mirror of
https://github.com/Z3Prover/z3
synced 2025-04-13 12:28:44 +00:00
fixes in nex order, add nex_mul::m_coeff
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
5e40d64a82
commit
f71cd72d7b
|
@ -257,6 +257,7 @@ public:
|
|||
TRACE("nla_cn", tout << "got the cn form: =" << *m_e << "\n";);
|
||||
m_done = m_call_on_result(m_e) || ++m_reported > 100;
|
||||
#ifdef Z3DEBUG
|
||||
TRACE("nla_cn", tout << "m_e_clone" << *m_e_clone << "\n";);
|
||||
SASSERT(nex_creator::equal(m_e, m_e_clone));
|
||||
#endif
|
||||
} else {
|
||||
|
|
|
@ -164,9 +164,19 @@ public:
|
|||
|
||||
|
||||
class nex_mul : public nex {
|
||||
rational m_coeff;
|
||||
vector<nex_pow> m_children;
|
||||
public:
|
||||
nex_mul() {}
|
||||
nex_mul() : m_coeff(rational(1)) {}
|
||||
|
||||
const rational& coeff() const {
|
||||
return m_coeff;
|
||||
}
|
||||
|
||||
rational& coeff() {
|
||||
return m_coeff;
|
||||
}
|
||||
|
||||
unsigned size() const { return m_children.size(); }
|
||||
expr_type type() const { return expr_type::MUL; }
|
||||
vector<nex_pow>& children() { return m_children;}
|
||||
|
@ -176,6 +186,10 @@ public:
|
|||
std::ostream & print(std::ostream& out) const {
|
||||
|
||||
bool first = true;
|
||||
if (!m_coeff.is_one()) {
|
||||
out << m_coeff;
|
||||
first = false;
|
||||
}
|
||||
for (const nex_pow& v : m_children) {
|
||||
std::string s = v.to_string();
|
||||
if (first) {
|
||||
|
@ -189,18 +203,13 @@ public:
|
|||
}
|
||||
|
||||
void add_child(nex* e) {
|
||||
if (e->is_scalar()) {
|
||||
m_coeff *= to_scalar(e)->value();
|
||||
return;
|
||||
}
|
||||
add_child_in_power(e, 1);
|
||||
}
|
||||
|
||||
// returns true if the product of scalars gives a number different from 1
|
||||
bool has_a_coeff() const {
|
||||
rational r(1);
|
||||
for (auto & p : *this) {
|
||||
if (p.e()->is_scalar())
|
||||
r *= to_scalar(p.e())->value();
|
||||
}
|
||||
return !r.is_one();
|
||||
}
|
||||
|
||||
const nex_pow& operator[](unsigned j) const { return m_children[j]; }
|
||||
nex_pow& operator[](unsigned j) { return m_children[j]; }
|
||||
|
@ -209,7 +218,13 @@ public:
|
|||
nex_pow* begin() { return m_children.begin(); }
|
||||
nex_pow* end() { return m_children.end(); }
|
||||
|
||||
void add_child_in_power(nex* e, int power) { m_children.push_back(nex_pow(e, power)); }
|
||||
void add_child_in_power(nex* e, int power) {
|
||||
if (e->is_scalar()) {
|
||||
m_coeff *= (to_scalar(e)->value()).expt(power);
|
||||
return;
|
||||
}
|
||||
m_children.push_back(nex_pow(e, power));
|
||||
}
|
||||
|
||||
bool contains(lpvar j) const {
|
||||
for (const nex_pow& c : *this) {
|
||||
|
|
|
@ -30,7 +30,8 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|||
return mk_scalar(rational(1));
|
||||
vector<nex_pow> bv;
|
||||
bool seenj = false;
|
||||
for (auto& p : *to_mul(a)) {
|
||||
auto ma = to_mul(a);
|
||||
for (auto& p : *ma) {
|
||||
const nex * c = p.e();
|
||||
int pow = p.pow();
|
||||
if (!seenj && c->contains(j)) {
|
||||
|
@ -50,41 +51,37 @@ nex * nex_creator::mk_div(const nex* a, lpvar j) {
|
|||
bv.push_back(nex_pow(clone(c), pow));
|
||||
}
|
||||
}
|
||||
if (bv.size() > 1) {
|
||||
return mk_mul(bv);
|
||||
}
|
||||
if (bv.size() == 1 && bv.begin()->pow() == 1) {
|
||||
if (bv.size() == 1 && bv.begin()->pow() == 1 && ma->coeff().is_one()) {
|
||||
return bv.begin()->e();
|
||||
}
|
||||
if (bv.size() == 0)
|
||||
return mk_scalar(rational(1));
|
||||
return mk_mul(bv);
|
||||
if (bv.size() == 0) {
|
||||
return mk_scalar(rational(ma->coeff()));
|
||||
}
|
||||
|
||||
auto m = mk_mul(bv);
|
||||
m->coeff() = ma->coeff();
|
||||
return m;
|
||||
|
||||
}
|
||||
|
||||
bool nex_creator::eat_scalar_pow(nex_scalar *& r, nex_pow& p, unsigned pow) {
|
||||
bool nex_creator::eat_scalar_pow(rational& r, const nex_pow& p, unsigned pow) {
|
||||
if (!p.e()->is_scalar())
|
||||
return false;
|
||||
nex_scalar *pe = to_scalar(p.e());
|
||||
const nex_scalar *pe = to_scalar(p.e());
|
||||
if (pe->value().is_one())
|
||||
return true; // but do not change r here
|
||||
if (r == nullptr) {
|
||||
r = pe;
|
||||
r->value() = r->value().expt(p.pow()*pow);
|
||||
} else {
|
||||
r->value() *= pe->value().expt(p.pow()*pow);
|
||||
}
|
||||
return true; // r does not change here
|
||||
r *= pe->value().expt(p.pow() * pow);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void nex_creator::simplify_children_of_mul(vector<nex_pow> & children) {
|
||||
nex_scalar* r = nullptr;
|
||||
void nex_creator::simplify_children_of_mul(vector<nex_pow> & children, rational& coeff) {
|
||||
TRACE("nla_cn_details", print_vector(children, tout););
|
||||
vector<nex_pow> to_promote;
|
||||
int skipped = 0;
|
||||
for(unsigned j = 0; j < children.size(); j++) {
|
||||
nex_pow& p = children[j];
|
||||
if (eat_scalar_pow(r, p, 1)) {
|
||||
if (eat_scalar_pow(coeff, p, 1)) {
|
||||
skipped++;
|
||||
continue;
|
||||
}
|
||||
|
@ -104,25 +101,21 @@ void nex_creator::simplify_children_of_mul(vector<nex_pow> & children) {
|
|||
|
||||
for (nex_pow & p : to_promote) {
|
||||
TRACE("nla_cn_details", tout << p << "\n";);
|
||||
for (nex_pow& pp : *to_mul(p.e())) {
|
||||
nex_mul *pm = to_mul(p.e());
|
||||
for (nex_pow& pp : *pm) {
|
||||
TRACE("nla_cn_details", tout << pp << "\n";);
|
||||
if (!eat_scalar_pow(r, pp, p.pow()))
|
||||
if (!eat_scalar_pow(coeff, pp, p.pow()))
|
||||
children.push_back(nex_pow(pp.e(), pp.pow() * p.pow()));
|
||||
}
|
||||
coeff *= pm->coeff().expt(p.pow());
|
||||
}
|
||||
|
||||
if (r != nullptr) {
|
||||
children.push_back(nex_pow(r));
|
||||
}
|
||||
|
||||
mul_to_powers(children);
|
||||
|
||||
TRACE("nla_cn_details", print_vector(children, tout););
|
||||
}
|
||||
|
||||
bool nex_creator::less_than_on_mul(const nex_mul* a, const nex_mul* b) const {
|
||||
// the scalar, if it is there, is at the beginning of the children()
|
||||
TRACE("nla_cn_details", tout << "a = " << *a << ", b = " << *b << "\n";);
|
||||
bool nex_creator::less_than_on_mul_mul(const nex_mul* a, const nex_mul* b) const {
|
||||
SASSERT(is_simplified(a));
|
||||
SASSERT(is_simplified(b));
|
||||
unsigned a_deg = a->get_degree();
|
||||
|
@ -163,9 +156,12 @@ bool nex_creator::less_than_on_mul(const nex_mul* a, const nex_mul* b) const {
|
|||
inside_a_p = inside_b_p = false;
|
||||
it_a++; it_b++;
|
||||
if (it_a == a_end) {
|
||||
return it_b != b_end;
|
||||
if (it_b != b_end) {
|
||||
return true;
|
||||
}
|
||||
return a->coeff() < b->coeff();
|
||||
} else if (it_b == b_end) {
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
// no iterator reached the end
|
||||
continue;
|
||||
|
@ -187,6 +183,7 @@ bool nex_creator::less_than_on_mul(const nex_mul* a, const nex_mul* b) const {
|
|||
inside_b_p = false;
|
||||
}
|
||||
}
|
||||
TRACE("nla_cn_details", tout << "a = " << *a << " >= b = " << *b << "\n";);
|
||||
return false;
|
||||
|
||||
}
|
||||
|
@ -206,7 +203,6 @@ bool nex_creator::less_than_on_var_nex(const nex_var* a, const nex* b) const {
|
|||
const nex * f = c.e();
|
||||
return less_than_on_var_nex(a, f);
|
||||
}
|
||||
|
||||
case expr_type::SUM:
|
||||
{
|
||||
return !lt((*to_sum(b))[0], a);
|
||||
|
@ -228,10 +224,10 @@ bool nex_creator::less_than_on_mul_nex(const nex_mul* a, const nex* b) const {
|
|||
auto it = a->begin();
|
||||
const nex_pow & c = *it;
|
||||
const nex * f = c.e();
|
||||
return lt(f, a);
|
||||
return lt(f, b);
|
||||
}
|
||||
case expr_type::MUL:
|
||||
return less_than_on_mul(a, to_mul(b));
|
||||
return less_than_on_mul_mul(a, to_mul(b));
|
||||
case expr_type::SUM:
|
||||
return lt(a, (*to_sum(b))[0]);
|
||||
default:
|
||||
|
@ -253,7 +249,7 @@ bool nex_creator::less_than_on_sum_sum(const nex_sum* a, const nex_sum* b) const
|
|||
}
|
||||
|
||||
bool nex_creator::lt(const nex* a, const nex* b) const {
|
||||
TRACE("nla_cn_details", tout << *a << " ^ " << *b << "\n";);
|
||||
TRACE("nla_cn_details_", tout << *a << " ? " << *b << "\n";);
|
||||
bool ret;
|
||||
switch (a->type()) {
|
||||
case expr_type::VAR:
|
||||
|
@ -302,8 +298,10 @@ bool nex_creator::is_sorted(const nex_mul* e) const {
|
|||
|
||||
|
||||
bool nex_creator::mul_is_simplified(const nex_mul* e) const {
|
||||
TRACE("nla_cn_details", tout << "e = " << *e << "\n";);
|
||||
if (e->size() == 1 && e->begin()->pow() == 1)
|
||||
if (e->size() == 0)
|
||||
return false; // it has to be a scalar
|
||||
TRACE("nla_cn_details_", tout << "e = " << *e << "\n";);
|
||||
if (e->size() == 1 && e->begin()->pow() == 1 && e->coeff().is_one())
|
||||
return false;
|
||||
std::set<const nex*, nex_lt> s([this](const nex* a, const nex* b) {return lt(a, b); });
|
||||
for (const auto &p : *e) {
|
||||
|
@ -334,8 +332,9 @@ bool nex_creator::mul_is_simplified(const nex_mul* e) const {
|
|||
|
||||
nex * nex_creator::simplify_mul(nex_mul *e) {
|
||||
TRACE("nla_cn_details", tout << *e << "\n";);
|
||||
simplify_children_of_mul(e->children());
|
||||
if (e->size() == 1 && (*e)[0].pow() == 1)
|
||||
rational& coeff = e->coeff();
|
||||
simplify_children_of_mul(e->children(), coeff);
|
||||
if (e->size() == 1 && (*e)[0].pow() == 1 && coeff.is_one())
|
||||
return (*e)[0].e();
|
||||
TRACE("nla_cn_details", tout << *e << "\n";);
|
||||
SASSERT(is_simplified(e));
|
||||
|
@ -445,41 +444,24 @@ bool nex_creator::register_in_join_map(std::map<nex*, rational, nex_lt>& map, ne
|
|||
auto map_it = map.find(e);
|
||||
if (map_it == map.end()) {
|
||||
map[e] = r;
|
||||
TRACE("nla_cn_details", tout << "inserting " << std::endl;);
|
||||
return false;
|
||||
} else {
|
||||
map_it->second += r;
|
||||
TRACE("nla_cn_details", tout << "adding" << r << std::endl;);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// returns true if a simplificatian happens
|
||||
bool nex_creator::process_mul_in_simplify_sum(nex_mul* em, std::map<nex*, rational, nex_lt> &map) {
|
||||
bool found = false;
|
||||
auto it = em->begin();
|
||||
if (it->e()->is_scalar()) {
|
||||
SASSERT(it->pow() == 1);
|
||||
rational r = to_scalar(it->e())->value();
|
||||
auto end = em->end();
|
||||
if (em->size() == 2 && (*em)[1].pow() == 1) {
|
||||
found = register_in_join_map(map, (*em)[1].e(), r);
|
||||
} else {
|
||||
nex_mul * m = mk_mul();
|
||||
for (it++; it != end; it++) {
|
||||
m->add_child_in_power(it->e(), it->pow());
|
||||
}
|
||||
found = register_in_join_map(map, m, r);
|
||||
}
|
||||
} else {
|
||||
found = register_in_join_map(map, em, rational(1));
|
||||
}
|
||||
return found;
|
||||
bool nex_creator::process_mul_in_simplify_sum(nex_mul* em, std::map<nex*, rational, nex_lt> &map) {
|
||||
return register_in_join_map(map, em, em->coeff());
|
||||
}
|
||||
|
||||
bool nex_creator::fill_join_map_for_sum(ptr_vector<nex> & children,
|
||||
std::map<nex*, rational, nex_lt>& map,
|
||||
std::unordered_set<nex*>& existing_nex,
|
||||
nex_scalar*& common_scalar) {
|
||||
|
||||
common_scalar = nullptr;
|
||||
bool simplified = false;
|
||||
for (auto e : children) {
|
||||
|
@ -621,9 +603,10 @@ nex * nex_creator::mk_div_mul_by_mul(const nex_mul *a, const nex_mul* b) {
|
|||
SASSERT(m_powers.size() == 0);
|
||||
if (ret->size() == 0) {
|
||||
delete ret;
|
||||
TRACE("nla_cn_details", tout << "return 1\n";);
|
||||
return mk_scalar(rational(1));
|
||||
TRACE("nla_cn_details", tout << "return scalar\n";);
|
||||
return mk_scalar(a->coeff() / b->coeff());
|
||||
}
|
||||
ret->coeff() = a->coeff() / b->coeff();
|
||||
add_to_allocated(ret);
|
||||
TRACE("nla_cn_details", tout << *ret << "\n";);
|
||||
return ret;
|
||||
|
@ -636,7 +619,7 @@ nex * nex_creator::mk_div_by_mul(const nex* a, const nex_mul* b) {
|
|||
}
|
||||
|
||||
if (a->is_var()) {
|
||||
SASSERT(b->get_degree() == 1 && get_vars_of_expr(a) == get_vars_of_expr(b));
|
||||
SASSERT(b->get_degree() == 1 && get_vars_of_expr(a) == get_vars_of_expr(b) && b->coeff().is_one());
|
||||
return mk_scalar(rational(1));
|
||||
}
|
||||
return mk_div_mul_by_mul(to_mul(a), b);
|
||||
|
@ -676,15 +659,9 @@ void nex_creator::process_map_pair(nex *e, const rational& coeff, ptr_vector<nex
|
|||
if (e->is_var()) {
|
||||
children.push_back(mk_mul(mk_scalar(coeff), e));
|
||||
} else {
|
||||
SASSERT(e->is_mul());
|
||||
nex* first = (*to_mul(e))[0].e();
|
||||
if (first->is_scalar()) {
|
||||
to_scalar(first)->value() = coeff;
|
||||
children.push_back(e);
|
||||
} else {
|
||||
e = simplify(mk_mul(mk_scalar(coeff), e));
|
||||
children.push_back(e);
|
||||
}
|
||||
to_mul(e)->coeff() = coeff;
|
||||
e = simplify(e);
|
||||
children.push_back(e);
|
||||
}
|
||||
}
|
||||
} else { // e is new
|
||||
|
@ -715,6 +692,7 @@ unsigned nex_creator::find_sum_in_mul(const nex_mul* a) const {
|
|||
return -1;
|
||||
}
|
||||
nex* nex_creator::canonize_mul(nex_mul *a) {
|
||||
TRACE("nla_cn_details", tout << "a = " << *a << "\n";);
|
||||
unsigned j = find_sum_in_mul(a);
|
||||
if (j + 1 == 0)
|
||||
return a;
|
||||
|
@ -736,7 +714,7 @@ nex* nex_creator::canonize_mul(nex_mul *a) {
|
|||
}
|
||||
r->add_child(m);
|
||||
}
|
||||
TRACE("nla_cn_details", tout << *r << "\n";);
|
||||
TRACE("nla_cn_details", tout << "canonized a = " << *r << "\n";);
|
||||
return canonize(r);
|
||||
}
|
||||
|
||||
|
@ -759,6 +737,7 @@ nex* nex_creator::canonize(const nex *a) {
|
|||
}
|
||||
|
||||
bool nex_creator::equal(const nex* a, const nex* b) {
|
||||
TRACE("nla_cn_details", tout << *a << " against " << *b << "\n";);
|
||||
nex_creator cn;
|
||||
unsigned n = 0;
|
||||
for (lpvar j : get_vars_of_expr(a)) {
|
||||
|
|
|
@ -93,7 +93,7 @@ public:
|
|||
return (a.pow() < b.pow()) || (a.pow() == b.pow() && lt(a.e(), b.e()));
|
||||
}
|
||||
|
||||
void simplify_children_of_mul(vector<nex_pow> & children);
|
||||
void simplify_children_of_mul(vector<nex_pow> & children, rational&);
|
||||
|
||||
|
||||
nex * clone(const nex* a) {
|
||||
|
@ -113,6 +113,7 @@ public:
|
|||
for (const auto& p : m->children()) {
|
||||
r->add_child_in_power(clone(p.e()), p.pow());
|
||||
}
|
||||
r->coeff() = m->coeff();
|
||||
return r;
|
||||
}
|
||||
case expr_type::SUM: {
|
||||
|
@ -163,7 +164,7 @@ public:
|
|||
void add_children(T) { }
|
||||
|
||||
template <typename T, typename K, typename ...Args>
|
||||
void add_children(T r, K e, Args ... es) {
|
||||
void add_children(T r, K e, Args ... es) {
|
||||
r->add_child(e);
|
||||
add_children(r, es ...);
|
||||
}
|
||||
|
@ -247,11 +248,11 @@ public:
|
|||
|
||||
void simplify_children_of_sum(ptr_vector<nex> & children);
|
||||
|
||||
bool eat_scalar_pow(nex_scalar *& r, nex_pow& p, unsigned);
|
||||
bool eat_scalar_pow(rational& r, const nex_pow& p, unsigned);
|
||||
void simplify_children_of_mul(vector<nex_pow> & children, lt_on_vars lt, std::function<nex_scalar*()> mk_scalar);
|
||||
|
||||
bool lt(const nex* a, const nex* b) const;
|
||||
bool less_than_on_mul(const nex_mul* a, const nex_mul* b) const;
|
||||
bool less_than_on_mul_mul(const nex_mul* a, const nex_mul* b) const;
|
||||
bool less_than_on_var_nex(const nex_var* a, const nex* b) const;
|
||||
bool less_than_on_mul_nex(const nex_mul* a, const nex* b) const;
|
||||
bool less_than_on_sum_sum(const nex_sum* a, const nex_sum* b) const;
|
||||
|
|
|
@ -608,10 +608,6 @@ std::ostream& nla_grobner::display_equation(std::ostream & out, const equation &
|
|||
return out;
|
||||
}
|
||||
|
||||
void nla_grobner::display_monomial(std::ostream & out, monomial const & m) const {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
|
||||
void nla_grobner::display(std::ostream & out) const {
|
||||
NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
|
|
|
@ -38,22 +38,6 @@ struct grobner_stats {
|
|||
|
||||
|
||||
class nla_grobner : common {
|
||||
|
||||
struct monomial {
|
||||
rational m_coeff;
|
||||
svector<lpvar> m_vars; //!< sorted variables
|
||||
|
||||
friend class grobner;
|
||||
friend struct monomial_lt;
|
||||
|
||||
monomial() {}
|
||||
public:
|
||||
rational const & get_coeff() const { return m_coeff; }
|
||||
unsigned get_degree() const { return m_vars.size(); }
|
||||
unsigned get_size() const { return get_degree(); }
|
||||
lpvar get_var(unsigned idx) const { return m_vars[idx]; }
|
||||
};
|
||||
|
||||
class equation {
|
||||
unsigned m_bidx:31; //!< position at m_equations_to_delete
|
||||
unsigned m_lc:1; //!< true if equation if a linear combination of the input equations.
|
||||
|
@ -127,8 +111,6 @@ bool simplify_processed_with_eq(equation*);
|
|||
void display_equations(std::ostream & out, equation_set const & v, char const * header) const;
|
||||
std::ostream& display_equation(std::ostream & out, const equation & eq);
|
||||
|
||||
void display_monomial(std::ostream & out, monomial const & m) const;
|
||||
|
||||
void display(std::ostream & out) const;
|
||||
void get_equations(ptr_vector<equation>& eqs);
|
||||
bool try_to_modify_eqs(ptr_vector<equation>& eqs, unsigned& next_weight);
|
||||
|
@ -138,13 +120,8 @@ bool simplify_processed_with_eq(equation*);
|
|||
void process_var(nex_mul*, lpvar j, ci_dependency *& dep, rational&);
|
||||
|
||||
nex* mk_monomial_in_row(rational, lpvar, ci_dependency*&);
|
||||
rational get_monomial_coeff(const nex_mul* m) {
|
||||
const nex* a = m->children()[0].e();
|
||||
if (a->is_scalar())
|
||||
return static_cast<const nex_scalar*>(a)->value();
|
||||
return rational(1);
|
||||
}
|
||||
|
||||
|
||||
void init_equation(equation* eq, const nex*, ci_dependency* d);
|
||||
equation * simplify(equation const * source, equation * target);
|
||||
// bool less_than_on_vars(lpvar a, lpvar b) const {
|
||||
|
|
|
@ -85,9 +85,9 @@ void test_simplify() {
|
|||
[](unsigned) { return false; },
|
||||
[]() { return 1; }, // for random
|
||||
r);
|
||||
// enable_trace("nla_cn");
|
||||
// enable_trace("nla_cn_details");
|
||||
// enable_trace("nla_cn_details_");
|
||||
enable_trace("nla_cn");
|
||||
enable_trace("nla_cn_details");
|
||||
// enable_trace("nla_cn_details_");
|
||||
enable_trace("nla_test");
|
||||
|
||||
r.set_number_of_vars(3);
|
||||
|
@ -98,6 +98,10 @@ void test_simplify() {
|
|||
nex_var* c = r.mk_var(2);
|
||||
auto bc = r.mk_mul(b, c);
|
||||
auto a_plus_bc = r.mk_sum(a, bc);
|
||||
auto two_a_plus_bc = r.mk_mul(r.mk_scalar(rational(2)), a_plus_bc);
|
||||
auto simp_two_a_plus_bc = r.simplify(two_a_plus_bc);
|
||||
TRACE("nla_test", tout << * simp_two_a_plus_bc << "\n";);
|
||||
SASSERT(nex_creator::equal(simp_two_a_plus_bc, two_a_plus_bc));
|
||||
auto simp_a_plus_bc = r.simplify(a_plus_bc);
|
||||
SASSERT(to_sum(simp_a_plus_bc)->size() > 1);
|
||||
auto three_ab = r.mk_mul(r.mk_scalar(rational(3)), a, b);
|
||||
|
@ -106,8 +110,8 @@ void test_simplify() {
|
|||
TRACE("nla_test", tout << "before simplify " << *three_ab_square << "\n";);
|
||||
three_ab_square = to_mul(r.simplify(three_ab_square));
|
||||
TRACE("nla_test", tout << *three_ab_square << "\n";);
|
||||
nex_scalar * s = to_scalar(three_ab_square->children()[0].e());
|
||||
SASSERT(s->value() == rational(27));
|
||||
const rational& s = three_ab_square->coeff();
|
||||
SASSERT(s == rational(27));
|
||||
auto m = r.mk_mul(); m->add_child_in_power(c, 2);
|
||||
TRACE("nla_test_", tout << "m = " << *m << "\n";);
|
||||
auto n = r.mk_mul(a);
|
||||
|
@ -161,6 +165,7 @@ void test_cn_shorter() {
|
|||
enable_trace("nla_cn");
|
||||
enable_trace("nla_cn_test");
|
||||
enable_trace("nla_cn_details");
|
||||
// enable_trace("nla_cn_details_");
|
||||
enable_trace("nla_test_details");
|
||||
cr.set_number_of_vars(20);
|
||||
for (unsigned j = 0; j < cr.get_number_of_vars(); j++)
|
||||
|
|
Loading…
Reference in a new issue