mirror of
https://github.com/Z3Prover/z3
synced 2025-04-05 17:14:07 +00:00
convert def into expression tree
prior data-structure could not represent ((1 + x) div 2) * 2 It is possible to have nested expressions with div. To deal with this, replace original def by an expression tree data-structure.
This commit is contained in:
parent
f977b48161
commit
f8f26788ad
File diff suppressed because it is too large
Load diff
|
@ -23,6 +23,7 @@ Revision History:
|
|||
#include "util/util.h"
|
||||
#include "util/rational.h"
|
||||
#include "util/inf_eps_rational.h"
|
||||
#include <variant>
|
||||
|
||||
namespace opt {
|
||||
|
||||
|
@ -58,6 +59,7 @@ namespace opt {
|
|||
bool operator!=(var const& other) const {
|
||||
return !(*this == other);
|
||||
}
|
||||
var operator*(rational const& c) const { return var(m_id, m_coeff * c); }
|
||||
};
|
||||
struct row {
|
||||
vector<var> m_vars; // variables with coefficients
|
||||
|
@ -74,20 +76,94 @@ namespace opt {
|
|||
rational get_coefficient(unsigned x) const;
|
||||
};
|
||||
|
||||
// A definition is a linear term of the form (vars + coeff) / div
|
||||
// A definition is a linear term of the form (vars + coeff) / div
|
||||
struct add_def;
|
||||
struct mul_def;
|
||||
struct div_def;
|
||||
struct const_def;
|
||||
struct var_def;
|
||||
struct const_def;
|
||||
enum def_t { add_t, mul_t, div_t, const_t, var_t};
|
||||
struct def {
|
||||
def() = default;
|
||||
def(row const& r, unsigned x);
|
||||
vector<var> m_vars;
|
||||
rational m_coeff;
|
||||
rational m_div{1};
|
||||
def operator+(def const& other) const;
|
||||
def operator/(unsigned n) const { return *this / rational(n); }
|
||||
def operator/(rational const& n) const;
|
||||
def operator*(rational const& n) const;
|
||||
def operator+(rational const& n) const;
|
||||
void substitute(unsigned v, def const& other);
|
||||
void normalize();
|
||||
static def* from_row(row const& r, unsigned x);
|
||||
def_t m_type;
|
||||
unsigned m_ref_count = 0;
|
||||
bool is_add() const { return m_type == add_t; }
|
||||
bool is_mul() const { return m_type == mul_t; }
|
||||
bool is_div() const { return m_type == div_t; }
|
||||
bool is_const() const { return m_type == const_t; }
|
||||
bool is_var() const { return m_type == var_t; }
|
||||
void inc_ref() { ++m_ref_count; }
|
||||
void dec_ref();
|
||||
add_def& to_add();
|
||||
mul_def& to_mul();
|
||||
div_def& to_div();
|
||||
const_def& to_const();
|
||||
var_def& to_var();
|
||||
add_def const& to_add() const;
|
||||
mul_def const& to_mul() const;
|
||||
div_def const& to_div() const;
|
||||
const_def const& to_const() const;
|
||||
var_def const& to_var() const;
|
||||
def* operator+(def& other);
|
||||
def* operator*(def& other);
|
||||
def* operator/(unsigned n) { return *this / rational(n); }
|
||||
def* operator/(rational const& n);
|
||||
def* operator*(rational const& n);
|
||||
def* operator+(rational const& n);
|
||||
def* substitute(unsigned v, def& other);
|
||||
};
|
||||
class def_ref {
|
||||
def* m_def = nullptr;
|
||||
public:
|
||||
def_ref(def* d) {
|
||||
if (d) d->inc_ref();
|
||||
m_def = d;
|
||||
}
|
||||
def_ref& operator=(def* d) {
|
||||
if (d) d->inc_ref();
|
||||
if (m_def) m_def->dec_ref();
|
||||
m_def = d;
|
||||
return *this;
|
||||
}
|
||||
|
||||
def_ref& operator=(def_ref const& d) {
|
||||
if (&d == this)
|
||||
return *this;
|
||||
if (d.m_def) d.m_def->inc_ref();
|
||||
if (m_def) m_def->dec_ref();
|
||||
m_def = d.m_def;
|
||||
return *this;
|
||||
}
|
||||
|
||||
def& operator*() { return *m_def; }
|
||||
def* operator->() { return m_def; }
|
||||
def const& operator*() const { return *m_def; }
|
||||
operator bool() const { return !!m_def; }
|
||||
|
||||
~def_ref() { if (m_def) m_def->dec_ref(); };
|
||||
};
|
||||
struct add_def : public def {
|
||||
def* x, *y;
|
||||
add_def(def* x, def* y) : x(x), y(y) { m_type = add_t; x->inc_ref(); y->inc_ref(); }
|
||||
};
|
||||
struct mul_def : public def {
|
||||
def* x, *y;
|
||||
mul_def(def* x, def* y) : x(x), y(y) { m_type = mul_t; x->inc_ref(); y->inc_ref(); }
|
||||
};
|
||||
struct div_def : public def {
|
||||
def* x;
|
||||
rational m_div{ 1 };
|
||||
div_def(def* x, rational const& d) : x(x), m_div(d) { m_type = div_t; x->inc_ref(); }
|
||||
};
|
||||
struct var_def : public def {
|
||||
var v;
|
||||
var_def(var const& v) : v(v) { m_type = var_t; }
|
||||
};
|
||||
struct const_def : public def {
|
||||
rational c;
|
||||
const_def(rational const& c) : c(c) { m_type = const_t; }
|
||||
};
|
||||
|
||||
private:
|
||||
|
@ -101,9 +177,9 @@ namespace opt {
|
|||
unsigned_vector m_lub, m_glb, m_divides, m_mod, m_div;
|
||||
unsigned_vector m_above, m_below;
|
||||
unsigned_vector m_retired_rows;
|
||||
vector<model_based_opt::def> m_result;
|
||||
vector<model_based_opt::def_ref> m_result;
|
||||
|
||||
void eliminate(unsigned v, def const& d);
|
||||
void eliminate(unsigned v, def& d);
|
||||
|
||||
bool invariant();
|
||||
bool invariant(unsigned index, row const& r);
|
||||
|
@ -164,13 +240,13 @@ namespace opt {
|
|||
|
||||
void update_value(unsigned x, rational const& val);
|
||||
|
||||
def project(unsigned var, bool compute_def);
|
||||
def_ref project(unsigned var, bool compute_def);
|
||||
|
||||
def solve_for(unsigned row_id, unsigned x, bool compute_def);
|
||||
def_ref solve_for(unsigned row_id, unsigned x, bool compute_def);
|
||||
|
||||
def solve_divides(unsigned x, unsigned_vector const& divide_rows, bool compute_def);
|
||||
def_ref solve_divides(unsigned x, unsigned_vector const& divide_rows, bool compute_def);
|
||||
|
||||
def solve_mod_div(unsigned x, unsigned_vector const& mod_rows, unsigned_vector const& divide_rows, bool compute_def);
|
||||
def_ref solve_mod_div(unsigned x, unsigned_vector const& mod_rows, unsigned_vector const& divide_rows, bool compute_def);
|
||||
|
||||
bool is_int(unsigned x) const { return m_var2is_int[x]; }
|
||||
|
||||
|
@ -219,7 +295,7 @@ namespace opt {
|
|||
//
|
||||
// Project set of variables from inequalities.
|
||||
//
|
||||
vector<def> project(unsigned num_vars, unsigned const* vars, bool compute_def);
|
||||
vector<def_ref> project(unsigned num_vars, unsigned const* vars, bool compute_def);
|
||||
|
||||
//
|
||||
// Extract current rows (after projection).
|
||||
|
|
|
@ -258,7 +258,7 @@ namespace mbp {
|
|||
rational c0 = add_def(t1, mul1, coeffs);
|
||||
tids.insert(t, mbo.add_div(coeffs, c0, mul1));
|
||||
}
|
||||
else if (a.is_mod(t, t1, t2) && is_numeral(t2, mul1) && !mul1.is_zero()) {
|
||||
else if (a.is_mod(t, t1, t2) && is_numeral(t2, mul1) && mul1 > 0) {
|
||||
rational r;
|
||||
val = eval(t);
|
||||
if (!a.is_numeral(val, r)) {
|
||||
|
@ -417,7 +417,7 @@ namespace mbp {
|
|||
TRACE("qe", tout << "remaining vars: " << vars << "\n";
|
||||
for (unsigned v : real_vars) tout << "v" << v << " " << mk_pp(index2expr[v], m) << "\n";
|
||||
mbo.display(tout););
|
||||
vector<opt::model_based_opt::def> defs = mbo.project(real_vars.size(), real_vars.data(), compute_def);
|
||||
vector<opt::model_based_opt::def_ref> defs = mbo.project(real_vars.size(), real_vars.data(), compute_def);
|
||||
|
||||
|
||||
vector<row> rows;
|
||||
|
@ -431,7 +431,7 @@ namespace mbp {
|
|||
}
|
||||
rows2fmls(def_vars, rows, index2expr, fmls);
|
||||
TRACE("qe", mbo.display(tout << "mbo result\n");
|
||||
for (auto const& d : defs) tout << "def: " << d << "\n";
|
||||
for (auto const& d : defs) if (d) tout << "def: " << *d << "\n";
|
||||
tout << fmls << "\n";);
|
||||
|
||||
if (compute_def)
|
||||
|
@ -448,29 +448,45 @@ namespace mbp {
|
|||
return true;
|
||||
}
|
||||
|
||||
void optdefs2mbpdef(u_map<row> const& def_vars, vector<opt::model_based_opt::def> const& defs, ptr_vector<expr> const& index2expr, unsigned_vector const& real_vars, vector<def>& result) {
|
||||
expr_ref from_def(u_map<row> const& def_vars, opt::model_based_opt::def const& d, bool is_int, ptr_vector<expr> const& index2expr) {
|
||||
if (d.is_add()) {
|
||||
return expr_ref(
|
||||
a.mk_add(from_def(def_vars, *d.to_add().x, is_int, index2expr),
|
||||
from_def(def_vars, *d.to_add().y, is_int, index2expr)), m);
|
||||
|
||||
}
|
||||
if (d.is_mul()) {
|
||||
return expr_ref(
|
||||
a.mk_mul(from_def(def_vars, *d.to_mul().x, is_int, index2expr),
|
||||
from_def(def_vars, *d.to_mul().y, is_int, index2expr)), m);
|
||||
}
|
||||
if (d.is_const())
|
||||
return expr_ref(a.mk_numeral(d.to_const().c, is_int), m);
|
||||
if (d.is_var()) {
|
||||
auto t = id2expr(def_vars, index2expr, d.to_var().v.m_id);
|
||||
if (d.to_var().v.m_coeff != 1)
|
||||
t = a.mk_mul(a.mk_numeral(d.to_var().v.m_coeff, is_int), t);
|
||||
return expr_ref(t, m);
|
||||
}
|
||||
if (d.is_div()) {
|
||||
auto t = from_def(def_vars, *d.to_div().x, is_int, index2expr);
|
||||
if (is_int)
|
||||
t = a.mk_idiv(t, a.mk_numeral(d.to_div().m_div, is_int));
|
||||
else
|
||||
t = a.mk_div(t, a.mk_numeral(d.to_div().m_div, is_int));
|
||||
return expr_ref(t, m);
|
||||
}
|
||||
UNREACHABLE();
|
||||
return expr_ref(nullptr, m);
|
||||
}
|
||||
|
||||
void optdefs2mbpdef(u_map<row> const& def_vars, vector<opt::model_based_opt::def_ref> const& defs, ptr_vector<expr> const& index2expr, unsigned_vector const& real_vars, vector<def>& result) {
|
||||
SASSERT(defs.size() == real_vars.size());
|
||||
for (unsigned i = 0; i < defs.size(); ++i) {
|
||||
auto const& d = defs[i];
|
||||
expr* x = index2expr[real_vars[i]];
|
||||
bool is_int = a.is_int(x);
|
||||
expr_ref_vector ts(m);
|
||||
expr_ref t(m);
|
||||
for (var const& v : d.m_vars) {
|
||||
t = id2expr(def_vars, index2expr, v.m_id);
|
||||
if (v.m_coeff != 1)
|
||||
t = a.mk_mul(a.mk_numeral(v.m_coeff, a.is_int(t)), t);
|
||||
ts.push_back(t);
|
||||
}
|
||||
if (!d.m_coeff.is_zero())
|
||||
ts.push_back(a.mk_numeral(d.m_coeff, is_int));
|
||||
if (ts.empty())
|
||||
ts.push_back(a.mk_numeral(rational(0), is_int));
|
||||
t = mk_add(ts);
|
||||
if (!d.m_div.is_one() && is_int)
|
||||
t = a.mk_idiv(t, a.mk_numeral(d.m_div, is_int));
|
||||
else if (!d.m_div.is_one() && !is_int)
|
||||
t = a.mk_div(t, a.mk_numeral(d.m_div, is_int));
|
||||
auto t = from_def(def_vars, *d, is_int, index2expr);
|
||||
result.push_back({ expr_ref(x, m), t });
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue