3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00

fix issue 153: assert rem/mod axiom no matter what is status of second argument

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-12-16 11:20:34 -08:00
parent 882dbfc706
commit f4d256ef30
3 changed files with 21 additions and 21 deletions

2
README
View file

@ -41,3 +41,5 @@ Remark: clang does not support OpenMP yet.
cd build
make
To clean Z3 you can delete the build directory and run the mk_make.py script again.

View file

@ -3321,13 +3321,13 @@ namespace smt {
CASSERT("dyn_ack", check_clauses(m_lemmas) && check_clauses(m_aux_clauses));
}
if (resource_limits_exceeded()) {
SASSERT(!inconsistent());
if (resource_limits_exceeded() && !inconsistent()) {
return l_undef;
}
if (m_base_lvl == m_scope_lvl && m_fparams.m_simplify_clauses)
simplify_clauses();
if (!decide()) {
final_check_status fcs = final_check();
@ -3342,8 +3342,7 @@ namespace smt {
}
}
if (resource_limits_exceeded()) {
SASSERT(!inconsistent());
if (resource_limits_exceeded() && !inconsistent()) {
return l_undef;
}
}

View file

@ -336,8 +336,9 @@ namespace smt {
theory_var theory_arith<Ext>::internalize_rem(app * n) {
theory_var s = mk_binary_op(n);
context & ctx = get_context();
if (!ctx.relevancy())
if (!ctx.relevancy()) {
mk_rem_axiom(n->get_arg(0), n->get_arg(1));
}
return s;
}
@ -456,22 +457,20 @@ namespace smt {
template<typename Ext>
void theory_arith<Ext>::mk_rem_axiom(expr * dividend, expr * divisor) {
if (!m_util.is_zero(divisor)) {
// if divisor is zero, then rem is an uninterpreted function.
ast_manager & m = get_manager();
expr * zero = m_util.mk_numeral(rational(0), true);
expr * rem = m_util.mk_rem(dividend, divisor);
expr * mod = m_util.mk_mod(dividend, divisor);
expr_ref dltz(m), eq1(m), eq2(m);
dltz = m_util.mk_lt(divisor, zero);
eq1 = m.mk_eq(rem, mod);
eq2 = m.mk_eq(rem, m_util.mk_sub(zero, mod));
// n < 0 || rem(a,n) = mod(a, n)
mk_axiom(dltz, eq1);
dltz = m.mk_not(dltz);
// !n < 0 || rem(a,n) = -mod(a, n)
mk_axiom(dltz, eq2);
}
// if divisor is zero, then rem is an uninterpreted function.
ast_manager & m = get_manager();
expr * zero = m_util.mk_numeral(rational(0), true);
expr * rem = m_util.mk_rem(dividend, divisor);
expr * mod = m_util.mk_mod(dividend, divisor);
expr_ref dltz(m), eq1(m), eq2(m);
dltz = m_util.mk_lt(divisor, zero);
eq1 = m.mk_eq(rem, mod);
eq2 = m.mk_eq(rem, m_util.mk_sub(zero, mod));
// n < 0 || rem(a,n) = mod(a, n)
mk_axiom(dltz, eq1);
dltz = m.mk_not(dltz);
// !n < 0 || rem(a,n) = -mod(a, n)
mk_axiom(dltz, eq2);
}
//