mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-03 21:09:11 +00:00 
			
		
		
		
	fixes in nex order, add nex_mul::m_coeff
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
		
							parent
							
								
									5e40d64a82
								
							
						
					
					
						commit
						f71cd72d7b
					
				
					 7 changed files with 95 additions and 121 deletions
				
			
		| 
						 | 
				
			
			@ -257,6 +257,7 @@ public:
 | 
			
		|||
                TRACE("nla_cn", tout << "got the cn form: =" << *m_e << "\n";);
 | 
			
		||||
                m_done = m_call_on_result(m_e) || ++m_reported > 100;
 | 
			
		||||
 #ifdef Z3DEBUG
 | 
			
		||||
                TRACE("nla_cn", tout << "m_e_clone" << *m_e_clone << "\n";);
 | 
			
		||||
                SASSERT(nex_creator::equal(m_e, m_e_clone));
 | 
			
		||||
 #endif
 | 
			
		||||
            } else {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -164,9 +164,19 @@ public:
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
class nex_mul : public nex {
 | 
			
		||||
    rational        m_coeff;
 | 
			
		||||
    vector<nex_pow> m_children;
 | 
			
		||||
public:
 | 
			
		||||
    nex_mul()  {}
 | 
			
		||||
    nex_mul() : m_coeff(rational(1)) {}
 | 
			
		||||
 | 
			
		||||
    const rational& coeff() const {
 | 
			
		||||
        return m_coeff;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    rational& coeff() {
 | 
			
		||||
        return m_coeff;
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    unsigned size() const { return m_children.size(); }
 | 
			
		||||
    expr_type type() const { return expr_type::MUL; }
 | 
			
		||||
    vector<nex_pow>& children() { return m_children;}
 | 
			
		||||
| 
						 | 
				
			
			@ -176,6 +186,10 @@ public:
 | 
			
		|||
    std::ostream & print(std::ostream& out) const {
 | 
			
		||||
        
 | 
			
		||||
        bool first = true;
 | 
			
		||||
        if (!m_coeff.is_one()) {
 | 
			
		||||
            out << m_coeff;
 | 
			
		||||
            first = false;
 | 
			
		||||
        }
 | 
			
		||||
        for (const nex_pow& v : m_children) {            
 | 
			
		||||
            std::string s = v.to_string();
 | 
			
		||||
            if (first) {
 | 
			
		||||
| 
						 | 
				
			
			@ -189,18 +203,13 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    void add_child(nex* e) {
 | 
			
		||||
        if (e->is_scalar()) {
 | 
			
		||||
            m_coeff *= to_scalar(e)->value();
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        add_child_in_power(e, 1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // returns true if the product of scalars gives a number different from 1
 | 
			
		||||
    bool has_a_coeff() const {
 | 
			
		||||
        rational r(1);
 | 
			
		||||
        for (auto & p : *this) {
 | 
			
		||||
            if (p.e()->is_scalar())
 | 
			
		||||
                r *= to_scalar(p.e())->value();
 | 
			
		||||
        }
 | 
			
		||||
        return !r.is_one();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    const nex_pow& operator[](unsigned j) const { return m_children[j]; }
 | 
			
		||||
    nex_pow& operator[](unsigned j) { return m_children[j]; }
 | 
			
		||||
| 
						 | 
				
			
			@ -209,7 +218,13 @@ public:
 | 
			
		|||
    nex_pow* begin() { return m_children.begin(); }
 | 
			
		||||
    nex_pow* end() { return m_children.end(); }
 | 
			
		||||
    
 | 
			
		||||
    void add_child_in_power(nex* e, int power) { m_children.push_back(nex_pow(e, power)); }
 | 
			
		||||
    void add_child_in_power(nex* e, int power) {        
 | 
			
		||||
        if (e->is_scalar()) {
 | 
			
		||||
            m_coeff *= (to_scalar(e)->value()).expt(power);
 | 
			
		||||
            return;
 | 
			
		||||
        }
 | 
			
		||||
        m_children.push_back(nex_pow(e, power));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool contains(lpvar j) const {
 | 
			
		||||
        for (const nex_pow& c : *this) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -30,7 +30,8 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
 | 
			
		|||
        return mk_scalar(rational(1));
 | 
			
		||||
    vector<nex_pow> bv; 
 | 
			
		||||
    bool seenj = false;
 | 
			
		||||
    for (auto& p : *to_mul(a)) {
 | 
			
		||||
    auto ma = to_mul(a);
 | 
			
		||||
    for (auto& p : *ma) {
 | 
			
		||||
        const nex * c = p.e();
 | 
			
		||||
        int pow = p.pow();
 | 
			
		||||
        if (!seenj && c->contains(j)) {
 | 
			
		||||
| 
						 | 
				
			
			@ -50,41 +51,37 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
 | 
			
		|||
            bv.push_back(nex_pow(clone(c), pow));
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    if (bv.size() > 1) { 
 | 
			
		||||
        return mk_mul(bv);
 | 
			
		||||
    }
 | 
			
		||||
    if (bv.size() == 1 && bv.begin()->pow() == 1) {
 | 
			
		||||
    if (bv.size() == 1 && bv.begin()->pow() == 1 && ma->coeff().is_one()) {
 | 
			
		||||
        return bv.begin()->e();
 | 
			
		||||
    }
 | 
			
		||||
    if (bv.size() == 0)
 | 
			
		||||
        return mk_scalar(rational(1));
 | 
			
		||||
    return mk_mul(bv);
 | 
			
		||||
    if (bv.size() == 0) {
 | 
			
		||||
        return mk_scalar(rational(ma->coeff()));
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    auto m = mk_mul(bv);
 | 
			
		||||
    m->coeff() = ma->coeff();
 | 
			
		||||
    return m;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool nex_creator::eat_scalar_pow(nex_scalar *& r, nex_pow& p, unsigned pow) {
 | 
			
		||||
bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
 | 
			
		||||
    if (!p.e()->is_scalar())
 | 
			
		||||
        return false;
 | 
			
		||||
    nex_scalar *pe = to_scalar(p.e());
 | 
			
		||||
    const nex_scalar *pe = to_scalar(p.e());
 | 
			
		||||
    if (pe->value().is_one())
 | 
			
		||||
        return true; // but do not change r here
 | 
			
		||||
    if (r == nullptr) {
 | 
			
		||||
        r = pe;
 | 
			
		||||
        r->value() = r->value().expt(p.pow()*pow);                
 | 
			
		||||
    } else {
 | 
			
		||||
        r->value() *= pe->value().expt(p.pow()*pow);
 | 
			
		||||
    }
 | 
			
		||||
        return true; // r does not change here
 | 
			
		||||
    r *= pe->value().expt(p.pow() * pow);
 | 
			
		||||
    return true;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void nex_creator::simplify_children_of_mul(vector<nex_pow> & children) {
 | 
			
		||||
    nex_scalar* r = nullptr;
 | 
			
		||||
void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational& coeff) {
 | 
			
		||||
    TRACE("nla_cn_details", print_vector(children, tout););
 | 
			
		||||
    vector<nex_pow> to_promote;
 | 
			
		||||
    int skipped = 0;
 | 
			
		||||
    for(unsigned j = 0; j < children.size(); j++) {        
 | 
			
		||||
        nex_pow& p = children[j];
 | 
			
		||||
        if (eat_scalar_pow(r, p, 1)) {
 | 
			
		||||
        if (eat_scalar_pow(coeff, p, 1)) {
 | 
			
		||||
            skipped++;
 | 
			
		||||
            continue;
 | 
			
		||||
        }
 | 
			
		||||
| 
						 | 
				
			
			@ -104,25 +101,21 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children) {
 | 
			
		|||
 | 
			
		||||
    for (nex_pow & p : to_promote) {
 | 
			
		||||
        TRACE("nla_cn_details", tout << p << "\n";);
 | 
			
		||||
        for (nex_pow& pp : *to_mul(p.e())) {
 | 
			
		||||
        nex_mul *pm = to_mul(p.e());
 | 
			
		||||
        for (nex_pow& pp : *pm) {
 | 
			
		||||
            TRACE("nla_cn_details", tout << pp << "\n";);
 | 
			
		||||
            if (!eat_scalar_pow(r, pp, p.pow()))
 | 
			
		||||
            if (!eat_scalar_pow(coeff, pp, p.pow()))
 | 
			
		||||
                children.push_back(nex_pow(pp.e(), pp.pow() * p.pow()));            
 | 
			
		||||
        }
 | 
			
		||||
        coeff *= pm->coeff().expt(p.pow());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    if (r != nullptr) {
 | 
			
		||||
        children.push_back(nex_pow(r));
 | 
			
		||||
    }
 | 
			
		||||
        
 | 
			
		||||
    mul_to_powers(children);
 | 
			
		||||
    
 | 
			
		||||
    TRACE("nla_cn_details", print_vector(children, tout););    
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool nex_creator::less_than_on_mul(const nex_mul* a, const nex_mul* b) const {
 | 
			
		||||
    // the scalar, if it is there, is at the beginning of the children()
 | 
			
		||||
    TRACE("nla_cn_details", tout << "a = " << *a << ", b = " << *b << "\n";);
 | 
			
		||||
bool nex_creator::less_than_on_mul_mul(const nex_mul* a, const nex_mul* b) const {
 | 
			
		||||
    SASSERT(is_simplified(a));
 | 
			
		||||
    SASSERT(is_simplified(b));
 | 
			
		||||
    unsigned a_deg = a->get_degree();
 | 
			
		||||
| 
						 | 
				
			
			@ -163,9 +156,12 @@ bool nex_creator::less_than_on_mul(const nex_mul* a, const nex_mul* b) const {
 | 
			
		|||
            inside_a_p = inside_b_p = false;
 | 
			
		||||
            it_a++; it_b++;
 | 
			
		||||
            if (it_a == a_end) {
 | 
			
		||||
                return it_b != b_end;
 | 
			
		||||
                if (it_b != b_end) {
 | 
			
		||||
                    return true;
 | 
			
		||||
                }
 | 
			
		||||
                return a->coeff() < b->coeff();
 | 
			
		||||
            } else if (it_b == b_end) {
 | 
			
		||||
                return true;                
 | 
			
		||||
                return false;                
 | 
			
		||||
            }
 | 
			
		||||
            // no iterator reached the end
 | 
			
		||||
            continue;
 | 
			
		||||
| 
						 | 
				
			
			@ -187,6 +183,7 @@ bool nex_creator::less_than_on_mul(const nex_mul* a, const nex_mul* b) const {
 | 
			
		|||
            inside_b_p = false;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    TRACE("nla_cn_details", tout << "a = " << *a << " >= b = " << *b << "\n";);
 | 
			
		||||
    return false;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -206,7 +203,6 @@ bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
 | 
			
		|||
            const nex * f = c.e();
 | 
			
		||||
            return less_than_on_var_nex(a, f);
 | 
			
		||||
        }
 | 
			
		||||
            
 | 
			
		||||
    case expr_type::SUM:
 | 
			
		||||
        {
 | 
			
		||||
            return !lt((*to_sum(b))[0], a);
 | 
			
		||||
| 
						 | 
				
			
			@ -228,10 +224,10 @@ bool nex_creator::less_than_on_mul_nex(const nex_mul* a, const nex* b) const {
 | 
			
		|||
            auto it = a->begin();
 | 
			
		||||
            const nex_pow & c  = *it;
 | 
			
		||||
            const nex * f = c.e();
 | 
			
		||||
            return lt(f, a);
 | 
			
		||||
            return lt(f, b);
 | 
			
		||||
        }
 | 
			
		||||
    case expr_type::MUL:
 | 
			
		||||
        return less_than_on_mul(a, to_mul(b));            
 | 
			
		||||
        return less_than_on_mul_mul(a, to_mul(b));            
 | 
			
		||||
    case expr_type::SUM:
 | 
			
		||||
        return lt(a, (*to_sum(b))[0]);
 | 
			
		||||
    default:
 | 
			
		||||
| 
						 | 
				
			
			@ -253,7 +249,7 @@ bool nex_creator::less_than_on_sum_sum(const nex_sum* a, const nex_sum* b) const
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
bool nex_creator::lt(const nex* a, const nex* b) const {
 | 
			
		||||
    TRACE("nla_cn_details", tout << *a << " ^ " << *b << "\n";);
 | 
			
		||||
    TRACE("nla_cn_details_", tout << *a << " ? " << *b <<  "\n";);
 | 
			
		||||
    bool ret;
 | 
			
		||||
    switch (a->type()) {
 | 
			
		||||
    case expr_type::VAR: 
 | 
			
		||||
| 
						 | 
				
			
			@ -302,8 +298,10 @@ bool nex_creator::is_sorted(const nex_mul* e) const {
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
bool nex_creator::mul_is_simplified(const nex_mul* e) const {
 | 
			
		||||
    TRACE("nla_cn_details", tout <<  "e = " << *e << "\n";);
 | 
			
		||||
    if (e->size() == 1 && e->begin()->pow() == 1)
 | 
			
		||||
    if (e->size() == 0)
 | 
			
		||||
        return false; // it has to be a scalar
 | 
			
		||||
    TRACE("nla_cn_details_", tout <<  "e = " << *e << "\n";);
 | 
			
		||||
    if (e->size() == 1 && e->begin()->pow() == 1 && e->coeff().is_one())
 | 
			
		||||
        return false;
 | 
			
		||||
    std::set<const nex*, nex_lt> s([this](const nex* a, const nex* b) {return lt(a, b); });
 | 
			
		||||
    for (const auto &p : *e) {
 | 
			
		||||
| 
						 | 
				
			
			@ -334,8 +332,9 @@ bool nex_creator::mul_is_simplified(const nex_mul* e) const {
 | 
			
		|||
 | 
			
		||||
nex * nex_creator::simplify_mul(nex_mul *e) {
 | 
			
		||||
    TRACE("nla_cn_details", tout << *e << "\n";);
 | 
			
		||||
    simplify_children_of_mul(e->children());
 | 
			
		||||
    if (e->size() == 1 && (*e)[0].pow() == 1) 
 | 
			
		||||
    rational& coeff = e->coeff();
 | 
			
		||||
    simplify_children_of_mul(e->children(), coeff);
 | 
			
		||||
    if (e->size() == 1 && (*e)[0].pow() == 1 && coeff.is_one()) 
 | 
			
		||||
        return (*e)[0].e();
 | 
			
		||||
    TRACE("nla_cn_details", tout << *e << "\n";);
 | 
			
		||||
    SASSERT(is_simplified(e));
 | 
			
		||||
| 
						 | 
				
			
			@ -445,41 +444,24 @@ bool nex_creator::register_in_join_map(std::map<nex*, rational, nex_lt>& map, ne
 | 
			
		|||
    auto map_it = map.find(e);
 | 
			
		||||
    if (map_it == map.end()) {
 | 
			
		||||
        map[e] = r;
 | 
			
		||||
        TRACE("nla_cn_details",  tout << "inserting " << std::endl;);
 | 
			
		||||
        return false;
 | 
			
		||||
    } else {
 | 
			
		||||
        map_it->second += r;
 | 
			
		||||
        TRACE("nla_cn_details",  tout << "adding" << r << std::endl;);
 | 
			
		||||
        return true;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// returns true if a simplificatian happens
 | 
			
		||||
bool nex_creator::process_mul_in_simplify_sum(nex_mul* em, std::map<nex*, rational, nex_lt> &map) {
 | 
			
