3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-05 14:55:45 +00:00

Polysat: first pass at forbidden intervals (not yet fully integrated into solver) (#5227)

* Add interval class

* Take dependency as const reference

* Compute forbidden intervals for ule-constraints

* Add class for evaluated interval

* We need the evaluated bounds as well

* Don't add constraint to cjust multiple times (hack, to be improved later)

* typo

* More interval helpers

* Add constraint::ult factory function

* Fix forbidden interval condition

* Add solver::has_viable

* Add conflict explanation using forbidden intervals (not yet fully integrated into solver)
This commit is contained in:
Jakob Rath 2021-04-29 19:12:54 +02:00 committed by GitHub
parent 60972de562
commit f83705bf9f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 501 additions and 13 deletions

107
src/math/polysat/interval.h Normal file
View file

@ -0,0 +1,107 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat intervals
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "math/polysat/types.h"
#include "util/optional.h"
namespace polysat {
enum class ikind_t { full, proper };
struct bounds {
pdd lo; ///< lower bound, inclusive
pdd hi; ///< upper bound, exclusive
};
/**
* An interval is either [lo; hi[ (excl. upper bound) or the full domain Z_{2^w}.
* If lo > hi, the interval wraps around, i.e., represents the union of [lo; 2^w[ and [0; hi[.
* Membership test t \in [lo; hi[ is equivalent to t - lo < hi - lo.
*/
class interval {
ikind_t m_kind;
optional<bounds> m_bounds;
interval(): m_kind(ikind_t::full) {}
interval(pdd const& lo, pdd const& hi):
m_kind(ikind_t::proper), m_bounds({lo, hi}) {}
public:
static interval empty(dd::pdd_manager& m) { return proper(m.zero(), m.zero()); }
static interval full() { return {}; }
static interval proper(pdd const& lo, pdd const& hi) { return {lo, hi}; }
bool is_full() const { return m_kind == ikind_t::full; }
bool is_proper() const { return m_kind == ikind_t::proper; }
bool is_always_empty() const { return is_proper() && lo() == hi(); }
pdd const& lo() const { SASSERT(is_proper()); return m_bounds->lo; }
pdd const& hi() const { SASSERT(is_proper()); return m_bounds->hi; }
};
inline std::ostream& operator<<(std::ostream& os, interval const& i) {
if (i.is_full())
return os << "full";
else
return os << "[" << i.lo() << " ; " << i.hi() << "[";
}
class eval_interval {
interval m_symbolic;
rational m_concrete_lo;
rational m_concrete_hi;
eval_interval(interval&& i, rational const& lo_val, rational const& hi_val):
m_symbolic(std::move(i)), m_concrete_lo(lo_val), m_concrete_hi(hi_val) {}
public:
static eval_interval empty(dd::pdd_manager &m) {
return {interval::empty(m), rational::zero(), rational::zero()};
}
static eval_interval full() {
return {interval::full(), rational::zero(), rational::zero()};
}
static eval_interval proper(pdd const &lo, rational const &lo_val, pdd const &hi, rational const &hi_val) {
return {interval::proper(lo, hi), lo_val, hi_val};
}
bool is_full() const { return m_symbolic.is_full(); }
bool is_proper() const { return m_symbolic.is_proper(); }
bool is_always_empty() const { return m_symbolic.is_always_empty(); }
bool is_currently_empty() const { return is_proper() && lo_val() == hi_val(); }
interval const& symbolic() const { return m_symbolic; }
pdd const& lo() const { return m_symbolic.lo(); }
pdd const& hi() const { return m_symbolic.hi(); }
rational const& lo_val() const { SASSERT(is_proper()); return m_concrete_lo; }
rational const& hi_val() const { SASSERT(is_proper()); return m_concrete_hi; }
rational current_len() const {
SASSERT(is_proper());
return mod(hi_val() - lo_val(), rational::power_of_two(lo().power_of_2()));
}
bool currently_contains(rational const& val) const {
if (is_full())
return true;
else if (lo_val() <= hi_val())
return lo_val() <= val && val < hi_val();
else
return val < hi_val() || val >= lo_val();
}
};
inline std::ostream& operator<<(std::ostream& os, eval_interval const& i) {
if (i.is_full())
return os << "full";
else
return os << i.symbolic() << " := [" << i.lo_val() << ";" << i.hi_val() << "[";
}
}