mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 05:18:44 +00:00
hook up generate_simple_tangent_lemma()
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
b2b4193afa
commit
f20a028f7b
|
@ -1624,6 +1624,14 @@ bool core::find_bfc_to_refine(const monomial* & m, factorization & bf){
|
|||
return false;
|
||||
}
|
||||
|
||||
rational core::val(const factorization& f) const {
|
||||
rational r(1);
|
||||
for (const factor &p : f) {
|
||||
r *= val(p);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void core::generate_simple_sign_lemma(const rational& sign, const monomial& m) {
|
||||
add_empty_lemma();
|
||||
SASSERT(sign == nla::rat_sign(product_value(m.vars())));
|
||||
|
|
|
@ -108,6 +108,8 @@ public:
|
|||
|
||||
rational val(const factor& f) const { return f.rat_sign() * (f.is_var()? val(f.var()) : val(m_emons[f.var()])); }
|
||||
|
||||
rational val(const factorization&) const;
|
||||
|
||||
lpvar var(const factor& f) const { return f.var(); }
|
||||
|
||||
svector<lpvar> sorted_rvars(const factor& f) const;
|
||||
|
|
|
@ -82,7 +82,7 @@ void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
|
|||
TRACE("nla_solver", tout << "tang domain = "; print_tangent_domain(a, b, tout); tout << std::endl;);
|
||||
unsigned lemmas_size_was = c().m_lemma_vec->size();
|
||||
rational sign(1);
|
||||
generate_simple_tangent_lemma(m);
|
||||
generate_simple_tangent_lemma(m, bf);
|
||||
generate_two_tang_lines(bf, xy, j);
|
||||
generate_tang_plane(a.x, a.y, bf[0], bf[1], below, j);
|
||||
generate_tang_plane(b.x, b.y, bf[0], bf[1], below, j);
|
||||
|
@ -100,11 +100,12 @@ void tangents::tangent_lemma_bf(const monomial& m, const factorization& bf){
|
|||
c().print_specific_lemma((*c().m_lemma_vec)[i], tout); );
|
||||
}
|
||||
|
||||
void tangents::generate_simple_tangent_lemma(const monomial& m) {
|
||||
if (m.size() != 2)
|
||||
return;
|
||||
// using a fact that
|
||||
// a != 0 & b != 0 & |a|*|b| = c & |a'| ~ |a| & |b'| ~ |b| => |a'|*|b'| ~ c,
|
||||
// where ~ is < or >.
|
||||
void tangents::generate_simple_tangent_lemma(const monomial& m, const factorization& bf) {
|
||||
TRACE("nla_solver", tout << "m:" << pp_mon(c(), m) << std::endl;);
|
||||
const rational v = c().product_value(m.vars());
|
||||
rational v = c().product_value(m.vars());
|
||||
const rational mv = val(m);
|
||||
SASSERT(mv != v);
|
||||
SASSERT(!mv.is_zero() && !v.is_zero());
|
||||
|
@ -113,30 +114,33 @@ void tangents::generate_simple_tangent_lemma(const monomial& m) {
|
|||
c().generate_simple_sign_lemma(-sign, m);
|
||||
return;
|
||||
}
|
||||
/*
|
||||
c().add_empty_lemma();
|
||||
v = val(bf);
|
||||
SASSERT(rat_sign(v) == rat_sign(mv));
|
||||
bool gt = abs(mv) > abs(v);
|
||||
unsigned j;
|
||||
if (gt) {
|
||||
for (lpvar j : m.vars()) {
|
||||
for (const factor& f : bf) {
|
||||
j = var(f);
|
||||
const rational jv = val(j);
|
||||
rational js = rational(nla::rat_sign(jv));
|
||||
c().mk_ineq(js, j, llc::LT);
|
||||
c().mk_ineq(js, j, llc::GT, jv);
|
||||
c().mk_ineq(js, j, llc::LE);
|
||||
c().mk_ineq(js, j, llc::GT, abs(jv));
|
||||
}
|
||||
c().mk_ineq(sign, m.var(), llc::LE, std::max(v, rational(-1)));
|
||||
c().mk_ineq(sign, m.var(), llc::LT);
|
||||
c().mk_ineq(sign, m.var(), llc::LE, abs(v));
|
||||
} else {
|
||||
for (lpvar j : m.vars()) {
|
||||
for (const factor& f : bf) {
|
||||
j = var(f);
|
||||
const rational jv = val(j);
|
||||
rational js = rational(nla::rat_sign(jv));
|
||||
c().mk_ineq(js, j, llc::LT, std::max(jv, rational(0)));
|
||||
c().mk_ineq(js, j, llc::LT, abs(jv));
|
||||
}
|
||||
c().mk_ineq(sign, m.var(), llc::LT);
|
||||
c().mk_ineq(sign, m.var(), llc::GE, v);
|
||||
c().mk_ineq(sign, m.var(), llc::GE, abs(v));
|
||||
}
|
||||
TRACE("nla_solver", c().print_lemma(tout););
|
||||
*/
|
||||
}
|
||||
// todo : consider using generate_simple_tangent_lemma on each factorization
|
||||
|
||||
void tangents::generate_two_tang_lines(const factorization & bf, const point& xy, lpvar j) {
|
||||
add_empty_lemma();
|
||||
|
|
|
@ -54,7 +54,7 @@ public:
|
|||
private:
|
||||
lpvar find_binomial_to_refine();
|
||||
void generate_explanations_of_tang_lemma(const monomial& m, const factorization& bf, lp::explanation& exp);
|
||||
void generate_simple_tangent_lemma(const monomial& m);
|
||||
void generate_simple_tangent_lemma(const monomial& m, const factorization&);
|
||||
void tangent_lemma_bf(const monomial& m,const factorization& bf);
|
||||
void generate_tang_plane(const rational & a, const rational& b, const factor& x, const factor& y, bool below, lpvar j);
|
||||
|
||||
|
|
Loading…
Reference in a new issue