3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00

add case for abs (normally simplified, but not with default_tactic=smt).

This commit is contained in:
Nikolaj Bjorner 2022-01-09 11:55:21 -08:00
parent 671d071e54
commit f1bf660adc
4 changed files with 15 additions and 3 deletions

View file

@ -302,6 +302,7 @@ public:
bool is_is_int(expr const * n) const { return is_app_of(n, arith_family_id, OP_IS_INT); }
bool is_power(expr const * n) const { return is_app_of(n, arith_family_id, OP_POWER); }
bool is_power0(expr const * n) const { return is_app_of(n, arith_family_id, OP_POWER0); }
bool is_abs(expr const* n) const { return is_app_of(n, arith_family_id, OP_ABS); }
bool is_int(sort const * s) const { return is_sort_of(s, arith_family_id, INT_SORT); }
bool is_int(expr const * n) const { return is_int(n->get_sort()); }
@ -341,6 +342,7 @@ public:
MATCH_UNARY(is_to_real);
MATCH_UNARY(is_to_int);
MATCH_UNARY(is_is_int);
MATCH_UNARY(is_abs);
MATCH_BINARY(is_sub);
MATCH_BINARY(is_add);
MATCH_BINARY(is_mul);

View file

@ -49,6 +49,14 @@ namespace arith {
}
}
void solver::mk_abs_axiom(app* n) {
expr* x = nullptr;
VERIFY(a.is_abs(n, x));
literal is_nonneg = mk_literal(a.mk_ge(x, a.mk_numeral(rational::zero(), n->get_sort())));
add_clause(~is_nonneg, eq_internalize(n, x));
add_clause(is_nonneg, eq_internalize(n, a.mk_uminus(x)));
}
// t = n^0
void solver::mk_power0_axioms(app* t, app* n) {
expr_ref p0(a.mk_power0(n, t->get_arg(1)), m);

View file

@ -237,9 +237,10 @@ namespace arith {
if (!is_first) {
// skip recursive internalization
}
else if (a.is_to_int(n, n1)) {
mk_to_int_axiom(t);
}
else if (a.is_to_int(n, n1))
mk_to_int_axiom(t);
else if (a.is_abs(n))
mk_abs_axiom(t);
else if (a.is_idiv(n, n1, n2)) {
if (!a.is_numeral(n2, r) || r.is_zero()) found_underspecified(n);
m_idiv_terms.push_back(n);

View file

@ -263,6 +263,7 @@ namespace arith {
// axioms
void mk_div_axiom(expr* p, expr* q);
void mk_to_int_axiom(app* n);
void mk_abs_axiom(app* n);
void mk_is_int_axiom(expr* n);
void mk_idiv_mod_axioms(expr* p, expr* q);
void mk_rem_axiom(expr* dividend, expr* divisor);