3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 18:31:49 +00:00

Merge pull request #2004 from waywardmonkeys/remove-nl-purify-tactic

Remove unused nl_purify_tactic.cpp
This commit is contained in:
Nikolaj Bjorner 2018-12-03 07:18:56 -08:00 committed by GitHub
commit f1b1886eec
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 0 additions and 800 deletions

View file

@ -1,799 +0,0 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
nl_purify_tactic.cpp
Abstract:
Tactic for purifying quantifier-free formulas that mix QF_NRA and other theories.
It is designed to allow cooperation between the nlsat solver and other theories
in a decoupled way.
Let goal be formula F.
Let NL goal be formula G.
Assume F is in NNF.
Assume F does not contain mix of real/integers.
Assume F is quantifier-free (please, otherwise we need to reprocess from instantiated satisfiable formula)
For each atomic nl formula f,
- introduce a propositional variable p
- replace f by p
- add clauses p => f to G
For each interface term t,
- introduce interface variable v (or use t if it is already a variable)
- replace t by v
Check satisfiability of G.
If satisfiable, then check assignment to p and interface equalities on F
If unsat:
Retrieve core and add core to G.
else:
For interface equalities from model of F that are not equal in G, add
For interface variables that are equal under one model, but not the other model,
create interface predicate p_vw => v = w, add to both F, G.
Add interface equations to assumptions, recheck F.
If unsat retrieve core add to G.
Author:
Nikolaj Bjorner (nbjorner) 2015-5-5.
Revision History:
--*/
#include "tactic/tactical.h"
#include "tactic/nlsat_smt/nl_purify_tactic.h"
#include "smt/tactic/smt_tactic.h"
#include "ast/rewriter/rewriter.h"
#include "nlsat/tactic/nlsat_tactic.h"
#include "tactic/filter_model_converter.h"
#include "util/obj_pair_hashtable.h"
#include "ast/rewriter/rewriter_def.h"
#include "ast/ast_pp.h"
#include "util/trace.h"
#include "smt/smt_solver.h"
#include "solver/solver.h"
#include "model/model_smt2_pp.h"
#include "ast/rewriter/expr_safe_replace.h"
#include "ast/ast_util.h"
#include "solver/solver2tactic.h"
class nl_purify_tactic : public tactic {
enum polarity_t {
pol_pos,
pol_neg,
pol_dual
};
ast_manager & m;
arith_util m_util;
params_ref m_params;
bool m_produce_proofs;
ref<filter_model_converter> m_fmc;
tactic_ref m_nl_tac; // nlsat tactic
goal_ref m_nl_g; // nlsat goal
ref<solver> m_solver; // SMT solver
expr_ref_vector m_eq_preds; // predicates for equality between pairs of interface variables
svector<lbool> m_eq_values; // truth value of the equality predicates in nlsat
app_ref_vector m_new_reals; // interface real variables
app_ref_vector m_new_preds; // abstraction predicates for smt_solver (hide real constraints)
expr_ref_vector m_asms; // assumptions to pass to SMT solver
ptr_vector<expr> m_ctx_asms; // assumptions passed by context
obj_hashtable<expr> m_ctx_asms_set; // assumptions passed by context
obj_hashtable<expr> m_used_asms;
obj_map<expr, expr*> m_bool2dep;
obj_pair_map<expr,expr,expr*> m_eq_pairs; // map pairs of interface variables to auxiliary predicates
obj_map<expr,expr*> m_interface_cache; // map of compound real expression to interface variable.
obj_map<expr, polarity_t> m_polarities; // polarities of sub-expressions
public:
struct rw_cfg : public default_rewriter_cfg {
enum mode_t {
mode_interface_var,
mode_bool_preds
};
ast_manager& m;
nl_purify_tactic & m_owner;
app_ref_vector& m_new_reals;
app_ref_vector& m_new_preds;
obj_map<expr, polarity_t>& m_polarities;
obj_map<expr,expr*>& m_interface_cache;
expr_ref_vector m_args;
proof_ref_vector m_proofs;
mode_t m_mode;
rw_cfg(nl_purify_tactic & o):
m(o.m),
m_owner(o),
m_new_reals(o.m_new_reals),
m_new_preds(o.m_new_preds),
m_polarities(o.m_polarities),
m_interface_cache(o.m_interface_cache),
m_args(m),
m_proofs(m),
m_mode(mode_interface_var) {
}
virtual ~rw_cfg() {}
arith_util & u() { return m_owner.m_util; }
expr * mk_interface_var(expr* arg, proof_ref& arg_pr) {
expr* r;
if (m_interface_cache.find(arg, r)) {
return r;
}
if (is_uninterp_const(arg)) {
m_interface_cache.insert(arg, arg);
return arg;
}
r = m.mk_fresh_const(nullptr, u().mk_real());
m_new_reals.push_back(to_app(r));
m_owner.m_fmc->insert(to_app(r)->get_decl());
m_interface_cache.insert(arg, r);
expr_ref eq(m);
eq = m.mk_eq(r, arg);
if (is_real_expression(arg)) {
m_owner.m_nl_g->assert_expr(eq); // m.mk_oeq(r, arg)
}
else {
m_owner.m_solver->assert_expr(eq);
}
if (m_owner.m_produce_proofs) {
arg_pr = m.mk_oeq(arg, r);
}
return r;
}
bool is_real_expression(expr* e) {
return is_app(e) && (to_app(e)->get_family_id() == u().get_family_id());
}
void mk_interface_bool(func_decl * f, unsigned num, expr* const* args, expr_ref& result, proof_ref& pr) {
expr_ref old_pred(m.mk_app(f, num, args), m);
polarity_t pol = m_polarities.find(old_pred);
result = m.mk_fresh_const(nullptr, m.mk_bool_sort());
m_polarities.insert(result, pol);
m_new_preds.push_back(to_app(result));
m_owner.m_fmc->insert(to_app(result)->get_decl());
if (pol != pol_neg) {
m_owner.m_nl_g->assert_expr(m.mk_or(m.mk_not(result), old_pred));
}
if (pol != pol_pos) {
m_owner.m_nl_g->assert_expr(m.mk_or(result, m.mk_not(old_pred)));
}
if (m_owner.m_produce_proofs) {
pr = m.mk_oeq(old_pred, result);
}
TRACE("nlsat_smt", tout << old_pred << " : " << result << "\n";);
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
throw tactic_exception("quantifiers are not supported in mixed-mode nlsat engine");
}
br_status reduce_app(func_decl * f, unsigned num, expr* const* args, expr_ref& result, proof_ref & pr) {
if (m_mode == mode_bool_preds) {
return reduce_app_bool(f, num, args, result, pr);
}
else {
return reduce_app_real(f, num, args, result, pr);
}
}
br_status reduce_app_bool(func_decl * f, unsigned num, expr* const* args, expr_ref& result, proof_ref & pr) {
if (f->get_family_id() == m.get_basic_family_id()) {
if (f->get_decl_kind() == OP_EQ && u().is_real(args[0])) {
mk_interface_bool(f, num, args, result, pr);
return BR_DONE;
}
else {
return BR_FAILED;
}
}
if (f->get_family_id() == u().get_family_id()) {
switch (f->get_decl_kind()) {
case OP_LE: case OP_GE: case OP_LT: case OP_GT:
// these are the only real cases of non-linear atomic formulas besides equality.
mk_interface_bool(f, num, args, result, pr);
return BR_DONE;
default:
return BR_FAILED;
}
}
return BR_FAILED;
}
// (+ (f x) y)
// (f (+ x y))
//
bool is_arith_op(expr* e) {
return is_app(e) && to_app(e)->get_family_id() == u().get_family_id();
}
br_status reduce_app_real(func_decl * f, unsigned num, expr* const* args, expr_ref& result, proof_ref & pr) {
bool has_interface = false;
bool is_arith = false;
if (f->get_family_id() == u().get_family_id()) {
switch (f->get_decl_kind()) {
case OP_NUM:
case OP_IRRATIONAL_ALGEBRAIC_NUM:
return BR_FAILED;
default:
is_arith = true;
break;
}
}
m_args.reset();
m_proofs.reset();
for (unsigned i = 0; i < num; ++i) {
expr* arg = args[i];
proof_ref arg_pr(m);
if (is_arith && !is_arith_op(arg)) {
has_interface = true;
m_args.push_back(mk_interface_var(arg, arg_pr));
}
else if (!is_arith && u().is_real(arg)) {
has_interface = true;
m_args.push_back(mk_interface_var(arg, arg_pr));
}
else {
m_args.push_back(arg);
}
if (arg_pr) {
m_proofs.push_back(arg_pr);
}
}
if (has_interface) {
result = m.mk_app(f, num, m_args.c_ptr());
if (m_owner.m_produce_proofs) {
pr = m.mk_oeq_congruence(m.mk_app(f, num, args), to_app(result), m_proofs.size(), m_proofs.c_ptr());
}
TRACE("nlsat_smt", tout << result << "\n";);
return BR_DONE;
}
else {
return BR_FAILED;
}
}
};
private:
class rw : public rewriter_tpl<rw_cfg> {
rw_cfg m_cfg;
public:
rw(nl_purify_tactic & o):
rewriter_tpl<rw_cfg>(o.m, o.m_produce_proofs, m_cfg),
m_cfg(o) {
}
void set_bool_mode() {
m_cfg.m_mode = rw_cfg::mode_bool_preds;
}
void set_interface_var_mode() {
m_cfg.m_mode = rw_cfg::mode_interface_var;
}
};
arith_util & u() { return m_util; }
void check_point() {
if (m.canceled()) {
throw tactic_exception(Z3_CANCELED_MSG);
}
}
void display_result(std::ostream& out, goal_ref_buffer const& result) {
for (unsigned i = 0; i < result.size(); ++i) {
result[i]->display_with_dependencies(out << "goal\n");
}
}
void update_eq_values(model_ref& mdl) {
expr_ref tmp(m);
for (unsigned i = 0; i < m_eq_preds.size(); ++i) {
expr* pred = m_eq_preds[i].get();
m_eq_values[i] = l_undef;
if (mdl->eval(pred, tmp)) {
if (m.is_true(tmp)) {
m_eq_values[i] = l_true;
}
else if (m.is_false(tmp)) {
m_eq_values[i] = l_false;
}
}
}
}
void solve(
goal_ref const& g,
goal_ref_buffer& result,
expr_dependency_ref& core,
model_converter_ref& mc) {
while (true) {
check_point();
TRACE("nlsat_smt", m_solver->display(tout << "SMT:\n"); m_nl_g->display(tout << "\nNL:\n"); );
goal_ref tmp_nl = alloc(goal, m, true, false);
model_converter_ref nl_mc;
proof_converter_ref nl_pc;
expr_dependency_ref nl_core(m);
result.reset();
tmp_nl->copy_from(*m_nl_g.get());
(*m_nl_tac)(tmp_nl, result, nl_mc, nl_pc, nl_core);
if (is_decided_unsat(result)) {
core2result(core, g, result);
TRACE("nlsat_smt", tout << "unsat\n";);
break;
}
if (!is_decided_sat(result)) {
TRACE("nlsat_smt", tout << "not a unit\n";);
break;
}
// extract evaluation on interface variables.
// assert booleans that evaluate to true.
// assert equalities between equal interface real variables.
model_ref mdl_nl, mdl_smt;
if (nl_mc.get()) {
model_converter2model(m, nl_mc.get(), mdl_nl);
update_eq_values(mdl_nl);
enforce_equalities(mdl_nl, m_nl_g);
setup_assumptions(mdl_nl);
TRACE("nlsat_smt",
model_smt2_pp(tout << "nl model\n", m, *mdl_nl.get(), 0);
m_solver->display(tout << "smt goal:\n"); tout << "\n";);
}
result.reset();
lbool r = m_solver->check_sat(m_asms.size(), m_asms.c_ptr());
if (r == l_false) {
// extract the core from the result
ptr_vector<expr> ecore, asms;
expr_ref_vector clause(m);
expr_ref fml(m);
get_unsat_core(ecore, asms);
//
// assumptions should also be used for the nlsat tactic,
// but since it does not support assumptions at this time
// we overapproximate the necessary core and accumulate
// all assumptions that are ever used.
//
for (unsigned i = 0; i < asms.size(); ++i) {
m_used_asms.insert(asms[i]);
}
if (ecore.empty()) {
core2result(core, g, result);
break;
}
for (unsigned i = 0; i < ecore.size(); ++i) {
clause.push_back(mk_not(m, ecore[i]));
}
fml = mk_or(m, clause.size(), clause.c_ptr());
m_nl_g->assert_expr(fml);
continue;
}
else if (r == l_true) {
m_solver->get_model(mdl_smt);
if (enforce_equalities(mdl_smt, m_nl_g)) {
// SMT enforced a new equality that wasn't true for nlsat.
continue;
}
TRACE("nlsat_smt",
m_fmc->display(tout << "joint state is sat\n");
nl_mc->display(tout << "nl\n"););
if (mdl_nl.get()) {
merge_models(*mdl_nl.get(), mdl_smt);
}
mc = m_fmc.get();
apply(mc, mdl_smt, 0);
mc = model2model_converter(mdl_smt.get());
result.push_back(alloc(goal, m));
}
else {
TRACE("nlsat_smt", tout << "unknown\n";);
}
break;
}
TRACE("nlsat_smt", display_result(tout, result););
}
void get_unsat_core(ptr_vector<expr>& core, ptr_vector<expr>& asms) {
m_solver->get_unsat_core(core);
for (unsigned i = 0; i < core.size(); ++i) {
if (m_ctx_asms_set.contains(core[i])) {
asms.push_back(core[i]);
core[i] = core.back();
core.pop_back();
--i;
}
}
}
void core2result(expr_dependency_ref & lcore, goal_ref const& g, goal_ref_buffer& result) {
result.reset();
proof * pr = nullptr;
lcore = nullptr;
g->reset();
obj_hashtable<expr>::iterator it = m_used_asms.begin(), end = m_used_asms.end();
for (; it != end; ++it) {
lcore = m.mk_join(lcore, m.mk_leaf(m_bool2dep.find(*it)));
}
g->assert_expr(m.mk_false(), pr, lcore);
TRACE("nlsat_smt", g->display_with_dependencies(tout););
result.push_back(g.get());
}
void setup_assumptions(model_ref& mdl) {
m_asms.reset();
m_asms.append(m_ctx_asms.size(), m_ctx_asms.c_ptr());
app_ref_vector const& fresh_preds = m_new_preds;
expr_ref tmp(m);
for (unsigned i = 0; i < fresh_preds.size(); ++i) {
expr* pred = fresh_preds[i];
if (mdl->eval(pred, tmp)) {
polarity_t pol = m_polarities.find(pred);
// if assumption literals are used to satisfy NL state,
// we have to assume them when satisfying SMT state
if (pol != pol_neg && m.is_false(tmp)) {
m_asms.push_back(m.mk_not(pred));
}
else if (pol != pol_pos && m.is_true(tmp)) {
m_asms.push_back(pred);
}
}
}
for (unsigned i = 0; i < m_eq_preds.size(); ++i) {
expr* pred = m_eq_preds[i].get();
switch (m_eq_values[i]) {
case l_true:
m_asms.push_back(pred);
break;
case l_false:
m_asms.push_back(m.mk_not(pred));
break;
default:
break;
}
}
TRACE("nlsat_smt",
tout << "assumptions:\n" << m_asms << "\n";);
}
bool enforce_equalities(model_ref& mdl, goal_ref const& nl_g) {
TRACE("nlsat_smt", tout << "Enforce equalities " << m_interface_cache.size() << "\n";);
bool new_equality = false;
expr_ref_vector nums(m);
obj_map<expr, expr*> num2var;
obj_map<expr, expr*>::iterator it = m_interface_cache.begin(), end = m_interface_cache.end();
for (; it != end; ++it) {
expr_ref r(m);
expr* v, *w, *pred;
w = it->m_value;
VERIFY(mdl->eval(w, r));
TRACE("nlsat_smt", tout << mk_pp(w, m) << " |-> " << r << "\n";);
nums.push_back(r);
if (num2var.find(r, v)) {
if (!m_eq_pairs.find(v, w, pred)) {
pred = m.mk_fresh_const(nullptr, m.mk_bool_sort());
m_eq_preds.push_back(pred);
m_eq_values.push_back(l_true);
m_fmc->insert(to_app(pred)->get_decl());
nl_g->assert_expr(m.mk_or(m.mk_not(pred), m.mk_eq(w, v)));
nl_g->assert_expr(m.mk_or(pred, m.mk_not(m.mk_eq(w, v))));
m_solver->assert_expr(m.mk_iff(pred, m.mk_eq(w, v)));
new_equality = true;
m_eq_pairs.insert(v, w, pred);
}
else {
// interface equality is already enforced.
}
}
else {
num2var.insert(r, w);
}
}
return new_equality;
}
void merge_models(model const& mdl_nl, model_ref& mdl_smt) {
expr_safe_replace num2num(m);
expr_ref result(m), val2(m);
expr_ref_vector args(m);
unsigned sz = mdl_nl.get_num_constants();
for (unsigned i = 0; i < sz; ++i) {
func_decl* v = mdl_nl.get_constant(i);
if (u().is_real(v->get_range())) {
expr* val = mdl_nl.get_const_interp(v);
if (mdl_smt->eval(v, val2)) {
if (val != val2) {
num2num.insert(val2, val);
}
}
}
}
sz = mdl_smt->get_num_functions();
for (unsigned i = 0; i < sz; ++i) {
func_decl* f = mdl_smt->get_function(i);
if (has_real(f)) {
unsigned arity = f->get_arity();
func_interp* f1 = mdl_smt->get_func_interp(f);
func_interp* f2 = alloc(func_interp, m, f->get_arity());
for (unsigned j = 0; j < f1->num_entries(); ++j) {
args.reset();
func_entry const* entry = f1->get_entry(j);
for (unsigned k = 0; k < arity; ++k) {
translate(num2num, entry->get_arg(k), result);
args.push_back(result);
}
translate(num2num, entry->get_result(), result);
f2->insert_entry(args.c_ptr(), result);
}
translate(num2num, f1->get_else(), result);
f2->set_else(result);
mdl_smt->register_decl(f, f2);
}
}
mdl_smt->copy_const_interps(mdl_nl);
}
bool has_real(func_decl* f) {
for (unsigned i = 0; i < f->get_arity(); ++i) {
if (u().is_real(f->get_domain(i))) return true;
}
return u().is_real(f->get_range());
}
void translate(expr_safe_replace& num2num, expr* e, expr_ref& result) {
result = nullptr;
if (e) {
num2num(e, result);
}
}
void get_polarities(goal const& g) {
ptr_vector<expr> forms;
svector<polarity_t> pols;
unsigned sz = g.size();
for (unsigned i = 0; i < sz; ++i) {
forms.push_back(g.form(i));
pols.push_back(pol_pos);
}
polarity_t p, q;
while (!forms.empty()) {
expr* e = forms.back();
p = pols.back();
forms.pop_back();
pols.pop_back();
if (m_polarities.find(e, q)) {
if (p == q || q == pol_dual) continue;
p = pol_dual;
}
TRACE("nlsat_smt_verbose", tout << mk_pp(e, m) << "\n";);
m_polarities.insert(e, p);
if (is_quantifier(e) || is_var(e)) {
throw tactic_exception("nl-purify tactic does not support quantifiers");
}
SASSERT(is_app(e));
app* a = to_app(e);
func_decl* f = a->get_decl();
if (f->get_family_id() == m.get_basic_family_id() && p != pol_dual) {
switch(f->get_decl_kind()) {
case OP_NOT:
p = neg(p);
break;
case OP_AND:
case OP_OR:
break;
default:
p = pol_dual;
break;
}
}
else {
p = pol_dual;
}
for (unsigned i = 0; i < a->get_num_args(); ++i) {
forms.push_back(a->get_arg(i));
pols.push_back(p);
}
}
}
polarity_t neg(polarity_t p) {
switch (p) {
case pol_pos: return pol_neg;
case pol_neg: return pol_pos;
case pol_dual: return pol_dual;
}
return pol_dual;
}
polarity_t join(polarity_t p, polarity_t q) {
if (p == q) return p;
return pol_dual;
}
void rewrite_goal(rw& r, goal_ref const& g) {
r.reset();
expr_ref new_curr(m);
proof_ref new_pr(m);
unsigned sz = g->size();
for (unsigned i = 0; i < sz; i++) {
expr * curr = g->form(i);
r(curr, new_curr, new_pr);
if (m_produce_proofs) {
proof * pr = g->pr(i);
new_pr = m.mk_modus_ponens(pr, new_pr);
}
g->update(i, new_curr, new_pr, g->dep(i));
}
}
void remove_pure_arith(goal_ref const& g) {
obj_map<expr, bool> is_pure;
unsigned sz = g->size();
for (unsigned i = 0; i < sz; i++) {
expr * curr = g->form(i);
if (is_pure_arithmetic(is_pure, curr)) {
m_nl_g->assert_expr(curr, g->pr(i), g->dep(i));
g->update(i, m.mk_true(), g->pr(i), g->dep(i));
}
}
}
bool is_pure_arithmetic(obj_map<expr, bool>& is_pure, expr* e0) {
ptr_vector<expr> todo;
todo.push_back(e0);
while (!todo.empty()) {
expr* e = todo.back();
if (is_pure.contains(e)) {
todo.pop_back();
continue;
}
if (!is_app(e)) {
todo.pop_back();
is_pure.insert(e, false);
continue;
}
app* a = to_app(e);
bool pure = false, all_found = true, p;
pure |= (a->get_family_id() == u().get_family_id()) && u().is_real(a);
pure |= (m.is_eq(e) && u().is_real(a->get_arg(0)));
pure |= (a->get_family_id() == u().get_family_id()) && m.is_bool(a) && u().is_real(a->get_arg(0));
pure |= (a->get_family_id() == m.get_basic_family_id());
pure |= is_uninterp_const(a) && u().is_real(a);
for (unsigned i = 0; i < a->get_num_args(); ++i) {
if (!is_pure.find(a->get_arg(i), p)) {
todo.push_back(a->get_arg(i));
all_found = false;
}
else {
pure &= p;
}
}
if (all_found) {
is_pure.insert(e, pure);
todo.pop_back();
}
}
return is_pure.find(e0);
}
public:
nl_purify_tactic(ast_manager & m, params_ref const& p):
m(m),
m_util(m),
m_params(p),
m_fmc(nullptr),
m_nl_tac(mk_nlsat_tactic(m, p)),
m_nl_g(nullptr),
m_solver(mk_smt_solver(m, p, symbol::null)),
m_eq_preds(m),
m_new_reals(m),
m_new_preds(m),
m_asms(m)
{}
~nl_purify_tactic() override {}
void updt_params(params_ref const & p) override {
m_params = p;
}
tactic * translate(ast_manager& m) override {
return alloc(nl_purify_tactic, m, m_params);
}
void collect_statistics(statistics & st) const override {
m_nl_tac->collect_statistics(st);
m_solver->collect_statistics(st);
}
void reset_statistics() override {
m_nl_tac->reset_statistics();
}
void cleanup() override {
m_solver = mk_smt_solver(m, m_params, symbol::null);
m_nl_tac->cleanup();
m_eq_preds.reset();
m_eq_values.reset();
m_new_reals.reset();
m_new_preds.reset();
m_eq_pairs.reset();
m_polarities.reset();
m_ctx_asms.reset();
m_ctx_asms_set.reset();
m_used_asms.reset();
m_bool2dep.reset();
}
void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) override {
tactic_report report("qfufnl-purify", *g);
TRACE("nlsat_smt", g->display(tout););
m_produce_proofs = g->proofs_enabled();
mc = nullptr; pc = nullptr; core = nullptr;
fail_if_proof_generation("qfufnra-purify", g);
// fail_if_unsat_core_generation("qfufnra-purify", g);
rw r(*this);
expr_ref_vector clauses(m);
m_nl_g = alloc(goal, m, true, false);
m_fmc = alloc(filter_model_converter, m);
// first hoist interface variables,
// then annotate subformulas by polarities,
// finally extract polynomial inequalities by
// creating a place-holder predicate inside the
// original goal and extracting pure nlsat clauses.
r.set_interface_var_mode();
rewrite_goal(r, g);
if (!g->unsat_core_enabled()) {
remove_pure_arith(g);
}
get_polarities(*g.get());
r.set_bool_mode();
rewrite_goal(r, g);
extract_clauses_and_dependencies(g, clauses, m_ctx_asms, m_bool2dep, m_fmc);
TRACE("nlsat_smt", tout << clauses << "\n";);
for (unsigned i = 0; i < m_ctx_asms.size(); ++i) {
m_ctx_asms_set.insert(m_ctx_asms[i]);
}
for (unsigned i = 0; i < clauses.size(); ++i) {
m_solver->assert_expr(clauses[i].get());
}
g->inc_depth();
solve(g, result, core, mc);
}
};
tactic * mk_nl_purify_tactic(ast_manager& m, params_ref const& p) {
return alloc(nl_purify_tactic, m, p);
}

View file

@ -78,7 +78,6 @@ protected:
friend class nary_tactical;
friend class binary_tactical;
friend class unary_tactical;
friend class nl_purify_tactic;
};