mirror of
https://github.com/Z3Prover/z3
synced 2025-05-13 02:34:43 +00:00
Polysat: first pass at forbidden intervals (not yet fully integrated into solver) (#5227)
* Add interval class * Take dependency as const reference * Compute forbidden intervals for ule-constraints * Add class for evaluated interval * We need the evaluated bounds as well * Don't add constraint to cjust multiple times (hack, to be improved later) * typo * More interval helpers * Add constraint::ult factory function * Fix forbidden interval condition * Add solver::has_viable * Add conflict explanation using forbidden intervals (not yet fully integrated into solver)
This commit is contained in:
parent
60972de562
commit
f83705bf9f
14 changed files with 501 additions and 13 deletions
163
src/math/polysat/forbidden_intervals.cpp
Normal file
163
src/math/polysat/forbidden_intervals.cpp
Normal file
|
@ -0,0 +1,163 @@
|
|||
/*++
|
||||
Copyright (c) 2021 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
Conflict explanation using forbidden intervals as described in
|
||||
"Solving bitvectors with MCSAT: explanations from bits and pieces"
|
||||
by S. Graham-Lengrand, D. Jovanovic, B. Dutertre.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2021-03-19
|
||||
Jakob Rath 2021-04-6
|
||||
|
||||
--*/
|
||||
#include "math/polysat/forbidden_intervals.h"
|
||||
#include "math/polysat/log.h"
|
||||
|
||||
namespace polysat {
|
||||
|
||||
struct fi_record {
|
||||
eval_interval interval;
|
||||
scoped_ptr<constraint> cond; // could be multiple constraints later
|
||||
constraint* src;
|
||||
};
|
||||
|
||||
/**
|
||||
* Find a sequence of intervals that covers all of Z_modulus.
|
||||
*
|
||||
* \returns true iff such a covering exists
|
||||
* \param longest_i: the longest interval (as index into 'records')
|
||||
* \param out_seq: will contain the covering (as list of indices into 'records')
|
||||
*/
|
||||
static bool find_covering_sequence(vector<fi_record> const& records, unsigned longest_i, rational modulus, unsigned_vector& out_seq) {
|
||||
rational baseline = records[longest_i].interval.hi_val();
|
||||
while (!records[longest_i].interval.currently_contains(baseline)) {
|
||||
rational best_extent = rational::zero();
|
||||
unsigned furthest_i = UINT_MAX;
|
||||
for (unsigned i = records.size(); i-- > 0; ) {
|
||||
auto const& interval = records[i].interval;
|
||||
if (interval.currently_contains(baseline)) {
|
||||
rational extent = mod(interval.hi_val() - baseline, modulus);
|
||||
if (extent > best_extent) {
|
||||
best_extent = extent;
|
||||
furthest_i = i;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (furthest_i == UINT_MAX) {
|
||||
// There's a hole we can't cover.
|
||||
// This can happen if a constraint didn't produce an interval
|
||||
// (but not necessarily, values may be covered by multiple constraints)
|
||||
return false;
|
||||
}
|
||||
SASSERT(best_extent > 0);
|
||||
out_seq.push_back(furthest_i);
|
||||
baseline = records[furthest_i].interval.hi_val();
|
||||
}
|
||||
SASSERT(out_seq.size() > 0);
|
||||
if (!records[out_seq[0]].interval.currently_contains(baseline))
|
||||
out_seq.push_back(longest_i);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool forbidden_intervals::explain(solver& s, ptr_vector<constraint> const& conflict, pvar v, scoped_ptr_vector<constraint>& out_lemma) {
|
||||
|
||||
// Extract forbidden intervals from conflicting constraints
|
||||
vector<fi_record> records;
|
||||
bool has_full = false;
|
||||
rational longest_len;
|
||||
unsigned longest_i = UINT_MAX;
|
||||
for (constraint* c : conflict) {
|
||||
LOG("constraint: " << *c);
|
||||
eval_interval interval = eval_interval::full();
|
||||
constraint* cond = nullptr; // TODO: change to scoped_ptr
|
||||
if (c->forbidden_interval(s, v, interval, cond)) {
|
||||
LOG("~> interval: " << interval);
|
||||
if (cond)
|
||||
LOG(" cond: " << *cond);
|
||||
else
|
||||
LOG(" cond: <null>");
|
||||
if (interval.is_currently_empty()) {
|
||||
dealloc(cond);
|
||||
continue;
|
||||
}
|
||||
if (interval.is_full())
|
||||
has_full = true;
|
||||
else {
|
||||
auto const len = interval.current_len();
|
||||
if (len > longest_len) {
|
||||
longest_len = len;
|
||||
longest_i = records.size();
|
||||
}
|
||||
}
|
||||
records.push_back({std::move(interval), cond, c});
|
||||
if (has_full)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (has_full) {
|
||||
auto const& full_record = records.back();
|
||||
SASSERT(full_record.interval.is_full());
|
||||
LOG("has_full: " << std::boolalpha << has_full);
|
||||
// TODO: use full interval to explain
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return false;
|
||||
}
|
||||
|
||||
if (records.empty())
|
||||
return false;
|
||||
|
||||
SASSERT(longest_i != UINT_MAX);
|
||||
LOG("longest: i=" << longest_i << "; " << records[longest_i].interval);
|
||||
|
||||
rational const modulus = rational::power_of_two(s.size(v));
|
||||
|
||||
// Select a sequence of covering intervals
|
||||
unsigned_vector seq;
|
||||
if (!find_covering_sequence(records, longest_i, modulus, seq)) {
|
||||
return false;
|
||||
}
|
||||
LOG("seq: " << seq);
|
||||
|
||||
p_dependency* d = nullptr;
|
||||
unsigned lemma_lvl = 0;
|
||||
for (unsigned i : seq) {
|
||||
constraint* c = records[i].src;
|
||||
d = s.m_dm.mk_join(d, c->dep());
|
||||
lemma_lvl = std::max(lemma_lvl, c->level());
|
||||
}
|
||||
p_dependency_ref lemma_dep(d, s.m_dm);
|
||||
|
||||
// Create lemma
|
||||
// Idea:
|
||||
// - If the side conditions hold, and
|
||||
// - the upper bound of each interval is contained in the next interval,
|
||||
// then the forbidden intervals cover the whole domain and we have a conflict.
|
||||
// We learn the negation of this conjunction.
|
||||
for (unsigned seq_i = seq.size(); seq_i-- > 0; ) {
|
||||
unsigned const i = seq[seq_i];
|
||||
unsigned const next_i = seq[(seq_i+1) % seq.size()];
|
||||
// Build constraint: upper bound of each interval is not contained in the next interval,
|
||||
// using the equivalence: t \in [l;h[ <=> t-l < h-l
|
||||
auto const& hi = records[i].interval.hi();
|
||||
auto const& next_lo = records[next_i].interval.lo();
|
||||
auto const& next_hi = records[next_i].interval.hi();
|
||||
auto const& lhs = hi - next_lo;
|
||||
auto const& rhs = next_hi - next_lo;
|
||||
constraint* c = constraint::ult(lemma_lvl, s.m_next_bvar++, neg_t, lhs, rhs, lemma_dep);
|
||||
LOG("constraint: " << *c);
|
||||
out_lemma.push_back(c);
|
||||
// Side conditions
|
||||
// TODO: check whether the condition is subsumed by c? maybe at the end do a "lemma reduction" step, to try and reduce branching?
|
||||
scoped_ptr<constraint>& cond = records[i].cond;
|
||||
if (cond)
|
||||
out_lemma.push_back(cond.detach());
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue