mirror of
https://github.com/Z3Prover/z3
synced 2025-08-04 10:20:23 +00:00
experimental feature to access congruence closure of SimpleSolver
This update includes an experimental feature to access a congruence closure data-structure after search. It comes with several caveats as pre-processing is free to eliminate terms. It is therefore necessary to use a solver that does not eliminate the terms you want to track for congruence of. This is partially addressed by using SimpleSolver or incremental mode solving. ```python from z3 import * s = SimpleSolver() x, y, z = Ints('x y z') s.add(x == y) s.add(y == z) s.check() print(s.root(x), s.root(y), s.root(z)) print(s.next(x), s.next(y), s.next(z)) ```
This commit is contained in:
parent
c0f1f33898
commit
f6d411d54b
21 changed files with 145 additions and 12 deletions
|
@ -81,7 +81,7 @@ public:
|
|||
*
|
||||
*/
|
||||
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, expr_ref& side_cond) override {
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, proof_ref& pr) override {
|
||||
SASSERT(f->get_family_id() == m.get_basic_family_id());
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_ITE:
|
||||
|
@ -233,7 +233,7 @@ public:
|
|||
}
|
||||
|
||||
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, expr_ref& side_cond) override {
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, proof_ref& pr) override {
|
||||
SASSERT(f->get_family_id() == a.get_family_id());
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_ADD:
|
||||
|
@ -531,7 +531,7 @@ class bv_expr_inverter : public iexpr_inverter {
|
|||
* y := 0
|
||||
*
|
||||
*/
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, expr_ref& side_cond) override {
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, proof_ref& pr) override {
|
||||
SASSERT(f->get_family_id() == bv.get_family_id());
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_BADD:
|
||||
|
@ -611,7 +611,7 @@ public:
|
|||
|
||||
family_id get_fid() const override { return a.get_family_id(); }
|
||||
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, expr_ref& side_cond) override {
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, proof_ref& pr) override {
|
||||
SASSERT(f->get_family_id() == a.get_family_id());
|
||||
switch (f->get_decl_kind()) {
|
||||
case OP_SELECT:
|
||||
|
@ -679,7 +679,7 @@ public:
|
|||
* head(x) -> fresh
|
||||
* x := cons(fresh, arb)
|
||||
*/
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, expr_ref& side_cond) override {
|
||||
bool operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& r, proof_ref& pr) override {
|
||||
if (dt.is_accessor(f)) {
|
||||
SASSERT(num == 1);
|
||||
if (uncnstr(args[0])) {
|
||||
|
@ -799,7 +799,7 @@ expr_inverter::expr_inverter(ast_manager& m): iexpr_inverter(m) {
|
|||
}
|
||||
|
||||
|
||||
bool expr_inverter::operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& new_expr, expr_ref& side_cond) {
|
||||
bool expr_inverter::operator()(func_decl* f, unsigned num, expr* const* args, expr_ref& new_expr, proof_ref& pr) {
|
||||
if (num == 0)
|
||||
return false;
|
||||
|
||||
|
@ -812,7 +812,7 @@ bool expr_inverter::operator()(func_decl* f, unsigned num, expr* const* args, ex
|
|||
return false;
|
||||
|
||||
auto* p = m_inverters.get(fid, nullptr);
|
||||
return p && (*p)(f, num, args, new_expr, side_cond);
|
||||
return p && (*p)(f, num, args, new_expr, pr);
|
||||
}
|
||||
|
||||
bool expr_inverter::mk_diff(expr* t, expr_ref& r) {
|
||||
|
@ -849,3 +849,10 @@ void expr_inverter::set_model_converter(generic_model_converter* mc) {
|
|||
if (p)
|
||||
p->set_model_converter(mc);
|
||||
}
|
||||
|
||||
void expr_inverter::set_produce_proofs(bool pr) {
|
||||
m_produce_proofs = pr;
|
||||
for (auto* p : m_inverters)
|
||||
if (p)
|
||||
p->set_produce_proofs(pr);
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue