mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
Merge branch 'unstable' of https://git01.codeplex.com/z3 into unstable
This commit is contained in:
commit
ed846a9ff3
11 changed files with 712 additions and 347 deletions
|
@ -151,6 +151,10 @@ sort * float_decl_plugin::mk_sort(decl_kind k, unsigned num_parameters, paramete
|
|||
if (!(num_parameters == 2 && parameters[0].is_int() && parameters[1].is_int())) {
|
||||
m_manager->raise_exception("expecting two integer parameters to floating point sort");
|
||||
}
|
||||
if (parameters[0].get_int() <= 1 || parameters[1].get_int() <= 1)
|
||||
m_manager->raise_exception("floating point sorts need parameters > 1");
|
||||
if (parameters[0].get_int() > parameters[1].get_int())
|
||||
m_manager->raise_exception("floating point sorts with ebits > sbits are currently not supported");
|
||||
return mk_float_sort(parameters[0].get_int(), parameters[1].get_int());
|
||||
case ROUNDING_MODE_SORT:
|
||||
return mk_rm_sort();
|
||||
|
@ -349,14 +353,14 @@ func_decl * float_decl_plugin::mk_to_float(decl_kind k, unsigned num_parameters,
|
|||
sort * fp = mk_float_sort(domain[2]->get_parameter(0).get_int(), domain[1]->get_parameter(0).get_int()+1);
|
||||
symbol name("asFloat");
|
||||
return m_manager->mk_func_decl(name, arity, domain, fp, func_decl_info(m_family_id, k, num_parameters, parameters));
|
||||
}
|
||||
}
|
||||
else {
|
||||
// .. Otherwise we only know how to convert rationals/reals.
|
||||
if (!(num_parameters == 2 && parameters[0].is_int() && parameters[1].is_int()))
|
||||
m_manager->raise_exception("expecting two integer parameters to asFloat");
|
||||
if (arity != 2 && arity != 3)
|
||||
m_manager->raise_exception("invalid number of arguments to asFloat operator");
|
||||
if (!is_rm_sort(domain[0]) || domain[1] != m_real_sort)
|
||||
m_manager->raise_exception("invalid number of arguments to asFloat operator");
|
||||
if (!is_rm_sort(domain[0]) || domain[1] != m_real_sort)
|
||||
m_manager->raise_exception("sort mismatch");
|
||||
if (arity == 2) {
|
||||
sort * fp = mk_float_sort(parameters[0].get_int(), parameters[1].get_int());
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -35,13 +35,13 @@ class fpa2bv_converter {
|
|||
ast_manager & m;
|
||||
basic_simplifier_plugin m_simp;
|
||||
float_util m_util;
|
||||
mpf_manager & m_mpf_manager;
|
||||
unsynch_mpz_manager & m_mpz_manager;
|
||||
mpf_manager & m_mpf_manager;
|
||||
unsynch_mpz_manager & m_mpz_manager;
|
||||
bv_util m_bv_util;
|
||||
float_decl_plugin * m_plugin;
|
||||
|
||||
obj_map<func_decl, expr*> m_const2bv;
|
||||
obj_map<func_decl, expr*> m_rm_const2bv;
|
||||
obj_map<func_decl, expr*> m_rm_const2bv;
|
||||
|
||||
public:
|
||||
fpa2bv_converter(ast_manager & m);
|
||||
|
@ -52,22 +52,22 @@ public:
|
|||
bool is_float(sort * s) { return m_util.is_float(s); }
|
||||
bool is_float(expr * e) { return is_app(e) && m_util.is_float(to_app(e)->get_decl()->get_range()); }
|
||||
bool is_float_family(func_decl * f) { return f->get_family_id() == m_util.get_family_id(); }
|
||||
bool is_rm_sort(sort * s) { return m_util.is_rm(s); }
|
||||
bool is_rm_sort(sort * s) { return m_util.is_rm(s); }
|
||||
|
||||
void mk_triple(expr * sign, expr * significand, expr * exponent, expr_ref & result) {
|
||||
SASSERT(m_bv_util.is_bv(sign) && m_bv_util.get_bv_size(sign) == 1);
|
||||
SASSERT(m_bv_util.is_bv(significand));
|
||||
SASSERT(m_bv_util.is_bv(exponent));
|
||||
SASSERT(m_bv_util.is_bv(sign) && m_bv_util.get_bv_size(sign) == 1);
|
||||
SASSERT(m_bv_util.is_bv(significand));
|
||||
SASSERT(m_bv_util.is_bv(exponent));
|
||||
result = m.mk_app(m_util.get_family_id(), OP_TO_FLOAT, sign, significand, exponent);
|
||||
}
|
||||
|
||||
void mk_eq(expr * a, expr * b, expr_ref & result);
|
||||
void mk_ite(expr * c, expr * t, expr * f, expr_ref & result);
|
||||
|
||||
void mk_rounding_mode(func_decl * f, expr_ref & result);
|
||||
void mk_rounding_mode(func_decl * f, expr_ref & result);
|
||||
void mk_value(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
|
||||
void mk_const(func_decl * f, expr_ref & result);
|
||||
void mk_rm_const(func_decl * f, expr_ref & result);
|
||||
void mk_rm_const(func_decl * f, expr_ref & result);
|
||||
|
||||
void mk_plus_inf(func_decl * f, expr_ref & result);
|
||||
void mk_minus_inf(func_decl * f, expr_ref & result);
|
||||
|
@ -102,7 +102,8 @@ public:
|
|||
void mk_to_float(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
|
||||
void mk_to_ieee_bv(func_decl * f, unsigned num, expr * const * args, expr_ref & result);
|
||||
|
||||
fpa2bv_model_converter * mk_model_converter();
|
||||
obj_map<func_decl, expr*> const & const2bv() const { return m_const2bv; }
|
||||
obj_map<func_decl, expr*> const & rm_const2bv() const { return m_rm_const2bv; }
|
||||
|
||||
void dbg_decouple(const char * prefix, expr_ref & e);
|
||||
expr_ref_vector extra_assertions;
|
||||
|
@ -122,11 +123,11 @@ protected:
|
|||
void mk_is_denormal(expr * e, expr_ref & result);
|
||||
void mk_is_normal(expr * e, expr_ref & result);
|
||||
|
||||
void mk_is_rm(expr * e, BV_RM_VAL rm, expr_ref & result);
|
||||
void mk_is_rm(expr * e, BV_RM_VAL rm, expr_ref & result);
|
||||
|
||||
void mk_top_exp(unsigned sz, expr_ref & result);
|
||||
void mk_bot_exp(unsigned sz, expr_ref & result);
|
||||
void mk_min_exp(unsigned ebits, expr_ref & result);
|
||||
void mk_min_exp(unsigned ebits, expr_ref & result);
|
||||
void mk_max_exp(unsigned ebits, expr_ref & result);
|
||||
|
||||
void mk_leading_zeros(expr * e, unsigned max_bits, expr_ref & result);
|
||||
|
@ -135,7 +136,7 @@ protected:
|
|||
void mk_unbias(expr * e, expr_ref & result);
|
||||
|
||||
void unpack(expr * e, expr_ref & sgn, expr_ref & sig, expr_ref & exp, bool normalize);
|
||||
void round(sort * s, expr_ref & rm, expr_ref & sgn, expr_ref & sig, expr_ref & exp, expr_ref & result);
|
||||
void round(sort * s, expr_ref & rm, expr_ref & sgn, expr_ref & sig, expr_ref & exp, expr_ref & result);
|
||||
|
||||
void add_core(unsigned sbits, unsigned ebits, expr_ref & rm,
|
||||
expr_ref & c_sgn, expr_ref & c_sig, expr_ref & c_exp, expr_ref & d_sgn, expr_ref & d_sig, expr_ref & d_exp,
|
||||
|
@ -146,11 +147,11 @@ protected:
|
|||
class fpa2bv_model_converter : public model_converter {
|
||||
ast_manager & m;
|
||||
obj_map<func_decl, expr*> m_const2bv;
|
||||
obj_map<func_decl, expr*> m_rm_const2bv;
|
||||
obj_map<func_decl, expr*> m_rm_const2bv;
|
||||
|
||||
public:
|
||||
fpa2bv_model_converter(ast_manager & m, obj_map<func_decl, expr*> & const2bv,
|
||||
obj_map<func_decl, expr*> & rm_const2bv) :
|
||||
fpa2bv_model_converter(ast_manager & m, obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv) :
|
||||
m(m) {
|
||||
// Just create a copy?
|
||||
for (obj_map<func_decl, expr*>::iterator it = const2bv.begin();
|
||||
|
@ -161,7 +162,7 @@ public:
|
|||
m.inc_ref(it->m_key);
|
||||
m.inc_ref(it->m_value);
|
||||
}
|
||||
for (obj_map<func_decl, expr*>::iterator it = rm_const2bv.begin();
|
||||
for (obj_map<func_decl, expr*>::iterator it = rm_const2bv.begin();
|
||||
it != rm_const2bv.end();
|
||||
it++)
|
||||
{
|
||||
|
@ -173,7 +174,7 @@ public:
|
|||
|
||||
virtual ~fpa2bv_model_converter() {
|
||||
dec_ref_map_key_values(m, m_const2bv);
|
||||
dec_ref_map_key_values(m, m_rm_const2bv);
|
||||
dec_ref_map_key_values(m, m_rm_const2bv);
|
||||
}
|
||||
|
||||
virtual void operator()(model_ref & md, unsigned goal_idx) {
|
||||
|
@ -198,4 +199,9 @@ protected:
|
|||
void convert(model * bv_mdl, model * float_mdl);
|
||||
};
|
||||
|
||||
|
||||
model_converter * mk_fpa2bv_model_converter(ast_manager & m,
|
||||
obj_map<func_decl, expr*> const & const2bv,
|
||||
obj_map<func_decl, expr*> const & rm_const2bv);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -73,7 +73,7 @@ struct fpa2bv_rewriter_cfg : public default_rewriter_cfg {
|
|||
return BR_DONE;
|
||||
}
|
||||
|
||||
if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_rm_sort(f->get_range())) {
|
||||
if (num == 0 && f->get_family_id() == null_family_id && m_conv.is_rm_sort(f->get_range())) {
|
||||
m_conv.mk_rm_const(f, result);
|
||||
return BR_DONE;
|
||||
}
|
||||
|
@ -102,7 +102,7 @@ struct fpa2bv_rewriter_cfg : public default_rewriter_cfg {
|
|||
case OP_RM_NEAREST_TIES_TO_EVEN:
|
||||
case OP_RM_TOWARD_NEGATIVE:
|
||||
case OP_RM_TOWARD_POSITIVE:
|
||||
case OP_RM_TOWARD_ZERO: m_conv.mk_rounding_mode(f, result); return BR_DONE;
|
||||
case OP_RM_TOWARD_ZERO: m_conv.mk_rounding_mode(f, result); return BR_DONE;
|
||||
case OP_FLOAT_VALUE: m_conv.mk_value(f, num, args, result); return BR_DONE;
|
||||
case OP_FLOAT_PLUS_INF: m_conv.mk_plus_inf(f, result); return BR_DONE;
|
||||
case OP_FLOAT_MINUS_INF: m_conv.mk_minus_inf(f, result); return BR_DONE;
|
||||
|
|
|
@ -90,7 +90,7 @@ class fpa2bv_tactic : public tactic {
|
|||
}
|
||||
|
||||
if (g->models_enabled())
|
||||
mc = m_conv.mk_model_converter();
|
||||
mc = mk_fpa2bv_model_converter(m, m_conv.const2bv(), m_conv.rm_const2bv());
|
||||
|
||||
g->inc_depth();
|
||||
result.push_back(g.get());
|
||||
|
|
|
@ -25,6 +25,7 @@ static void find_le(heap_trie_t& ht, unsigned num_keys, unsigned const* keys) {
|
|||
|
||||
}
|
||||
|
||||
|
||||
void tst_heap_trie() {
|
||||
heap_trie_t ht;
|
||||
|
||||
|
|
|
@ -253,7 +253,7 @@ static void saturate_basis(hilbert_basis& hb) {
|
|||
case l_true:
|
||||
std::cout << "sat\n";
|
||||
hb.display(std::cout);
|
||||
validate_sat(hb);
|
||||
//validate_sat(hb);
|
||||
break;
|
||||
case l_false:
|
||||
std::cout << "unsat\n";
|
||||
|
@ -523,6 +523,9 @@ void tst_hilbert_basis() {
|
|||
tst4();
|
||||
tst4();
|
||||
tst4();
|
||||
tst4();
|
||||
tst4();
|
||||
tst4();
|
||||
tst5();
|
||||
tst6();
|
||||
tst7();
|
||||
|
|
213
src/test/karr.cpp
Normal file
213
src/test/karr.cpp
Normal file
|
@ -0,0 +1,213 @@
|
|||
#include "hilbert_basis.h"
|
||||
|
||||
/*
|
||||
Test generation of linear congruences a la Karr.
|
||||
|
||||
*/
|
||||
namespace karr {
|
||||
|
||||
struct matrix {
|
||||
vector<vector<rational> > A;
|
||||
vector<rational> b;
|
||||
|
||||
unsigned size() const { return A.size(); }
|
||||
|
||||
void reset() {
|
||||
A.reset();
|
||||
b.reset();
|
||||
}
|
||||
|
||||
matrix& operator=(matrix const& other) {
|
||||
reset();
|
||||
append(other);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void append(matrix const& other) {
|
||||
A.append(other.A);
|
||||
b.append(other.b);
|
||||
}
|
||||
|
||||
void display(std::ostream& out) {
|
||||
for (unsigned i = 0; i < A.size(); ++i) {
|
||||
for (unsigned j = 0; j < A[i].size(); ++j) {
|
||||
out << A[i][j] << " ";
|
||||
}
|
||||
out << " = " << -b[i] << "\n";
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// treat src as a homogeneous matrix.
|
||||
void dualizeH(matrix& dst, matrix const& src) {
|
||||
hilbert_basis hb;
|
||||
for (unsigned i = 0; i < src.size(); ++i) {
|
||||
vector<rational> v(src.A[i]);
|
||||
v.append(src.b[i]);
|
||||
hb.add_eq(v, rational(0));
|
||||
}
|
||||
for (unsigned i = 0; i < 1 + src.A[0].size(); ++i) {
|
||||
hb.set_is_int(i);
|
||||
}
|
||||
lbool is_sat = hb.saturate();
|
||||
hb.display(std::cout);
|
||||
SASSERT(is_sat == l_true);
|
||||
dst.reset();
|
||||
unsigned basis_size = hb.get_basis_size();
|
||||
bool first_initial = true;
|
||||
for (unsigned i = 0; i < basis_size; ++i) {
|
||||
bool is_initial;
|
||||
vector<rational> soln;
|
||||
hb.get_basis_solution(i, soln, is_initial);
|
||||
if (!is_initial) {
|
||||
dst.b.push_back(soln.back());
|
||||
soln.pop_back();
|
||||
dst.A.push_back(soln);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// treat src as an inhomegeneous matrix.
|
||||
void dualizeI(matrix& dst, matrix const& src) {
|
||||
hilbert_basis hb;
|
||||
for (unsigned i = 0; i < src.size(); ++i) {
|
||||
hb.add_eq(src.A[i], -src.b[i]);
|
||||
}
|
||||
for (unsigned i = 0; i < src.A[0].size(); ++i) {
|
||||
hb.set_is_int(i);
|
||||
}
|
||||
lbool is_sat = hb.saturate();
|
||||
hb.display(std::cout);
|
||||
SASSERT(is_sat == l_true);
|
||||
dst.reset();
|
||||
unsigned basis_size = hb.get_basis_size();
|
||||
bool first_initial = true;
|
||||
for (unsigned i = 0; i < basis_size; ++i) {
|
||||
bool is_initial;
|
||||
vector<rational> soln;
|
||||
hb.get_basis_solution(i, soln, is_initial);
|
||||
if (is_initial && first_initial) {
|
||||
dst.A.push_back(soln);
|
||||
dst.b.push_back(rational(1));
|
||||
first_initial = false;
|
||||
}
|
||||
else if (!is_initial) {
|
||||
dst.A.push_back(soln);
|
||||
dst.b.push_back(rational(0));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void juxtapose(matrix& dst, matrix const& M, matrix const& N) {
|
||||
dst = M;
|
||||
dst.append(N);
|
||||
}
|
||||
|
||||
void join(matrix& dst, matrix const& M, matrix const& N) {
|
||||
matrix MD, ND, dstD;
|
||||
dualizeI(MD, M);
|
||||
dualizeI(ND, N);
|
||||
juxtapose(dstD, MD, ND);
|
||||
dualizeH(dst, dstD);
|
||||
}
|
||||
|
||||
void joinD(matrix& dst, matrix const& MD, matrix const& ND) {
|
||||
matrix dstD;
|
||||
juxtapose(dstD, MD, ND);
|
||||
dualizeH(dst, dstD);
|
||||
}
|
||||
|
||||
void transition(
|
||||
matrix& dst,
|
||||
matrix const& src,
|
||||
matrix const& Ab) {
|
||||
matrix T;
|
||||
// length of rows in Ab are twice as long as
|
||||
// length of rows in src.
|
||||
SASSERT(2*src.A[0].size() == Ab.A[0].size());
|
||||
vector<rational> zeros;
|
||||
for (unsigned i = 0; i < src.A[0].size(); ++i) {
|
||||
zeros.push_back(rational(0));
|
||||
}
|
||||
for (unsigned i = 0; i < src.size(); ++i) {
|
||||
T.A.push_back(src.A[i]);
|
||||
T.A.back().append(zeros);
|
||||
}
|
||||
T.b.append(src.b);
|
||||
T.append(Ab);
|
||||
|
||||
T.display(std::cout << "T:\n");
|
||||
matrix TD;
|
||||
dualizeI(TD, T);
|
||||
TD.display(std::cout << "TD:\n");
|
||||
for (unsigned i = 0; i < TD.size(); ++i) {
|
||||
vector<rational> v;
|
||||
v.append(src.size(), TD.A[i].c_ptr() + src.size());
|
||||
dst.A.push_back(v);
|
||||
dst.b.push_back(TD.b[i]);
|
||||
}
|
||||
dst.display(std::cout << "dst\n");
|
||||
}
|
||||
|
||||
static vector<rational> V(int i, int j) {
|
||||
vector<rational> v;
|
||||
v.push_back(rational(i));
|
||||
v.push_back(rational(j));
|
||||
return v;
|
||||
}
|
||||
|
||||
static vector<rational> V(int i, int j, int k, int l) {
|
||||
vector<rational> v;
|
||||
v.push_back(rational(i));
|
||||
v.push_back(rational(j));
|
||||
v.push_back(rational(k));
|
||||
v.push_back(rational(l));
|
||||
return v;
|
||||
}
|
||||
|
||||
#define R(_x_) rational(_x_)
|
||||
|
||||
|
||||
static void tst1() {
|
||||
matrix Theta;
|
||||
matrix Ab;
|
||||
|
||||
//
|
||||
Theta.A.push_back(V(1, 0));
|
||||
Theta.b.push_back(R(0));
|
||||
Theta.A.push_back(V(0, 1));
|
||||
Theta.b.push_back(R(-2));
|
||||
|
||||
Theta.display(std::cout << "Theta\n");
|
||||
|
||||
Ab.A.push_back(V(-1, 0, 1, 0));
|
||||
Ab.b.push_back(R(1));
|
||||
Ab.A.push_back(V(-1, -2, 0, 1));
|
||||
Ab.b.push_back(R(1));
|
||||
|
||||
Ab.display(std::cout << "Ab\n");
|
||||
|
||||
matrix ThetaD;
|
||||
dualizeI(ThetaD, Theta);
|
||||
ThetaD.display(std::cout);
|
||||
|
||||
matrix t1D, e1;
|
||||
transition(t1D, Theta, Ab);
|
||||
joinD(e1, t1D, ThetaD);
|
||||
|
||||
t1D.display(std::cout << "t1D\n");
|
||||
e1.display(std::cout << "e1\n");
|
||||
|
||||
matrix t2D, e2;
|
||||
transition(t2D, e1, Ab);
|
||||
joinD(e2, t2D, ThetaD);
|
||||
|
||||
t2D.display(std::cout << "t2D\n");
|
||||
e2.display(std::cout << "e2\n");
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
void tst_karr() {
|
||||
karr::tst1();
|
||||
}
|
|
@ -209,6 +209,7 @@ int main(int argc, char ** argv) {
|
|||
TST(rcf);
|
||||
TST(hilbert_basis);
|
||||
TST(heap_trie);
|
||||
TST(karr);
|
||||
}
|
||||
|
||||
void initialize_mam() {}
|
||||
|
|
|
@ -117,14 +117,14 @@ void hwf_manager::set(hwf & o, mpf_rounding_mode rm, char const * value) {
|
|||
std::string v(value);
|
||||
size_t e_pos = v.find('p');
|
||||
if (e_pos == std::string::npos) e_pos = v.find('P');
|
||||
|
||||
|
||||
std::string f, e;
|
||||
|
||||
|
||||
f = (e_pos != std::string::npos) ? v.substr(0, e_pos) : v;
|
||||
e = (e_pos != std::string::npos) ? v.substr(e_pos+1) : "0";
|
||||
|
||||
|
||||
TRACE("mpf_dbg", tout << " f = " << f << " e = " << e << std::endl;);
|
||||
|
||||
|
||||
mpq q;
|
||||
m_mpq_manager.set(q, f.c_str());
|
||||
|
||||
|
@ -132,14 +132,14 @@ void hwf_manager::set(hwf & o, mpf_rounding_mode rm, char const * value) {
|
|||
m_mpz_manager.set(ex, e.c_str());
|
||||
|
||||
set(o, rm, q, ex);
|
||||
|
||||
|
||||
TRACE("mpf_dbg", tout << "set: res = " << to_string(o) << std::endl;);
|
||||
}
|
||||
|
||||
void hwf_manager::set(hwf & o, mpf_rounding_mode rm, mpq const & significand, mpz const & exponent) {
|
||||
// Assumption: this represents significand * 2^exponent.
|
||||
set_rounding_mode(rm);
|
||||
|
||||
|
||||
mpq sig;
|
||||
m_mpq_manager.set(sig, significand);
|
||||
int64 exp = m_mpz_manager.get_int64(exponent);
|
||||
|
@ -349,7 +349,7 @@ void hwf_manager::rem(hwf const & x, hwf const & y, hwf & o) {
|
|||
else
|
||||
o.value = fmod(x.value, y.value);
|
||||
|
||||
// Here is an x87 alternative if the above makes problems; this may also be faster.
|
||||
// Here is an x87 alternative if the above makes problems; this may also be faster.
|
||||
#if 0
|
||||
double xv = x.value;
|
||||
double yv = y.value;
|
||||
|
@ -434,7 +434,7 @@ void hwf_manager::display_smt2(std::ostream & out, hwf const & a, bool decimal)
|
|||
void hwf_manager::to_rational(hwf const & x, unsynch_mpq_manager & qm, mpq & o) {
|
||||
SASSERT(is_normal(x) || is_denormal(x) || is_zero(x));
|
||||
scoped_mpz n(qm), d(qm);
|
||||
|
||||
|
||||
if (is_normal(x))
|
||||
qm.set(n, sig(x) | 0x0010000000000000ull);
|
||||
else
|
||||
|
@ -466,7 +466,7 @@ bool hwf_manager::is_neg(hwf const & x) {
|
|||
bool hwf_manager::is_pos(hwf const & x) {
|
||||
return !sgn(x) && !is_nan(x);
|
||||
}
|
||||
|
||||
|
||||
bool hwf_manager::is_nzero(hwf const & x) {
|
||||
return RAW(x.value) == 0x8000000000000000ull;
|
||||
}
|
||||
|
@ -581,20 +581,20 @@ void hwf_manager::mk_ninf(hwf & o) {
|
|||
|
||||
#ifdef _WINDOWS
|
||||
#if defined(_AMD64_) || defined(_M_IA64)
|
||||
#ifdef USE_INTRINSICS
|
||||
#define SETRM(RM) _MM_SET_ROUNDING_MODE(RM)
|
||||
#else
|
||||
#define SETRM(RM) _controlfp_s(&sse2_state, RM, _MCW_RC);
|
||||
#endif
|
||||
#ifdef USE_INTRINSICS
|
||||
#define SETRM(RM) _MM_SET_ROUNDING_MODE(RM)
|
||||
#else
|
||||
#ifdef USE_INTRINSICS
|
||||
#define SETRM(RM) _MM_SET_ROUNDING_MODE(RM)
|
||||
#else
|
||||
#define SETRM(RM) __control87_2(RM, _MCW_RC, &x86_state, &sse2_state)
|
||||
#endif
|
||||
#define SETRM(RM) _controlfp_s(&sse2_state, RM, _MCW_RC);
|
||||
#endif
|
||||
#else
|
||||
#define SETRM(RM) fesetround(RM)
|
||||
#ifdef USE_INTRINSICS
|
||||
#define SETRM(RM) _MM_SET_ROUNDING_MODE(RM)
|
||||
#else
|
||||
#define SETRM(RM) __control87_2(RM, _MCW_RC, &x86_state, &sse2_state)
|
||||
#endif
|
||||
#endif
|
||||
#else
|
||||
#define SETRM(RM) fesetround(RM)
|
||||
#endif
|
||||
|
||||
unsigned hwf_manager::prev_power_of_two(hwf const & a) {
|
||||
|
@ -608,9 +608,28 @@ unsigned hwf_manager::prev_power_of_two(hwf const & a) {
|
|||
|
||||
void hwf_manager::set_rounding_mode(mpf_rounding_mode rm)
|
||||
{
|
||||
#ifdef _WINDOWS
|
||||
#ifdef _WINDOWS
|
||||
#ifdef USE_INTRINSICS
|
||||
switch (rm) {
|
||||
case MPF_ROUND_NEAREST_TEVEN:
|
||||
case MPF_ROUND_NEAREST_TEVEN:
|
||||
SETRM(_MM_ROUND_NEAREST);
|
||||
break;
|
||||
case MPF_ROUND_TOWARD_POSITIVE:
|
||||
SETRM(_MM_ROUND_UP);
|
||||
break;
|
||||
case MPF_ROUND_TOWARD_NEGATIVE:
|
||||
SETRM(_MM_ROUND_DOWN);
|
||||
break;
|
||||
case MPF_ROUND_TOWARD_ZERO:
|
||||
SETRM(_MM_ROUND_TOWARD_ZERO);
|
||||
break;
|
||||
case MPF_ROUND_NEAREST_TAWAY:
|
||||
default:
|
||||
UNREACHABLE(); // Note: MPF_ROUND_NEAREST_TAWAY is not supported by the hardware!
|
||||
}
|
||||
#else
|
||||
switch (rm) {
|
||||
case MPF_ROUND_NEAREST_TEVEN:
|
||||
SETRM(_RC_NEAR);
|
||||
break;
|
||||
case MPF_ROUND_TOWARD_POSITIVE:
|
||||
|
@ -626,6 +645,7 @@ void hwf_manager::set_rounding_mode(mpf_rounding_mode rm)
|
|||
default:
|
||||
UNREACHABLE(); // Note: MPF_ROUND_NEAREST_TAWAY is not supported by the hardware!
|
||||
}
|
||||
#endif
|
||||
#else // OSX/Linux
|
||||
switch (rm) {
|
||||
case MPF_ROUND_NEAREST_TEVEN:
|
||||
|
|
|
@ -520,9 +520,8 @@ void mpf_manager::add_sub(mpf_rounding_mode rm, mpf const & x, mpf const & y, mp
|
|||
}
|
||||
}
|
||||
else if (is_zero(x) && is_zero(y)) {
|
||||
if (sgn(x) && sgn_y)
|
||||
set(o, x);
|
||||
else if (rm == MPF_ROUND_TOWARD_NEGATIVE)
|
||||
if ((x.sign && sgn_y) ||
|
||||
((rm == MPF_ROUND_TOWARD_NEGATIVE) && (x.sign != sgn_y)))
|
||||
mk_nzero(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_pzero(x.ebits, x.sbits, o);
|
||||
|
@ -627,29 +626,28 @@ void mpf_manager::mul(mpf_rounding_mode rm, mpf const & x, mpf const & y, mpf &
|
|||
if (is_zero(y))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_inf(x.ebits, x.sbits, sgn(y), o);
|
||||
mk_inf(x.ebits, x.sbits, y.sign, o);
|
||||
}
|
||||
else if (is_pinf(y)) {
|
||||
if (is_zero(x))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_inf(x.ebits, x.sbits, sgn(x), o);
|
||||
mk_inf(x.ebits, x.sbits, x.sign, o);
|
||||
}
|
||||
else if (is_ninf(x)) {
|
||||
if (is_zero(y))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_inf(x.ebits, x.sbits, !sgn(y), o);
|
||||
mk_inf(x.ebits, x.sbits, !y.sign, o);
|
||||
}
|
||||
else if (is_ninf(y)) {
|
||||
if (is_zero(x))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_inf(x.ebits, x.sbits, !sgn(x), o);
|
||||
mk_inf(x.ebits, x.sbits, !x.sign, o);
|
||||
}
|
||||
else if (is_zero(x) || is_zero(y)) {
|
||||
set(o, x);
|
||||
o.sign = x.sign ^ y.sign;
|
||||
mk_zero(x.ebits, x.sbits, x.sign != y.sign, o);
|
||||
}
|
||||
else {
|
||||
o.ebits = x.ebits;
|
||||
|
@ -699,31 +697,35 @@ void mpf_manager::div(mpf_rounding_mode rm, mpf const & x, mpf const & y, mpf &
|
|||
if (is_inf(y))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_inf(x.ebits, x.sbits, sgn(y), o);
|
||||
mk_inf(x.ebits, x.sbits, y.sign, o);
|
||||
}
|
||||
else if (is_pinf(y)) {
|
||||
if (is_inf(x))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_zero(x.ebits, x.sbits, (x.sign ^ y.sign) == 1, o);
|
||||
mk_zero(x.ebits, x.sbits, x.sign != y.sign, o);
|
||||
}
|
||||
else if (is_ninf(x)) {
|
||||
if (is_inf(y))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_inf(x.ebits, x.sbits, !sgn(y), o);
|
||||
mk_inf(x.ebits, x.sbits, !y.sign, o);
|
||||
}
|
||||
else if (is_ninf(y)) {
|
||||
if (is_inf(x))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_zero(x.ebits, x.sbits, (x.sign ^ y.sign) == 1, o);
|
||||
mk_zero(x.ebits, x.sbits, x.sign != y.sign, o);
|
||||
}
|
||||
else if (is_zero(y)) {
|
||||
if (is_zero(x))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else
|
||||
mk_inf(x.ebits, x.sbits, sgn(x), o);
|
||||
mk_inf(x.ebits, x.sbits, x.sign != y.sign, o);
|
||||
}
|
||||
else if (is_zero(x)) {
|
||||
// Special case to avoid problems with unpacking of zeros.
|
||||
mk_zero(x.ebits, x.sbits, x.sign != y.sign, o);
|
||||
}
|
||||
else {
|
||||
o.ebits = x.ebits;
|
||||
|
@ -837,6 +839,10 @@ void mpf_manager::sqrt(mpf_rounding_mode rm, mpf const & x, mpf & o) {
|
|||
else
|
||||
mk_nzero(x.ebits, x.sbits, o);
|
||||
}
|
||||
else if (is_pzero(x))
|
||||
mk_pzero(x.ebits, x.sbits, o);
|
||||
else if (is_nzero(x))
|
||||
mk_nzero(x.ebits, x.sbits, o);
|
||||
else {
|
||||
o.ebits = x.ebits;
|
||||
o.sbits = x.sbits;
|
||||
|
@ -933,7 +939,7 @@ void mpf_manager::rem(mpf const & x, mpf const & y, mpf & o) {
|
|||
else if (is_inf(y))
|
||||
set(o, x);
|
||||
else if (is_zero(x))
|
||||
set(o, x);
|
||||
mk_pzero(x.ebits, x.sbits, o);
|
||||
else if (is_zero(y))
|
||||
mk_nan(x.ebits, x.sbits, o);
|
||||
else {
|
||||
|
@ -982,9 +988,9 @@ void mpf_manager::rem(mpf const & x, mpf const & y, mpf & o) {
|
|||
void mpf_manager::maximum(mpf const & x, mpf const & y, mpf & o) {
|
||||
if (is_nan(x))
|
||||
set(o, y);
|
||||
else if (is_nan(y) || (sgn(y) && is_zero(x) && is_zero(y)))
|
||||
set(o, x);
|
||||
else if (gt(x, y))
|
||||
else if (is_nan(y))
|
||||
set(o, x);
|
||||
else if (gt(x, y) || (is_zero(x) && is_nzero(y)))
|
||||
set(o, x);
|
||||
else
|
||||
set(o, y);
|
||||
|
@ -993,9 +999,9 @@ void mpf_manager::maximum(mpf const & x, mpf const & y, mpf & o) {
|
|||
void mpf_manager::minimum(mpf const & x, mpf const & y, mpf & o) {
|
||||
if (is_nan(x))
|
||||
set(o, y);
|
||||
else if (is_nan(y) || (sgn(x) && is_zero(x) && is_zero(y)))
|
||||
else if (is_nan(y))
|
||||
set(o, x);
|
||||
else if (lt(x, y))
|
||||
else if (lt(x, y) || (is_nzero(x) && is_zero(y)))
|
||||
set(o, x);
|
||||
else
|
||||
set(o, y);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue