3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-13 12:28:44 +00:00

get bounds from interval multiplication

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2019-06-07 18:08:14 -07:00
parent 3948af630d
commit f0cebd69fc
5 changed files with 129 additions and 84 deletions

View file

@ -119,7 +119,7 @@ void lp_bound_propagator::try_add_bound(mpq v, unsigned j, bool is_low, bool co
}
bool lp_bound_propagator::nl_monomial_upper_bound_should_be_taken(unsigned j) const {
return (!upper_bound_is_available_for_column(j)) || (
nl_monomial_upper_bound_is_available(j) && m_nla_solver->get_lower_bound(j) < m_lar_solver.m_mpq_lar_core_solver.m_r_upper_bounds()[j]);
nl_monomial_upper_bound_is_available(j) && m_nla_solver->get_upper_bound(j) < m_lar_solver.m_mpq_lar_core_solver.m_r_upper_bounds()[j]);
}
bool lp_bound_propagator::nl_monomial_lower_bound_should_be_taken(unsigned j) const {
@ -142,7 +142,11 @@ void lp_bound_propagator::explain_implied_bound(implied_bound & ib) {
int sign = j_sign * a_sign;
if (sign > 0) {
if (nl_monomial_upper_bound_should_be_taken(j)) {
SASSERT(false);
TRACE("nla_intervals", tout << "using the monomial upper bound\n";);
svector<lp::constraint_index> expl;
m_nla_solver->get_explanation_of_upper_bound_for_monomial(j, expl);
for (auto c : expl)
consume(a, c);
} else {
const ul_pair & ul = m_lar_solver.m_columns_to_ul_pairs[j];
auto witness = ul.upper_bound_witness();
@ -151,7 +155,12 @@ void lp_bound_propagator::explain_implied_bound(implied_bound & ib) {
}
} else {
if (nl_monomial_lower_bound_should_be_taken(j)) {
SASSERT(false);
TRACE("nla_intervals", tout << "using the monomial lower bound\n";);
svector<lp::constraint_index> expl;
m_nla_solver->get_explanation_of_lower_bound_for_monomial(j, expl);
for (auto c : expl)
consume(a, c);
} else {
const ul_pair & ul = m_lar_solver.m_columns_to_ul_pairs[j];
auto witness = ul.lower_bound_witness();

View file

@ -18,66 +18,72 @@ bool intervals::check() {
return true;
}
// create a product of interval signs together with the depencies
intervals::interval intervals::mul_signs_with_deps(int sign, const svector<lpvar>& vars) const {
interval a, b;
m_imanager.set(a, mpq(sign));
intervals::interval intervals::mul_signs_with_deps(const svector<lpvar>& vars) const {
interval a, b, c;
m_imanager.set(a, mpq(1));
for (lpvar v : vars) {
set_var_interval(v, b);
set_var_interval_signs_with_deps(v, b);
if (m_imanager.is_zero(b))
return b;
interval_deps deps;
m_imanager.mul(a, b, c, deps);
m_imanager.set(a, c);
m_config.add_deps(a, b, deps, a);
}
return a;
}
bool intervals::check(monomial const& m) {
interval a, b, c, d;
m_imanager.set(a, mpq(1));
set_var_interval(m.var(), d);
if (m_imanager.lower_is_inf(d) && m_imanager.upper_is_inf(d)) {
return true;
}
for (lpvar v : m.vars()) {
// TBD allow for division to get range of a
// m = a*b*c, where m and b*c are bounded, then interval for a is m/b*c
if (m_imanager.lower_is_inf(a) && m_imanager.upper_is_inf(a)) {
return true;
}
// TBD: deal with powers v^n interval instead of multiplying v*v .. * v
set_var_interval(v, b);
interval_deps deps;
m_imanager.mul(a, b, c, deps);
m_imanager.set(a, c);
m_config.add_deps(a, b, deps, a);
}
if (m_imanager.before(a, d)) {
svector<lp::constraint_index> cs;
m_dep_manager.linearize(a.m_upper_dep, cs);
m_dep_manager.linearize(d.m_lower_dep, cs);
for (auto ci : cs) {
(void)ci;
SASSERT(false);
//expl.push_justification(ci);
}
// TBD conflict
return false;
}
if (m_imanager.before(d, a)) {
svector<lp::constraint_index> cs;
m_dep_manager.linearize(a.m_lower_dep, cs);
m_dep_manager.linearize(d.m_upper_dep, cs);
for (auto ci : cs) {
(void)ci;
SASSERT(false); //expl.push_justification(ci);
}
// TBD conflict
return false;
}
// could also perform bounds propagation:
// a has tighter lower/upper bound than m.var(),
// -> transfer bound to m.var()
// all but one variable has bound
// -> transfer bound to that variable using division
return true;
}
// bool intervals::check(monomial const& m) {
// interval a, b, c, d;
// m_imanager.set(a, mpq(1));
// set_var_interval(m.var(), d);
// if (m_imanager.lower_is_inf(d) && m_imanager.upper_is_inf(d)) {
// return true;
// }
// for (lpvar v : m.vars()) {
// // TBD allow for division to get range of a
// // m = a*b*c, where m and b*c are bounded, then interval for a is m/b*c
// if (m_imanager.lower_is_inf(a) && m_imanager.upper_is_inf(a)) {
// return true;
// }
// // TBD: deal with powers v^n interval instead of multiplying v*v .. * v
// set_var_interval(v, b);
// interval_deps deps;
// m_imanager.mul(a, b, c, deps);
// m_imanager.set(a, c);
// m_config.add_deps(a, b, deps, a);
// }
// if (m_imanager.before(a, d)) {
// svector<lp::constraint_index> cs;
// m_dep_manager.linearize(a.m_upper_dep, cs);
// m_dep_manager.linearize(d.m_lower_dep, cs);
// for (auto ci : cs) {
// (void)ci;
// SASSERT(false);
// //expl.push_justification(ci);
// }
// // TBD conflict
// return false;
// }
// if (m_imanager.before(d, a)) {
// svector<lp::constraint_index> cs;
// m_dep_manager.linearize(a.m_lower_dep, cs);
// m_dep_manager.linearize(d.m_upper_dep, cs);
// for (auto ci : cs) {
// (void)ci;
// SASSERT(false); //expl.push_justification(ci);
// }
// // TBD conflict
// return false;
// }
// // could also perform bounds propagation:
// // a has tighter lower/upper bound than m.var(),
// // -> transfer bound to m.var()
// // all but one variable has bound
// // -> transfer bound to that variable using division
// return true;
// }
void intervals::set_var_interval(lpvar v, interval& b) const {
lp::constraint_index ci;
@ -87,23 +93,19 @@ void intervals::set_var_interval(lpvar v, interval& b) const {
m_config.set_lower(b, val);
m_config.set_lower_is_open(b, is_strict);
m_config.set_lower_is_inf(b, false);
b.m_lower_dep = mk_dep(ci);
}
else {
m_config.set_lower_is_open(b, true);
m_config.set_lower_is_inf(b, true);
b.m_lower_dep = nullptr;
}
if (ls().has_upper_bound(v, ci, val, is_strict)) {
m_config.set_upper(b, val);
m_config.set_upper_is_open(b, is_strict);
m_config.set_upper_is_inf(b, false);
b.m_upper_dep = mk_dep(ci);
}
else {
m_config.set_upper_is_open(b, true);
m_config.set_upper_is_inf(b, true);
b.m_upper_dep = nullptr;
}
}
@ -165,51 +167,63 @@ intervals::ci_dependency *intervals::mk_dep(lp::constraint_index ci) const {
return m_dep_manager.mk_leaf(ci);
}
bool intervals::check(lp::lar_term const& t) {
// convert term into factors for improved precision
return true;
}
lp::impq intervals::get_upper_bound_of_monomial(lpvar j) const {
const monomial& m = m_core->emons()[j];
interval a = mul(1, m.vars());
interval a = mul(m.vars());
SASSERT(!m_imanager.upper_is_inf(a));
auto r = lp::impq(a.m_upper);
if (a.m_upper_open)
r.y = -1;
TRACE("nla_intervals", m_core->print_monomial_with_vars(m, tout) << "upper = " << r << "\n";);
return r;
}
lp::impq intervals::get_lower_bound_of_monomial(lpvar j) const {
const monomial& m = m_core->emons()[j];
interval a = mul(1, m.vars());
interval a = mul(m.vars());
SASSERT(!a.m_lower_inf);
auto r = lp::impq(a.m_lower);
if (a.m_lower_open)
r.y = 1;
TRACE("nla_intervals", m_core->print_monomial_with_vars(m, tout) << "lower = " << r << "\n";);
return r;
}
intervals::interval intervals::mul(int sign, const svector<lpvar>& vars) const {
intervals::interval intervals::mul(const svector<lpvar>& vars) const {
interval a;
m_imanager.set(a, mpq(sign));
m_imanager.set(a, mpq(1));
for (lpvar j : vars) {
interval b, c;
set_var_interval(j, b);
m_imanager.mul(a, b, c);
if (m_imanager.is_zero(c)) {
TRACE("nla_intervals", tout << "sign = " << sign << "\nproduct = ";
m_core->print_product_with_vars(vars, tout) << "collapsed to zero\n";);
return c;
if (m_imanager.is_zero(b)) {
return b;
}
m_imanager.mul(a, b, c);
m_imanager.set(a, c);
}
return a;
}
intervals::interval intervals::mul_signs(const svector<lpvar>& vars) const {
interval a;
m_imanager.set(a, mpq(1));
for (lpvar j : vars) {
interval b, c;
set_var_interval_signs(j, b);
if (m_imanager.is_zero(b)) {
return b;
}
m_imanager.mul(a, b, c);
m_imanager.set(a, c);
}
return a;
}
bool intervals::product_has_upper_bound(int sign, const svector<lpvar>& vars) const {
interval a = mul(sign, vars);
return !m_imanager.upper_is_inf(a);
interval a = mul_signs(vars);
SASSERT(sign == 1 || sign == -1);
return sign == 1 ? !m_imanager.upper_is_inf(a) : !m_imanager.lower_is_inf(a);
}
bool intervals::monomial_has_lower_bound(lpvar j) const {
@ -222,6 +236,18 @@ bool intervals::monomial_has_upper_bound(lpvar j) const {
return product_has_upper_bound(1, m.vars());
}
lp::lar_solver& intervals::ls() { return m_core->m_lar_solver; }
const lp::lar_solver& intervals::ls() const { return m_core->m_lar_solver; }
void intervals::get_explanation_of_upper_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const {
interval a = mul_signs_with_deps(m_core->emons()[j].vars());
m_dep_manager.linearize(a.m_upper_dep, expl);
}
void intervals::get_explanation_of_lower_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const{
interval a = mul_signs_with_deps(m_core->emons()[j].vars());
m_dep_manager.linearize(a.m_lower_dep, expl);
// return m_intervals.get_explanation_of_lower_bound_for_monomial(j, expl )
}
}
// instantiate the template
template class interval_manager<nla::intervals::im_config>;

View file

@ -78,7 +78,7 @@ namespace nla {
};
void add_deps(interval const& a, interval const& b, interval_deps const& deps, interval& i) {
void add_deps(interval const& a, interval const& b, interval_deps const& deps, interval& i) const {
ci_dependency* lo = mk_dependency(a, b, deps.m_lower_deps);
ci_dependency* hi = mk_dependency(a, b, deps.m_upper_deps);
i.m_lower_dep = lo;
@ -119,7 +119,7 @@ namespace nla {
im_config(numeral_manager & m, ci_dependency_manager& d):m_manager(m), m_dep_manager(d) {}
private:
ci_dependency* mk_dependency(interval const& a, interval const& b, bound_deps bd) {
ci_dependency* mk_dependency(interval const& a, interval const& b, bound_deps bd) const {
ci_dependency* dep = nullptr;
if (dep_in_lower1(bd)) {
dep = m_dep_manager.mk_join(dep, a.m_lower_dep);
@ -174,7 +174,10 @@ namespace nla {
bool product_has_upper_bound(int sign, const svector<lpvar>&) const;
lp::impq get_upper_bound_of_monomial(lpvar j) const;
lp::impq get_lower_bound_of_monomial(lpvar j) const;
interval mul(int sign, const svector<lpvar>&) const;
interval mul_signs_with_deps(int sign, const svector<lpvar>&) const;
interval mul(const svector<lpvar>&) const;
interval mul_signs(const svector<lpvar>&) const;
interval mul_signs_with_deps(const svector<lpvar>&) const;
void get_explanation_of_upper_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const;
void get_explanation_of_lower_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const;
};
} // end of namespace nla

View file

@ -77,5 +77,10 @@ bool solver::monomial_has_lower_bound(lpvar j) const {
bool solver::monomial_has_upper_bound(lpvar j) const {
return m_intervals.monomial_has_upper_bound(j);
}
void solver::get_explanation_of_upper_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const {
m_intervals.get_explanation_of_upper_bound_for_monomial(j, expl);
}
void solver::get_explanation_of_lower_bound_for_monomial(lpvar j, svector<lp::constraint_index>& expl) const{
m_intervals.get_explanation_of_lower_bound_for_monomial(j, expl);
}
}

View file

@ -51,5 +51,7 @@ public:
lp::impq get_upper_bound(lpvar j) const;
bool monomial_has_lower_bound(lpvar j) const;
bool monomial_has_upper_bound(lpvar j) const;
void get_explanation_of_upper_bound_for_monomial(lpvar j, svector<lp::constraint_index>&) const;
void get_explanation_of_lower_bound_for_monomial(lpvar j, svector<lp::constraint_index>&) const;
};
}