		||||
    bool found = false;
 | 
			
		||||
    auto it = em->begin();
 | 
			
		||||
    if (it->e()->is_scalar()) {
 | 
			
		||||
        SASSERT(it->pow() == 1);
 | 
			
		||||
        rational r = to_scalar(it->e())->value();              
 | 
			
		||||
        auto end = em->end();
 | 
			
		||||
        if (em->size() == 2 && (*em)[1].pow() == 1) {
 | 
			
		||||
            found = register_in_join_map(map, (*em)[1].e(), r);
 | 
			
		||||
        } else {
 | 
			
		||||
            nex_mul * m = mk_mul();
 | 
			
		||||
            for (it++; it != end; it++) {
 | 
			
		||||
                m->add_child_in_power(it->e(), it->pow());
 | 
			
		||||
            }
 | 
			
		||||
            found = register_in_join_map(map, m, r);
 | 
			
		||||
        } 
 | 
			
		||||
    } else {
 | 
			
		||||
        found = register_in_join_map(map, em, rational(1));
 | 
			
		||||
    }
 | 
			
		||||
    return found;
 | 
			
		||||
bool nex_creator::process_mul_in_simplify_sum(nex_mul* em, std::map<nex*, rational, nex_lt> &map) {    
 | 
			
		||||
    return register_in_join_map(map, em, em->coeff());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool nex_creator::fill_join_map_for_sum(ptr_vector<nex> & children,
 | 
			
		||||
                           std::map<nex*, rational, nex_lt>& map,
 | 
			
		||||
                           std::unordered_set<nex*>& existing_nex,
 | 
			
		||||
                           nex_scalar*& common_scalar) {
 | 
			
		||||
    
 | 
			
		||||
    common_scalar = nullptr;
 | 
			
		||||
    bool simplified = false;
 | 
			
		||||
    for (auto e : children) {
 | 
			
		||||
| 
						 | 
				
			
			@ -621,9 +603,10 @@ nex * nex_creator::mk_div_mul_by_mul(const nex_mul *a, const nex_mul* b) {
 | 
			
		|||
    SASSERT(m_powers.size() == 0);
 | 
			
		||||
    if (ret->size() == 0) {
 | 
			
		||||
        delete ret;
 | 
			
		||||
        TRACE("nla_cn_details", tout << "return 1\n";);
 | 
			
		||||
        return mk_scalar(rational(1));
 | 
			
		||||
        TRACE("nla_cn_details", tout << "return scalar\n";);
 | 
			
		||||
        return mk_scalar(a->coeff() / b->coeff());
 | 
			
		||||
    }
 | 
			
		||||
    ret->coeff() = a->coeff() / b->coeff();
 | 
			
		||||
    add_to_allocated(ret);
 | 
			
		||||
    TRACE("nla_cn_details", tout << *ret << "\n";);        
 | 
			
		||||
    return ret;
 | 
			
		||||
| 
						 | 
				
			
			@ -636,7 +619,7 @@ nex * nex_creator::mk_div_by_mul(const nex* a, const nex_mul* b) {
 | 
			
		|||
    }
 | 
			
		||||
    
 | 
			
		||||
    if (a->is_var()) {
 | 
			
		||||
        SASSERT(b->get_degree() == 1 && get_vars_of_expr(a) == get_vars_of_expr(b));
 | 
			
		||||
        SASSERT(b->get_degree() == 1 && get_vars_of_expr(a) == get_vars_of_expr(b) && b->coeff().is_one());
 | 
			
		||||
        return mk_scalar(rational(1));
 | 
			
		||||
    }    
 | 
			
		||||
    return mk_div_mul_by_mul(to_mul(a), b);
 | 
			
		||||
| 
						 | 
				
			
			@ -676,15 +659,9 @@ void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex
 | 
			
		|||
            if (e->is_var()) {
 | 
			
		||||
                children.push_back(mk_mul(mk_scalar(coeff), e));
 | 
			
		||||
            } else {
 | 
			
		||||
                SASSERT(e->is_mul());
 | 
			
		||||
                nex* first = (*to_mul(e))[0].e();
 | 
			
		||||
                if (first->is_scalar()) {
 | 
			
		||||
                    to_scalar(first)->value() = coeff;
 | 
			
		||||
                    children.push_back(e);
 | 
			
		||||
                } else {
 | 
			
		||||
                    e = simplify(mk_mul(mk_scalar(coeff), e));
 | 
			
		||||
                    children.push_back(e);
 | 
			
		||||
                }
 | 
			
		||||
                to_mul(e)->coeff() = coeff;
 | 
			
		||||
                e = simplify(e);
 | 
			
		||||
                children.push_back(e);
 | 
			
		||||
            }
 | 
			
		||||
        }                
 | 
			
		||||
    } else { // e is new
 | 
			
		||||
| 
						 | 
				
			
			@ -715,6 +692,7 @@ unsigned nex_creator::find_sum_in_mul(const nex_mul* a) const {
 | 
			
		|||
    return -1;
 | 
			
		||||
}
 | 
			
		||||
nex* nex_creator::canonize_mul(nex_mul *a) {    
 | 
			
		||||
    TRACE("nla_cn_details", tout << "a = " << *a << "\n";);
 | 
			
		||||
    unsigned j = find_sum_in_mul(a);
 | 
			
		||||
    if (j + 1 == 0)
 | 
			
		||||
        return a;
 | 
			
		||||
| 
						 | 
				
			
			@ -736,7 +714,7 @@ nex* nex_creator::canonize_mul(nex_mul *a) {
 | 
			
		|||
        }
 | 
			
		||||
        r->add_child(m);
 | 
			
		||||
    }
 | 
			
		||||
    TRACE("nla_cn_details", tout << *r << "\n";);
 | 
			
		||||
    TRACE("nla_cn_details", tout << "canonized a = " <<  *r << "\n";);
 | 
			
		||||
    return canonize(r);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -759,6 +737,7 @@ nex* nex_creator::canonize(const nex *a) {
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
bool nex_creator::equal(const nex* a, const nex* b) {
 | 
			
		||||
    TRACE("nla_cn_details", tout << *a << " against  " << *b << "\n";);
 | 
			
		||||
    nex_creator cn;
 | 
			
		||||
    unsigned n = 0;
 | 
			
		||||
    for (lpvar j : get_vars_of_expr(a)) {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -93,7 +93,7 @@ public:
 | 
			
		|||
        return (a.pow() < b.pow()) || (a.pow() == b.pow() && lt(a.e(), b.e()));
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    void simplify_children_of_mul(vector<nex_pow> & children);
 | 
			
		||||
    void simplify_children_of_mul(vector<nex_pow> & children, rational&);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    nex * clone(const nex* a) {        
 | 
			
		||||
| 
						 | 
				
			
			@ -113,6 +113,7 @@ public:
 | 
			
		|||
            for (const auto& p : m->children()) {
 | 
			
		||||
                r->add_child_in_power(clone(p.e()), p.pow());
 | 
			
		||||
            }
 | 
			
		||||
            r->coeff() = m->coeff();
 | 
			
		||||
            return r;
 | 
			
		||||
        }
 | 
			
		||||
        case expr_type::SUM: {
 | 
			
		||||
| 
						 | 
				
			
			@ -163,7 +164,7 @@ public:
 | 
			
		|||
    void add_children(T) { }
 | 
			
		||||
    
 | 
			
		||||
    template <typename T, typename K, typename ...Args>
 | 
			
		||||
    void add_children(T r, K e, Args ...  es) {
 | 
			
		||||
    void add_children(T r, K e, Args ...  es) {        
 | 
			
		||||
        r->add_child(e);
 | 
			
		||||
        add_children(r, es ...);
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -247,11 +248,11 @@ public:
 | 
			
		|||
 | 
			
		||||
    void simplify_children_of_sum(ptr_vector<nex> & children);
 | 
			
		||||
    
 | 
			
		||||
    bool eat_scalar_pow(nex_scalar *& r, nex_pow& p, unsigned);
 | 
			
		||||
    bool eat_scalar_pow(rational& r, const nex_pow& p, unsigned);
 | 
			
		||||
    void simplify_children_of_mul(vector<nex_pow> & children, lt_on_vars lt, std::function<nex_scalar*()> mk_scalar);
 | 
			
		||||
 | 
			
		||||
    bool lt(const nex* a, const nex* b) const;    
 | 
			
		||||
    bool less_than_on_mul(const nex_mul* a, const nex_mul* b) const;
 | 
			
		||||
    bool less_than_on_mul_mul(const nex_mul* a, const nex_mul* b) const;
 | 
			
		||||
    bool less_than_on_var_nex(const nex_var* a, const nex* b) const;
 | 
			
		||||
    bool less_than_on_mul_nex(const nex_mul* a, const nex* b) const;
 | 
			
		||||
    bool less_than_on_sum_sum(const nex_sum* a, const nex_sum* b) const;
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -608,10 +608,6 @@ std::ostream& nla_grobner::display_equation(std::ostream & out, const equation &
 | 
			
		|||
    return out;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void nla_grobner::display_monomial(std::ostream & out, monomial const & m) const {
 | 
			
		||||
    NOT_IMPLEMENTED_YET();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void nla_grobner::display(std::ostream & out) const {
 | 
			
		||||
    NOT_IMPLEMENTED_YET();
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -38,22 +38,6 @@ struct grobner_stats {
 | 
			
		|||
 | 
			
		||||
 | 
			
		||||
class nla_grobner : common {
 | 
			
		||||
 | 
			
		||||
    struct monomial {
 | 
			
		||||
        rational         m_coeff;
 | 
			
		||||
        svector<lpvar>   m_vars;  //!< sorted variables
 | 
			
		||||
    
 | 
			
		||||
        friend class grobner;
 | 
			
		||||
        friend struct monomial_lt;
 | 
			
		||||
    
 | 
			
		||||
        monomial() {}
 | 
			
		||||
    public:
 | 
			
		||||
        rational const & get_coeff() const { return m_coeff; }
 | 
			
		||||
        unsigned get_degree() const { return m_vars.size(); }
 | 
			
		||||
        unsigned get_size() const { return get_degree(); }
 | 
			
		||||
        lpvar    get_var(unsigned idx) const { return m_vars[idx]; }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    class equation {
 | 
			
		||||
        unsigned                   m_bidx:31;       //!< position at m_equations_to_delete
 | 
			
		||||
        unsigned                   m_lc:1;          //!< true if equation if a linear combination of the input equations.
 | 
			
		||||
| 
						 | 
				
			
			@ -127,8 +111,6 @@ bool simplify_processed_with_eq(equation*);
 | 
			
		|||
    void display_equations(std::ostream & out, equation_set const & v, char const * header) const;
 | 
			
		||||
    std::ostream& display_equation(std::ostream & out, const equation & eq);
 | 
			
		||||
 | 
			
		||||
    void display_monomial(std::ostream & out, monomial const & m) const;
 | 
			
		||||
 | 
			
		||||
    void display(std::ostream & out) const;
 | 
			
		||||
    void get_equations(ptr_vector<equation>& eqs);
 | 
			
		||||
    bool try_to_modify_eqs(ptr_vector<equation>& eqs, unsigned& next_weight);
 | 
			
		||||
| 
						 | 
				
			
			@ -138,13 +120,8 @@ bool simplify_processed_with_eq(equation*);
 | 
			
		|||
    void process_var(nex_mul*, lpvar j, ci_dependency *& dep, rational&);
 | 
			
		||||
 | 
			
		||||
    nex* mk_monomial_in_row(rational, lpvar, ci_dependency*&);
 | 
			
		||||
    rational get_monomial_coeff(const nex_mul* m) {        
 | 
			
		||||
        const nex* a = m->children()[0].e();
 | 
			
		||||
        if (a->is_scalar())
 | 
			
		||||
            return static_cast<const nex_scalar*>(a)->value();
 | 
			
		||||
        return rational(1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    
 | 
			
		||||
    void init_equation(equation* eq, const nex*, ci_dependency* d);
 | 
			
		||||
    equation * simplify(equation const * source, equation * target);    
 | 
			
		||||
    // bool less_than_on_vars(lpvar a, lpvar b) const {
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -85,9 +85,9 @@ void test_simplify() {
 | 
			
		|||
        [](unsigned) { return false; },
 | 
			
		||||
        []() { return 1; }, // for random
 | 
			
		||||
                    r);
 | 
			
		||||
    // enable_trace("nla_cn");
 | 
			
		||||
    // enable_trace("nla_cn_details");
 | 
			
		||||
    //    enable_trace("nla_cn_details_");
 | 
			
		||||
    enable_trace("nla_cn");
 | 
			
		||||
    enable_trace("nla_cn_details");
 | 
			
		||||
    // enable_trace("nla_cn_details_");
 | 
			
		||||
    enable_trace("nla_test");
 | 
			
		||||
    
 | 
			
		||||
    r.set_number_of_vars(3);
 | 
			
		||||
| 
						 | 
				
			
			@ -98,6 +98,10 @@ void test_simplify() {
 | 
			
		|||
    nex_var* c = r.mk_var(2);
 | 
			
		||||
    auto bc = r.mk_mul(b, c);
 | 
			
		||||
    auto a_plus_bc = r.mk_sum(a, bc);
 | 
			
		||||
    auto two_a_plus_bc = r.mk_mul(r.mk_scalar(rational(2)), a_plus_bc);
 | 
			
		||||
    auto simp_two_a_plus_bc = r.simplify(two_a_plus_bc);
 | 
			
		||||
    TRACE("nla_test", tout << * simp_two_a_plus_bc << "\n";);
 | 
			
		||||
    SASSERT(nex_creator::equal(simp_two_a_plus_bc, two_a_plus_bc));
 | 
			
		||||
    auto simp_a_plus_bc = r.simplify(a_plus_bc);
 | 
			
		||||
    SASSERT(to_sum(simp_a_plus_bc)->size() > 1);
 | 
			
		||||
    auto three_ab = r.mk_mul(r.mk_scalar(rational(3)), a, b);
 | 
			
		||||
| 
						 | 
				
			
			@ -106,8 +110,8 @@ void test_simplify() {
 | 
			
		|||
    TRACE("nla_test", tout << "before simplify " << *three_ab_square << "\n";);
 | 
			
		||||
    three_ab_square = to_mul(r.simplify(three_ab_square));
 | 
			
		||||
    TRACE("nla_test", tout << *three_ab_square << "\n";);
 | 
			
		||||
    nex_scalar * s = to_scalar(three_ab_square->children()[0].e());
 | 
			
		||||
    SASSERT(s->value() == rational(27));
 | 
			
		||||
    const rational& s = three_ab_square->coeff();
 | 
			
		||||
    SASSERT(s == rational(27));
 | 
			
		||||
    auto m = r.mk_mul(); m->add_child_in_power(c, 2);
 | 
			
		||||
    TRACE("nla_test_", tout << "m = " << *m << "\n";); 
 | 
			
		||||
    auto n = r.mk_mul(a);
 | 
			
		||||
| 
						 | 
				
			
			@ -161,6 +165,7 @@ void test_cn_shorter() {
 | 
			
		|||
    enable_trace("nla_cn");
 | 
			
		||||
    enable_trace("nla_cn_test");
 | 
			
		||||
    enable_trace("nla_cn_details");
 | 
			
		||||
    //    enable_trace("nla_cn_details_");
 | 
			
		||||
    enable_trace("nla_test_details");
 | 
			
		||||
    cr.set_number_of_vars(20);
 | 
			
		||||
    for (unsigned j = 0; j < cr.get_number_of_vars(); j++)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue