void set_number_of_columns(unsigned /*n*/) { }
|
||||
#endif
|
||||
template <typename L>
|
||||
L dot_product_with_row (unsigned row, const vector<L> & y) const;
|
||||
|
||||
template <typename L>
|
||||
L dot_product_with_row (unsigned row, const indexed_vector<L> & y) const;
|
||||
|
||||
unsigned get_number_of_nonzeroes() const;
|
||||
|
||||
bool get_non_zero_column_in_row(unsigned i, unsigned *j) const;
|
||||
|
||||
void remove_element_that_is_not_in_w(vector<indexed_value<T>> & column_vals, indexed_value<T> & col_el_iv);
|
||||
|
||||
|
||||
// w contains the new column
|
||||
// the old column inside of the matrix has not been changed yet
|
||||
void remove_elements_that_are_not_in_w_and_update_common_elements(unsigned column_to_replace, indexed_vector<T> & w);
|
||||
|
||||
void add_new_element(unsigned row, unsigned col, const T& val);
|
||||
|
||||
// w contains the "rest" of the new column; all common elements of w and the old column has been zeroed
|
||||
// the old column inside of the matrix has not been changed yet
|
||||
void add_new_elements_of_w_and_clear_w(unsigned column_to_replace, indexed_vector<T> & w, lp_settings & settings);
|
||||
|
||||
void replace_column(unsigned column_to_replace, indexed_vector<T> & w, lp_settings &settings);
|
||||
|
||||
unsigned pivot_score(unsigned i, unsigned j);
|
||||
|
||||
void enqueue_domain_into_pivot_queue();
|
||||
|
||||
void set_max_in_rows();
|
||||
|
||||
void zero_shortened_markovitz_numbers();
|
||||
|
||||
void prepare_for_factorization();
|
||||
|
||||
void recover_pivot_queue(vector<upair> & rejected_pivots);
|
||||
|
||||
int elem_is_too_small(unsigned i, unsigned j, int c_partial_pivoting);
|
||||
|
||||
bool remove_row_from_active_pivots_and_shorten_columns(unsigned row);
|
||||
|
||||
void remove_pivot_column(unsigned row);
|
||||
|
||||
void update_active_pivots(unsigned row);
|
||||
|
||||
bool shorten_active_matrix(unsigned row, eta_matrix<T, X> *eta_matrix);
|
||||
|
||||
unsigned pivot_score_without_shortened_counters(unsigned i, unsigned j, unsigned k);
|
||||
#ifdef LEAN_DEBUG
|
||||
bool can_improve_score_for_row(unsigned row, unsigned score, T const & c_partial_pivoting, unsigned k);
|
||||
bool really_best_pivot(unsigned i, unsigned j, T const & c_partial_pivoting, unsigned k);
|
||||
void print_active_matrix(unsigned k, std::ostream & out);
|
||||
#endif
|
||||
bool pivot_queue_is_correct_for_row(unsigned i, unsigned k);
|
||||
|
||||
bool pivot_queue_is_correct_after_pivoting(int k);
|
||||
|
||||
bool get_pivot_for_column(unsigned &i, unsigned &j, int c_partial_pivoting, unsigned k);
|
||||
|
||||
bool elem_is_too_small(vector<indexed_value<T>> & row_chunk, indexed_value<T> & iv, int c_partial_pivoting);
|
||||
|
||||
unsigned number_of_non_zeroes_in_row(unsigned row) const {
|
||||
return static_cast<unsigned>(m_rows[row].size());
|
||||
}
|
||||
|
||||
unsigned number_of_non_zeroes_in_column(unsigned col) const {
|
||||
return m_columns[col].m_values.size();
|
||||
}
|
||||
|
||||
bool shorten_columns_by_pivot_row(unsigned i, unsigned pivot_column);
|
||||
|
||||
bool col_is_active(unsigned j, unsigned pivot) {
|
||||
return adjust_column_inverse(j) > pivot;
|
||||
}
|
||||
|
||||
bool row_is_active(unsigned i, unsigned pivot) {
|
||||
return adjust_row_inverse(i) > pivot;
|
||||
}
|
||||
|
||||
bool fill_eta_matrix(unsigned j, eta_matrix<T, X> ** eta);
|
||||
#ifdef LEAN_DEBUG
|
||||
bool is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings & settings) const;
|
||||
|
||||
bool is_upper_triangular_until(unsigned k) const;
|
||||
void check_column_vs_rows(unsigned col);
|
||||
|
||||
void check_row_vs_columns(unsigned row);
|
||||
|
||||
void check_rows_vs_columns();
|
||||
|
||||
void check_columns_vs_rows();
|
||||
|
||||
void check_matrix();
|
||||
#endif
|
||||
void create_graph_G(const vector<unsigned> & active_rows, vector<unsigned> & sorted_active_rows);
|
||||
void process_column_recursively(unsigned i, vector<unsigned> & sorted_rows);
|
||||
void extend_and_sort_active_rows(const vector<unsigned> & active_rows, vector<unsigned> & sorted_active_rows);
|
||||
void process_index_recursively_for_y_U(unsigned j, vector<unsigned> & sorted_rows);
|
||||
void resize(unsigned new_dim) {
|
||||
unsigned old_dim = dimension();
|
||||
lean_assert(new_dim >= old_dim);
|
||||
for (unsigned j = old_dim; j < new_dim; j++) {
|
||||
m_rows.push_back(vector<indexed_value<T>>());
|
||||
m_columns.push_back(col_header());
|
||||
}
|
||||
m_pivot_queue.resize(new_dim);
|
||||
m_row_permutation.resize(new_dim);
|
||||
m_column_permutation.resize(new_dim);
|
||||
m_work_pivot_vector.resize(new_dim);
|
||||
m_processed.resize(new_dim);
|
||||
for (unsigned j = old_dim; j < new_dim; j++) {
|
||||
add_new_element(j, j, numeric_traits<T>::one());
|
||||
}
|
||||
}
|
||||
#ifdef LEAN_DEBUG
|
||||
vector<T> get_full_row(unsigned i) const;
|
||||
#endif
|
||||
unsigned pivot_queue_size() const { return m_pivot_queue.size(); }
|
||||
};
|
||||
};
|
||||
|
||||
|
1255
src/util/lp/sparse_matrix.hpp
Normal file
1255
src/util/lp/sparse_matrix.hpp
Normal file
File diff suppressed because it is too large
Load diff
101
src/util/lp/sparse_matrix_instances.cpp
Normal file
101
src/util/lp/sparse_matrix_instances.cpp
Normal file
|
@ -0,0 +1,101 @@
|
|||
/*
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
Author: Lev Nachmanson
|
||||
*/
|
||||
#include "util/vector.h"
|
||||
#include <memory>
|
||||
#include "util/lp/lp_settings.h"
|
||||
#include "util/lp/lu.h"
|
||||
#include "util/lp/sparse_matrix.hpp"
|
||||
#include "util/lp/dense_matrix.h"
|
||||
namespace lean {
|
||||
template double sparse_matrix<double, double>::dot_product_with_row<double>(unsigned int, vector<double> const&) const;
|
||||
template void sparse_matrix<double, double>::add_new_element(unsigned int, unsigned int, const double&);
|
||||
template void sparse_matrix<double, double>::divide_row_by_constant(unsigned int, const double&, lp_settings&);
|
||||
template bool sparse_matrix<double, double>::fill_eta_matrix(unsigned int, eta_matrix<double, double>**);
|
||||
template const double & sparse_matrix<double, double>::get(unsigned int, unsigned int) const;
|
||||
template unsigned sparse_matrix<double, double>::get_number_of_nonzeroes() const;
|
||||
template bool sparse_matrix<double, double>::get_pivot_for_column(unsigned int&, unsigned int&, int, unsigned int);
|
||||
template unsigned sparse_matrix<double, double>::lowest_row_in_column(unsigned int);
|
||||
template bool sparse_matrix<double, double>::pivot_row_to_row(unsigned int, const double&, unsigned int, lp_settings&);
|
||||
template bool sparse_matrix<double, double>::pivot_with_eta(unsigned int, eta_matrix<double, double>*, lp_settings&);
|
||||
template void sparse_matrix<double, double>::prepare_for_factorization();
|
||||
template void sparse_matrix<double, double>::remove_element(vector<indexed_value<double> >&, indexed_value<double>&);
|
||||
template void sparse_matrix<double, double>::replace_column(unsigned int, indexed_vector<double>&, lp_settings&);
|
||||
template void sparse_matrix<double, double>::set(unsigned int, unsigned int, double);
|
||||
template void sparse_matrix<double, double>::set_max_in_row(vector<indexed_value<double> >&);
|
||||
template bool sparse_matrix<double, double>::set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned int, indexed_vector<double>&, lp_settings&);
|
||||
template bool sparse_matrix<double, double>::shorten_active_matrix(unsigned int, eta_matrix<double, double>*);
|
||||
template void sparse_matrix<double, double>::solve_y_U(vector<double>&) const;
|
||||
template sparse_matrix<double, double>::sparse_matrix(static_matrix<double, double> const&, vector<unsigned int>&);
|
||||
template sparse_matrix<double, double>::sparse_matrix(unsigned int);
|
||||
template void sparse_matrix<mpq, mpq>::add_new_element(unsigned int, unsigned int, const mpq&);
|
||||
template void sparse_matrix<mpq, mpq>::divide_row_by_constant(unsigned int, const mpq&, lp_settings&);
|
||||
template bool sparse_matrix<mpq, mpq>::fill_eta_matrix(unsigned int, eta_matrix<mpq, mpq>**);
|
||||
template mpq const & sparse_matrix<mpq, mpq>::get(unsigned int, unsigned int) const;
|
||||
template unsigned sparse_matrix<mpq, mpq>::get_number_of_nonzeroes() const;
|
||||
template bool sparse_matrix<mpq, mpq>::get_pivot_for_column(unsigned int&, unsigned int&, int, unsigned int);
|
||||
template unsigned sparse_matrix<mpq, mpq>::lowest_row_in_column(unsigned int);
|
||||
template bool sparse_matrix<mpq, mpq>::pivot_with_eta(unsigned int, eta_matrix<mpq, mpq>*, lp_settings&);
|
||||
template void sparse_matrix<mpq, mpq>::prepare_for_factorization();
|
||||
template void sparse_matrix<mpq, mpq>::remove_element(vector<indexed_value<mpq>> &, indexed_value<mpq>&);
|
||||
template void sparse_matrix<mpq, mpq>::replace_column(unsigned int, indexed_vector<mpq>&, lp_settings&);
|
||||
template void sparse_matrix<mpq, mpq>::set_max_in_row(vector<indexed_value<mpq>>&);
|
||||
template bool sparse_matrix<mpq, mpq>::set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned int, indexed_vector<mpq>&, lp_settings&);
|
||||
template bool sparse_matrix<mpq, mpq>::shorten_active_matrix(unsigned int, eta_matrix<mpq, mpq>*);
|
||||
template void sparse_matrix<mpq, mpq>::solve_y_U(vector<mpq>&) const;
|
||||
template sparse_matrix<mpq, mpq>::sparse_matrix(static_matrix<mpq, mpq> const&, vector<unsigned int>&);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::add_new_element(unsigned int, unsigned int, const mpq&);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::divide_row_by_constant(unsigned int, const mpq&, lp_settings&);
|
||||
template bool sparse_matrix<mpq, numeric_pair<mpq>>::fill_eta_matrix(unsigned int, eta_matrix<mpq, numeric_pair<mpq> >**);
|
||||
template const mpq & sparse_matrix<mpq, numeric_pair<mpq>>::get(unsigned int, unsigned int) const;
|
||||
template unsigned sparse_matrix<mpq, numeric_pair<mpq>>::get_number_of_nonzeroes() const;
|
||||
template bool sparse_matrix<mpq, numeric_pair<mpq>>::get_pivot_for_column(unsigned int&, unsigned int&, int, unsigned int);
|
||||
template unsigned sparse_matrix<mpq, numeric_pair<mpq>>::lowest_row_in_column(unsigned int);
|
||||
template bool sparse_matrix<mpq, numeric_pair<mpq>>::pivot_with_eta(unsigned int, eta_matrix<mpq, numeric_pair<mpq> >*, lp_settings&);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::prepare_for_factorization();
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::remove_element(vector<indexed_value<mpq>>&, indexed_value<mpq>&);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::replace_column(unsigned int, indexed_vector<mpq>&, lp_settings&);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::set_max_in_row(vector<indexed_value<mpq>>&);
|
||||
template bool sparse_matrix<mpq, numeric_pair<mpq>>::set_row_from_work_vector_and_clean_work_vector_not_adjusted(unsigned int, indexed_vector<mpq>&, lp_settings&);
|
||||
template bool sparse_matrix<mpq, numeric_pair<mpq>>::shorten_active_matrix(unsigned int, eta_matrix<mpq, numeric_pair<mpq> >*);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::solve_y_U(vector<mpq>&) const;
|
||||
template sparse_matrix<mpq, numeric_pair<mpq>>::sparse_matrix(static_matrix<mpq, numeric_pair<mpq> > const&, vector<unsigned int>&);
|
||||
template void sparse_matrix<double, double>::double_solve_U_y<double>(indexed_vector<double>&, const lp_settings &);
|
||||
template void sparse_matrix<mpq, mpq>::double_solve_U_y<mpq>(indexed_vector<mpq>&, const lp_settings&);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq>>::double_solve_U_y<mpq>(indexed_vector<mpq>&, const lp_settings&);
|
||||
template void sparse_matrix<mpq, numeric_pair<mpq> >::double_solve_U_y<numeric_pair<mpq> >(indexed_vector<numeric_pair<mpq>>&, const lp_settings&);
|
||||
template void lean::sparse_matrix<double, double>::solve_U_y_indexed_only<double>(lean::indexed_vector<double>&, const lp_settings&, vector<unsigned> &);
|
||||
template void lean::sparse_matrix<lean::mpq, lean::mpq>::solve_U_y_indexed_only<lean::mpq>(lean::indexed_vector<lean::mpq>&, const lp_settings &, vector<unsigned> &);
|
||||
#ifdef LEAN_DEBUG
|
||||
template bool sparse_matrix<double, double>::is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings&) const;
|
||||
template bool sparse_matrix<mpq, mpq>::is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings&) const;
|
||||
template bool sparse_matrix<mpq, numeric_pair<mpq> >::is_upper_triangular_and_maximums_are_set_correctly_in_rows(lp_settings&) const;
|
||||
#endif
|
||||
}
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_U_y_indexed_only<lean::mpq>(lean::indexed_vector<lean::mpq>&, const lp_settings &, vector<unsigned> &);
|
||||
template void lean::sparse_matrix<lean::mpq, lean::mpq>::solve_U_y<lean::mpq>(vector<lean::mpq>&);
|
||||
template void lean::sparse_matrix<lean::mpq, lean::mpq>::double_solve_U_y<lean::mpq>(vector<lean::mpq >&);
|
||||
template void lean::sparse_matrix<double, double>::solve_U_y<double>(vector<double>&);
|
||||
template void lean::sparse_matrix<double, double>::double_solve_U_y<double>(vector<double>&);
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_U_y<lean::numeric_pair<lean::mpq> >(vector<lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::double_solve_U_y<lean::numeric_pair<lean::mpq> >(vector<lean::numeric_pair<lean::mpq> >&);
|
||||
template void lean::sparse_matrix<double, double>::find_error_in_solution_U_y_indexed<double>(lean::indexed_vector<double>&, lean::indexed_vector<double>&, const vector<unsigned> &);
|
||||
template double lean::sparse_matrix<double, double>::dot_product_with_row<double>(unsigned int, lean::indexed_vector<double> const&) const;
|
||||
template void lean::sparse_matrix<lean::mpq, lean::mpq>::find_error_in_solution_U_y_indexed<lean::mpq>(lean::indexed_vector<lean::mpq>&, lean::indexed_vector<lean::mpq>&, const vector<unsigned> &);
|
||||
template lean::mpq lean::sparse_matrix<lean::mpq, lean::mpq>::dot_product_with_row<lean::mpq>(unsigned int, lean::indexed_vector<lean::mpq> const&) const;
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::find_error_in_solution_U_y_indexed<lean::mpq>(lean::indexed_vector<lean::mpq>&, lean::indexed_vector<lean::mpq>&, const vector<unsigned> &);
|
||||
template lean::mpq lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::dot_product_with_row<lean::mpq>(unsigned int, lean::indexed_vector<lean::mpq> const&) const;
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::find_error_in_solution_U_y_indexed<lean::numeric_pair<lean::mpq> >(lean::indexed_vector<lean::numeric_pair<lean::mpq> >&, lean::indexed_vector<lean::numeric_pair<lean::mpq> >&, const vector<unsigned> &);
|
||||
template lean::numeric_pair<lean::mpq> lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::dot_product_with_row<lean::numeric_pair<lean::mpq> >(unsigned int, lean::indexed_vector<lean::numeric_pair<lean::mpq> > const&) const;
|
||||
template void lean::sparse_matrix<lean::mpq, lean::mpq>::extend_and_sort_active_rows(vector<unsigned int> const&, vector<unsigned int>&);
|
||||
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::extend_and_sort_active_rows(vector<unsigned int> const&, vector<unsigned int>&);
|
||||
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_U_y<lean::mpq>(vector<lean::mpq >&);
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::double_solve_U_y<lean::mpq>(vector<lean::mpq >&);
|
||||
template void lean::sparse_matrix< lean::mpq,lean::numeric_pair< lean::mpq> >::set(unsigned int,unsigned int, lean::mpq);
|
||||
template void lean::sparse_matrix<double, double>::solve_y_U_indexed(lean::indexed_vector<double>&, const lp_settings & );
|
||||
template void lean::sparse_matrix<lean::mpq, lean::mpq>::solve_y_U_indexed(lean::indexed_vector<lean::mpq>&, const lp_settings &);
|
||||
template void lean::sparse_matrix<lean::mpq, lean::numeric_pair<lean::mpq> >::solve_y_U_indexed(lean::indexed_vector<lean::mpq>&, const lp_settings &);
|
||||
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue