mirror of
https://github.com/Z3Prover/z3
synced 2025-04-27 02:45:51 +00:00
get bounds from interval multiplication
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
3948af630d
commit
f0cebd69fc
5 changed files with 129 additions and 84 deletions
|
@ -18,66 +18,72 @@ bool intervals::check() {
|
|||
return true;
|
||||
}
|
||||
// create a product of interval signs together with the depencies
|
||||
intervals::interval intervals::mul_signs_with_deps(int sign, const svector<lpvar>& vars) const {
|
||||
interval a, b;
|
||||
m_imanager.set(a, mpq(sign));
|
||||
intervals::interval intervals::mul_signs_with_deps(const svector<lpvar>& vars) const {
|
||||
interval a, b, c;
|
||||
m_imanager.set(a, mpq(1));
|
||||
for (lpvar v : vars) {
|
||||
set_var_interval(v, b);
|
||||
set_var_interval_signs_with_deps(v, b);
|
||||
if (m_imanager.is_zero(b))
|
||||
return b;
|
||||
interval_deps deps;
|
||||
m_imanager.mul(a, b, c, deps);
|
||||
m_imanager.set(a, c);
|
||||
m_config.add_deps(a, b, deps, a);
|
||||
}
|
||||
return a;
|
||||
|
||||
}
|
||||
|
||||
bool intervals::check(monomial const& m) {
|
||||
interval a, b, c, d;
|
||||
m_imanager.set(a, mpq(1));
|
||||
set_var_interval(m.var(), d);
|
||||
if (m_imanager.lower_is_inf(d) && m_imanager.upper_is_inf(d)) {
|
||||
return true;
|
||||
}
|
||||
for (lpvar v : m.vars()) {
|
||||
// TBD allow for division to get range of a
|
||||
// m = a*b*c, where m and b*c are bounded, then interval for a is m/b*c
|
||||
if (m_imanager.lower_is_inf(a) && m_imanager.upper_is_inf(a)) {
|
||||
return true;
|
||||
}
|
||||
// TBD: deal with powers v^n interval instead of multiplying v*v .. * v
|
||||
set_var_interval(v, b);
|
||||
interval_deps deps;
|
||||
m_imanager.mul(a, b, c, deps);
|
||||
m_imanager.set(a, c);
|
||||
m_config.add_deps(a, b, deps, a);
|
||||
}
|
||||
if (m_imanager.before(a, d)) {
|
||||
svector<lp::constraint_index> cs;
|
||||
m_dep_manager.linearize(a.m_upper_dep, cs);
|
||||
m_dep_manager.linearize(d.m_lower_dep, cs);
|
||||
for (auto ci : cs) {
|
||||
(void)ci;
|
||||
SASSERT(false);
|
||||
//expl.push_justification(ci);
|
||||
}
|
||||
// TBD conflict
|
||||
return false;
|
||||
}
|
||||
if (m_imanager.before(d, a)) {
|
||||
svector<lp::constraint_index> cs;
|
||||
m_dep_manager.linearize(a.m_lower_dep, cs);
|
||||
m_dep_manager.linearize(d.m_upper_dep, cs);
|
||||
for (auto ci : cs) {
|
||||
(void)ci;
|
||||
SASSERT(false); //expl.push_justification(ci);
|
||||
}
|
||||
// TBD conflict
|
||||
return false;
|
||||
}
|
||||
// could also perform bounds propagation:
|
||||
// a has tighter lower/upper bound than m.var(),
|
||||
// -> transfer bound to m.var()
|
||||
// all but one variable has bound
|
||||
// -> transfer bound to that variable using division
|
||||
return true;
|
||||
}
|
||||
// bool intervals::check(monomial const& m) {
|
||||
// interval a, b, c, d;
|
||||
// m_imanager.set(a, mpq(1));
|
||||
// set_var_interval(m.var(), d);
|
||||
// if (m_imanager.lower_is_inf(d) && m_imanager.upper_is_inf(d)) {
|
||||
// return true;
|
||||
// }
|
||||
// for (lpvar v : m.vars()) {
|
||||
// // TBD allow for division to get range of a
|
||||
// // m = a*b*c, where m and b*c are bounded, then interval for a is m/b*c
|
||||
// if (m_imanager.lower_is_inf(a) && m_imanager.upper_is_inf(a)) {
|
||||
// return true;
|
||||
// }
|
||||
// // TBD: deal with powers v^n interval instead of multiplying v*v .. * v
|
||||
// set_var_interval(v, b);
|
||||
// interval_deps deps;
|
||||
// m_imanager.mul(a, b, c, deps);
|
||||
// m_imanager.set(a, c);
|
||||
// m_config.add_deps(a, b, deps, a);
|
||||
// }
|
||||
// if (m_imanager.before(a, d)) {
|
||||
// svector<lp::constraint_index> cs;
|
||||
// m_dep_manager.linearize(a.m_upper_dep, cs);
|
||||
// m_dep_manager.linearize(d.m_lower_dep, cs);
|
||||
// for (auto ci : cs) {
|
||||
// (void)ci;
|
||||
// SASSERT(false);
|
||||
// //expl.push_justification(ci);
|
||||
// }
|
||||
// // TBD conflict
|
||||
// return false;
|
||||
// }
|
||||
// if (m_imanager.before(d, a)) {
|
||||
// svector<lp::constraint_index> cs;
|
||||
// m_dep_manager.linearize(a.m_lower_dep, cs);
|
||||
// m_dep_manager.linearize(d.m_upper_dep, cs);
|
||||
// for (auto ci : cs) {
|
||||
// (void)ci;
|
||||
// SASSERT(false); //expl.push_justification(ci);
|
||||
// }
|
||||
// // TBD conflict
|
||||
// return false;
|
||||
// }
|
||||
// // could also perform bounds propagation:
|
||||
// // a has tighter lower/upper bound than m.var(),
|
||||
// // -> transfer bound to m.var()
|
||||
// // all but one variable has bound
|
||||
// // -> transfer bound to that variable using division
|
||||
// return true;
|
||||
// }
|
||||
|
||||
void intervals::set_var_interval(lpvar v, interval& b) const {
|
||||
lp::constraint_index ci;
|
||||
|
@ -87,23 +93,19 @@ void intervals::set_var_interval(lpvar v, interval& b) const {
|
|||
m_config.set_lower(b, val);
|
||||
m_config.set_lower_is_open(b, is_strict);
|
||||
m_config.set_lower_is_inf(b, false);
|
||||
b.m_lower_dep = mk_dep(ci);
|
||||
}
|
||||
else {
|
||||
m_config.set_lower_is_open(b, true);
|
||||
m_config.set_lower_is_inf(b, true);
|
||||
b.m_lower_dep = nullptr;
|
||||
}
|
||||
if (ls().has_upper_bound(v, ci, val, is_strict)) {
|
||||
m_config.set_upper(b, val);
|
||||
m_config.set_upper_is_open(b, is_strict);
|
||||
m_config.set_upper_is_inf(b, false);
|
||||
b.m_upper_dep = mk_dep(ci);
|
||||
}
|
||||
else {
|
||||
m_config.set_upper_is_open(b, true);
|
||||
m_config.set_upper_is_inf(b, true);
|
||||
b.m_upper_dep = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -165,51 +167,63 @@ intervals::ci_dependency *intervals::mk_dep(lp::constraint_index ci) const {
|
|||
return m_dep_manager.mk_leaf(ci);
|
||||
}
|
||||
|
||||
bool intervals::check(lp::lar_term const& t) {
|
||||
// convert term into factors for improved precision
|
||||
return true;
|
||||
}
|
||||
|
||||
lp::impq intervals::get_upper_bound_of_monomial(lpvar j) const {
|
||||
const monomial& m = m_core->emons()[j];
|
||||
interval a = mul(1, m.vars());
|
||||
|
||||
interval a = mul(m.vars());
|
||||
SASSERT(!m_imanager.upper_is_inf(a));
|
||||
auto r = lp::impq(a.m_upper);
|
||||
if (a.m_upper_open)
|
||||
r.y = -1;
|
||||
TRACE("nla_intervals", m_core->print_monomial_with_vars(m, tout) << "upper = " << r << "\n";);
|
||||
return r;
|
||||
}
|
||||
lp::impq intervals::get_lower_bound_of_monomial(lpvar j) const {
|
||||
const monomial& m = m_core->emons()[j];
|
||||
interval a = mul(1, m.vars());
|
||||
|
||||
interval a = mul(m.vars());
|
||||
SASSERT(!a.m_lower_inf);
|
||||
auto r = lp::impq(a.m_lower);
|
||||
if (a.m_lower_open)
|
||||
r.y = 1;
|
||||
TRACE("nla_intervals", m_core->print_monomial_with_vars(m, tout) << "lower = " << r << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
||||
intervals::interval intervals::mul(int sign, const svector<lpvar>& vars) const {
|
||||
intervals::interval intervals::mul(const svector<lpvar>& vars) const {
|
||||
interval a;
|
||||
m_imanager.set(a, mpq(sign));
|
||||
m_imanager.set(a, mpq(1));
|
||||
|
||||
for (lpvar j : vars) {
|
||||
interval b, c;
|
||||
set_var_interval(j, b);
|
||||
m_imanager.mul(a, b, c);
|
||||
if (m_imanager.is_zero(c)) {
|
||||
TRACE("nla_intervals", tout << "sign = " << sign << "\nproduct = ";
|
||||
m_core->print_product_with_vars(vars, tout) << "collapsed to zero\n";);
|
||||
return c;
|
||||
if (m_imanager.is_zero(b)) {
|
||||
return b;
|
||||
}
|
||||
m_imanager.mul(a, b, c);
|
||||
m_imanager.set(a, c);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
intervals::interval intervals::mul_signs(const svector<lpvar>& vars) const {
|
||||
interval a;
|
||||
m_imanager.set(a, mpq(1));
|
||||
|
||||
for (lpvar j : vars) {
|
||||
interval b, c;
|
||||
set_var_interval_signs(j, b);
|
||||
if (m_imanager.is_zero(b)) {
|
||||
return b;
|
||||
}
|
||||
m_imanager.mul(a, b, c);
|
||||
m_imanager.set(a, c);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
bool intervals::product_has_upper_bound(int sign, const svector<lpvar>& vars) const {
|
||||
interval a = mul(sign, vars);
|
||||
return !m_imanager.upper_is_inf(a);
|
||||
interval a = mul_signs(vars);
|
||||
SASSERT(sign == 1 || sign == -1);
|
||||
return sign == 1 ? !m_imanager.upper_is_inf(a) : !m_imanager.lower_is_inf(a);
|
||||
}
|
||||
|
||||
bool intervals::monomial_has_lower_bound(lpvar j) const {
|
||||
|
@ -222,6 +236,18 @@ bool intervals::monomial_has_upper_bound(lpvar j) const {
|
|||
return product_has_upper_bound(1, m.vars());
|
||||
}
|
||||
lp::lar_solver& intervals::ls() { return m_core->m_lar_solver; }
|
||||
|
||||
const lp::lar_solver& intervals::ls() const { return m_core->m_lar_solver; }
|
||||
|
||||
void intervals::get_explanation_of_upper_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const {
|
||||
interval a = mul_signs_with_deps(m_core->emons()[j].vars());
|
||||
m_dep_manager.linearize(a.m_upper_dep, expl);
|
||||
}
|
||||
void intervals::get_explanation_of_lower_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const{
|
||||
interval a = mul_signs_with_deps(m_core->emons()[j].vars());
|
||||
m_dep_manager.linearize(a.m_lower_dep, expl);
|
||||
// return m_intervals.get_explanation_of_lower_bound_for_monomial(j, expl )
|
||||
}
|
||||
}
|
||||
// instantiate the template
|
||||
template class interval_manager<nla::intervals::im_config>;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue