3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 22:05:36 +00:00

Merge branch 'solver_na2as' into unstable

This commit is contained in:
Leonardo de Moura 2012-11-02 16:35:23 -07:00
commit ed52dce9b0
26 changed files with 503 additions and 593 deletions

View file

@ -23,6 +23,7 @@ Revision History:
#include"cmd_context.h"
#include"smt2parser.h"
#include"smtparser.h"
#include"solver_na2as.h"
extern "C" {
@ -251,20 +252,19 @@ extern "C" {
// ---------------
// Support for SMTLIB2
class z3_context_solver : public solver {
class z3_context_solver : public solver_na2as {
api::context & m_ctx;
smt::kernel & ctx() const { return m_ctx.get_smt_kernel(); }
public:
virtual ~z3_context_solver() {}
z3_context_solver(api::context& c) : m_ctx(c) {}
virtual void init(ast_manager & m, symbol const & logic) {}
virtual void init_core(ast_manager & m, symbol const & logic) {}
virtual void collect_statistics(statistics & st) const {}
virtual void reset() { ctx().reset(); }
virtual void reset_core() { ctx().reset(); }
virtual void assert_expr(expr * t) { ctx().assert_expr(t); }
virtual void push() { ctx().push(); }
virtual void pop(unsigned n) { ctx().pop(n); }
virtual unsigned get_scope_level() const { return ctx().get_scope_level(); }
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) {
virtual void push_core() { ctx().push(); }
virtual void pop_core(unsigned n) { ctx().pop(n); }
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
return ctx().check(num_assumptions, assumptions);
}
virtual void get_unsat_core(ptr_vector<expr> & r) {

View file

@ -33,14 +33,29 @@ Revision History:
extern "C" {
static void init_solver_core(Z3_context c, Z3_solver _s) {
ast_manager & m = mk_c(c)->m();
Z3_solver_ref * s = to_solver(_s);
s->m_solver->set_produce_proofs(m.proofs_enabled());
s->m_solver->set_produce_unsat_cores(s->m_params.get_bool(":unsat-core", false));
s->m_solver->set_produce_models(s->m_params.get_bool(":model", true));
s->m_solver->set_front_end_params(mk_c(c)->fparams());
s->m_solver->updt_params(s->m_params);
s->m_solver->init(m, s->m_logic);
s->m_initialized = true;
}
static void init_solver(Z3_context c, Z3_solver s) {
if (!to_solver(s)->m_initialized)
init_solver_core(c, s);
}
Z3_solver Z3_API Z3_mk_simple_solver(Z3_context c) {
Z3_TRY;
LOG_Z3_mk_simple_solver(c);
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref);
s->m_solver = mk_smt_solver();
s->m_solver->set_front_end_params(mk_c(c)->fparams());
s->m_solver->init(mk_c(c)->m(), symbol::null);
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -53,8 +68,6 @@ extern "C" {
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref);
s->m_solver = mk_smt_strategic_solver();
s->m_solver->set_front_end_params(mk_c(c)->fparams());
s->m_solver->init(mk_c(c)->m(), symbol::null);
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -65,10 +78,8 @@ extern "C" {
Z3_TRY;
LOG_Z3_mk_solver_for_logic(c, logic);
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref);
Z3_solver_ref * s = alloc(Z3_solver_ref, to_symbol(logic));
s->m_solver = mk_smt_strategic_solver(true /* force solver to use tactics even when auto_config is disabled */);
s->m_solver->set_front_end_params(mk_c(c)->fparams());
s->m_solver->init(mk_c(c)->m(), to_symbol(logic));
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -81,8 +92,6 @@ extern "C" {
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref);
s->m_solver = alloc(tactic2solver, to_tactic_ref(t));
s->m_solver->set_front_end_params(mk_c(c)->fparams());
s->m_solver->init(mk_c(c)->m(), symbol::null);
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -117,7 +126,13 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_set_params(c, s, p);
RESET_ERROR_CODE();
to_solver_ref(s)->updt_params(to_param_ref(p));
if (to_solver(s)->m_initialized) {
bool old_model = to_solver(s)->m_params.get_bool(":model", true);
bool new_model = to_param_ref(p).get_bool(":model", true);
if (old_model != new_model)
to_solver_ref(s)->set_produce_models(new_model);
to_solver_ref(s)->updt_params(to_param_ref(p));
}
to_solver(s)->m_params = to_param_ref(p);
Z3_CATCH;
}
@ -142,6 +157,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_push(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
to_solver_ref(s)->push();
Z3_CATCH;
}
@ -150,6 +166,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_pop(c, s, n);
RESET_ERROR_CODE();
init_solver(c, s);
if (n > to_solver_ref(s)->get_scope_level()) {
SET_ERROR_CODE(Z3_IOB);
return;
@ -164,7 +181,7 @@ extern "C" {
LOG_Z3_solver_reset(c, s);
RESET_ERROR_CODE();
to_solver_ref(s)->reset();
to_solver_ref(s)->init(mk_c(c)->m(), symbol::null);
to_solver(s)->m_initialized = false;
Z3_CATCH;
}
@ -172,6 +189,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_get_num_scopes(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
return to_solver_ref(s)->get_scope_level();
Z3_CATCH_RETURN(0);
}
@ -180,7 +198,8 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_assert(c, s, a);
RESET_ERROR_CODE();
CHECK_FORMULA(a,);
init_solver(c, s);
CHECK_FORMULA(a,);
to_solver_ref(s)->assert_expr(to_expr(a));
Z3_CATCH;
}
@ -189,6 +208,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_get_assertions(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, mk_c(c)->m());
mk_c(c)->save_object(v);
unsigned sz = to_solver_ref(s)->get_num_assertions();
@ -207,9 +227,6 @@ extern "C" {
}
}
expr * const * _assumptions = to_exprs(assumptions);
to_solver_ref(s)->set_produce_models(to_solver(s)->m_params.get_bool(":model", true));
to_solver_ref(s)->set_produce_proofs(mk_c(c)->m().proofs_enabled());
to_solver_ref(s)->set_produce_unsat_cores(num_assumptions > 0);
unsigned timeout = to_solver(s)->m_params.get_uint(":timeout", UINT_MAX);
bool use_ctrl_c = to_solver(s)->m_params.get_bool(":ctrl-c", false);
cancel_eh<solver> eh(*to_solver_ref(s));
@ -233,6 +250,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_check(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
return _solver_check(c, s, 0, 0);
Z3_CATCH_RETURN(Z3_L_UNDEF);
}
@ -241,6 +259,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_check_assumptions(c, s, num_assumptions, assumptions);
RESET_ERROR_CODE();
init_solver(c, s);
return _solver_check(c, s, num_assumptions, assumptions);
Z3_CATCH_RETURN(Z3_L_UNDEF);
}
@ -249,6 +268,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_get_model(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
model_ref _m;
to_solver_ref(s)->get_model(_m);
if (!_m) {
@ -266,6 +286,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_get_proof(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
proof * p = to_solver_ref(s)->get_proof();
if (!p) {
SET_ERROR_CODE(Z3_INVALID_USAGE);
@ -280,6 +301,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_get_unsat_core(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
ptr_vector<expr> core;
to_solver_ref(s)->get_unsat_core(core);
Z3_ast_vector_ref * v = alloc(Z3_ast_vector_ref, mk_c(c)->m());
@ -295,6 +317,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_get_reason_unknown(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
return mk_c(c)->mk_external_string(to_solver_ref(s)->reason_unknown());
Z3_CATCH_RETURN("");
}
@ -303,6 +326,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_get_statistics(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
Z3_stats_ref * st = alloc(Z3_stats_ref);
to_solver_ref(s)->collect_statistics(st->m_stats);
mk_c(c)->save_object(st);
@ -315,6 +339,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_to_string(c, s);
RESET_ERROR_CODE();
init_solver(c, s);
std::ostringstream buffer;
to_solver_ref(s)->display(buffer);
return mk_c(c)->mk_external_string(buffer.str());

View file

@ -24,7 +24,10 @@ Revision History:
struct Z3_solver_ref : public api::object {
solver * m_solver;
params_ref m_params;
Z3_solver_ref():m_solver(0) {}
bool m_initialized;
symbol m_logic;
Z3_solver_ref():m_solver(0), m_initialized(false), m_logic(symbol::null) {}
Z3_solver_ref(symbol const & logic):m_solver(0), m_initialized(false), m_logic(logic) {}
virtual ~Z3_solver_ref() { dealloc(m_solver); }
};

View file

@ -359,14 +359,14 @@ class set_option_cmd : public set_get_option_cmd {
}
else if (m_option == m_produce_proofs) {
check_not_initialized(ctx, m_produce_proofs);
ctx.params().m_proof_mode = to_bool(value) ? PGM_FINE : PGM_DISABLED;
ctx.set_produce_proofs(to_bool(value));
}
else if (m_option == m_produce_unsat_cores) {
check_not_initialized(ctx, m_produce_unsat_cores);
ctx.set_produce_unsat_cores(to_bool(value));
}
else if (m_option == m_produce_models) {
ctx.params().m_model = to_bool(value);
ctx.set_produce_models(to_bool(value));
}
else if (m_option == m_produce_assignments) {
ctx.set_produce_assignments(to_bool(value));

View file

@ -348,6 +348,24 @@ cmd_context::~cmd_context() {
}
}
void cmd_context::set_produce_models(bool f) {
params().m_model = f;
if (m_solver)
m_solver->set_produce_models(f);
}
void cmd_context::set_produce_unsat_cores(bool f) {
// can only be set before initialization
SASSERT(!has_manager());
m_produce_unsat_cores = f;
}
void cmd_context::set_produce_proofs(bool f) {
// can only be set before initialization
SASSERT(!has_manager());
params().m_proof_mode = f ? PGM_FINE : PGM_DISABLED;
}
bool cmd_context::is_smtlib2_compliant() const {
return params().m_smtlib2_compliant;
}
@ -540,8 +558,12 @@ void cmd_context::init_manager_core(bool new_manager) {
// it prevents clashes with builtin types.
insert(pm().mk_plist_decl());
}
if (m_solver)
if (m_solver) {
m_solver->set_produce_unsat_cores(m_produce_unsat_cores);
m_solver->set_produce_models(params().m_model);
m_solver->set_produce_proofs(params().m_proof_mode == PGM_FINE);
m_solver->init(m(), m_logic);
}
m_check_logic.set_logic(m(), m_logic);
}
@ -1076,7 +1098,6 @@ void cmd_context::reset(bool finalize) {
reset_macros();
reset_func_decls();
restore_assertions(0);
restore_assumptions(0);
if (m_solver)
m_solver->reset();
m_pp_env = 0;
@ -1108,6 +1129,8 @@ void cmd_context::assert_expr(expr * t) {
m_check_sat_result = 0;
m().inc_ref(t);
m_assertions.push_back(t);
if (m_produce_unsat_cores)
m_assertion_names.push_back(0);
if (m_solver)
m_solver->assert_expr(t);
}
@ -1119,11 +1142,14 @@ void cmd_context::assert_expr(symbol const & name, expr * t) {
assert_expr(t);
return;
}
app * proxy = m().mk_const(name, m().mk_bool_sort());
expr * new_t = m().mk_implies(proxy, t);
m().inc_ref(proxy);
m_assumptions.push_back(proxy);
assert_expr(new_t);
m_check_sat_result = 0;
m().inc_ref(t);
m_assertions.push_back(t);
expr * ans = m().mk_const(name, m().mk_bool_sort());
m().inc_ref(ans);
m_assertion_names.push_back(ans);
if (m_solver)
m_solver->assert_expr(t, ans);
}
void cmd_context::push() {
@ -1137,7 +1163,6 @@ void cmd_context::push() {
s.m_macros_stack_lim = m_macros_stack.size();
s.m_aux_pdecls_lim = m_aux_pdecls.size();
s.m_assertions_lim = m_assertions.size();
s.m_assumptions_lim = m_assumptions.size();
if (m_solver)
m_solver->push();
}
@ -1200,29 +1225,25 @@ void cmd_context::restore_aux_pdecls(unsigned old_sz) {
m_aux_pdecls.shrink(old_sz);
}
static void restore(ast_manager & m, ptr_vector<expr> & c, unsigned old_sz) {
ptr_vector<expr>::iterator it = c.begin() + old_sz;
ptr_vector<expr>::iterator end = c.end();
for (; it != end; ++it) {
m.dec_ref(*it);
}
c.shrink(old_sz);
}
void cmd_context::restore_assertions(unsigned old_sz) {
SASSERT(old_sz <= m_assertions.size());
SASSERT(!m_interactive_mode || m_assertions.size() == m_assertion_strings.size());
ptr_vector<expr>::iterator it = m_assertions.begin() + old_sz;
ptr_vector<expr>::iterator end = m_assertions.end();
for (; it != end; ++it) {
m().dec_ref(*it);
}
m_assertions.shrink(old_sz);
restore(m(), m_assertions, old_sz);
if (m_produce_unsat_cores)
restore(m(), m_assertion_names, old_sz);
if (m_interactive_mode)
m_assertion_strings.shrink(old_sz);
}
void cmd_context::restore_assumptions(unsigned old_sz) {
SASSERT(old_sz <= m_assumptions.size());
ptr_vector<expr>::iterator it = m_assumptions.begin() + old_sz;
ptr_vector<expr>::iterator end = m_assumptions.end();
for (; it != end; ++it) {
m().dec_ref(*it);
}
m_assumptions.shrink(old_sz);
}
void cmd_context::pop(unsigned n) {
m_check_sat_result = 0;
if (n == 0)
@ -1240,7 +1261,6 @@ void cmd_context::pop(unsigned n) {
restore_macros(s.m_macros_stack_lim);
restore_aux_pdecls(s.m_aux_pdecls_lim);
restore_assertions(s.m_assertions_lim);
restore_assumptions(s.m_assumptions_lim);
m_scopes.shrink(new_lvl);
}
@ -1260,17 +1280,12 @@ void cmd_context::check_sat(unsigned num_assumptions, expr * const * assumptions
m_check_sat_result = m_solver.get(); // solver itself stores the result.
m_solver->set_front_end_params(params());
m_solver->set_progress_callback(this);
m_solver->set_produce_proofs(produce_proofs());
m_solver->set_produce_models(produce_models());
m_solver->set_produce_unsat_cores(produce_unsat_cores());
scoped_watch sw(*this);
cancel_eh<solver> eh(*m_solver);
scoped_ctrl_c ctrlc(eh);
unsigned old_sz = m_assumptions.size();
m_assumptions.append(num_assumptions, assumptions);
lbool r;
try {
r = m_solver->check_sat(m_assumptions.size(), m_assumptions.c_ptr());
r = m_solver->check_sat(num_assumptions, assumptions);
}
catch (z3_error & ex) {
throw ex;
@ -1278,7 +1293,6 @@ void cmd_context::check_sat(unsigned num_assumptions, expr * const * assumptions
catch (z3_exception & ex) {
throw cmd_exception(ex.msg());
}
m_assumptions.shrink(old_sz);
m_solver->set_status(r);
display_sat_result(r);
validate_check_sat_result(r);
@ -1410,6 +1424,9 @@ void cmd_context::set_solver(solver * s) {
m_solver = s;
m_solver->set_front_end_params(params());
if (has_manager() && s != 0) {
m_solver->set_produce_unsat_cores(m_produce_unsat_cores);
m_solver->set_produce_models(params().m_model);
m_solver->set_produce_proofs(params().m_proof_mode == PGM_FINE);
m_solver->init(m(), m_logic);
// assert formulas and create scopes in the new solver.
unsigned lim = 0;

View file

@ -175,16 +175,15 @@ protected:
ptr_vector<pdecl> m_aux_pdecls;
ptr_vector<expr> m_assertions;
vector<std::string> m_assertion_strings;
ptr_vector<expr> m_assumptions; // for unsat-core extraction
ptr_vector<expr> m_assertion_names; // named assertions are represented using boolean variables.
struct scope {
unsigned m_func_decls_stack_lim;
unsigned m_psort_decls_stack_lim;
unsigned m_macros_stack_lim;
unsigned m_aux_pdecls_lim;
// only m_assertions_lim and m_assumptions_lim are relevant when m_global_decls = true
// only m_assertions_lim is relevant when m_global_decls = true
unsigned m_assertions_lim;
unsigned m_assumptions_lim;
};
svector<scope> m_scopes;
@ -225,7 +224,6 @@ protected:
void restore_macros(unsigned old_sz);
void restore_aux_pdecls(unsigned old_sz);
void restore_assertions(unsigned old_sz);
void restore_assumptions(unsigned old_sz);
void erase_func_decl_core(symbol const & s, func_decl * f);
void erase_psort_decl_core(symbol const & s);
@ -272,7 +270,9 @@ public:
bool produce_models() const;
bool produce_proofs() const;
bool produce_unsat_cores() const { return m_produce_unsat_cores; }
void set_produce_unsat_cores(bool flag) { m_produce_unsat_cores = flag; }
void set_produce_models(bool flag);
void set_produce_unsat_cores(bool flag);
void set_produce_proofs(bool flag);
bool produce_assignments() const { return m_produce_assignments; }
void set_produce_assignments(bool flag) { m_produce_assignments = flag; }
void set_status(status st) { m_status = st; }
@ -369,8 +369,8 @@ public:
ptr_vector<expr>::const_iterator begin_assertions() const { return m_assertions.begin(); }
ptr_vector<expr>::const_iterator end_assertions() const { return m_assertions.end(); }
ptr_vector<expr>::const_iterator begin_assumptions() const { return m_assumptions.begin(); }
ptr_vector<expr>::const_iterator end_assumptions() const { return m_assumptions.end(); }
ptr_vector<expr>::const_iterator begin_assertion_names() const { return m_assertion_names.begin(); }
ptr_vector<expr>::const_iterator end_assertion_names() const { return m_assertion_names.end(); }
/**
\brief Hack: consume assertions if there are no scopes.
@ -380,7 +380,6 @@ public:
if (num_scopes() > 0)
return false;
restore_assertions(0);
restore_assumptions(0);
return true;
}

View file

@ -27,20 +27,22 @@ void assert_exprs_from(cmd_context const & ctx, goal & t) {
throw cmd_exception("Frontend does not support simultaneous generation of proofs and unsat cores");
ast_manager & m = t.m();
bool proofs_enabled = t.proofs_enabled();
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
t.assert_expr(*it, proofs_enabled ? m.mk_asserted(*it) : 0, 0);
}
if (ctx.produce_unsat_cores()) {
SASSERT(!ctx.produce_proofs());
it = ctx.begin_assumptions();
end = ctx.end_assumptions();
for (; it != end; ++it) {
t.assert_expr(*it, 0, m.mk_leaf(*it));
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
ptr_vector<expr>::const_iterator it2 = ctx.begin_assertion_names();
ptr_vector<expr>::const_iterator end2 = ctx.end_assertion_names();
SASSERT(end - it == end2 - it2);
for (; it != end; ++it, ++it2) {
t.assert_expr(*it, proofs_enabled ? m.mk_asserted(*it) : 0, m.mk_leaf(*it2));
}
}
else {
SASSERT(ctx.begin_assumptions() == ctx.end_assumptions());
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
t.assert_expr(*it, proofs_enabled ? m.mk_asserted(*it) : 0, 0);
}
SASSERT(ctx.begin_assertion_names() == ctx.end_assertion_names());
}
}

View file

@ -1,34 +0,0 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
strategic_solver_cmd.h
Abstract:
Specialization of the strategic solver that
used cmd_context to access the assertion set.
Author:
Leonardo (leonardo) 2012-11-01
Notes:
--*/
#include"strategic_solver_cmd.h"
#include"cmd_context.h"
strategic_solver_cmd::strategic_solver_cmd(cmd_context & ctx):
m_ctx(ctx) {
}
unsigned strategic_solver_cmd::get_num_assertions() const {
return static_cast<unsigned>(m_ctx.end_assertions() - m_ctx.begin_assertions());
}
expr * strategic_solver_cmd::get_assertion(unsigned idx) const {
SASSERT(idx < get_num_assertions());
return m_ctx.begin_assertions()[idx];
}

View file

@ -1,40 +0,0 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
strategic_solver_cmd.h
Abstract:
Specialization of the strategic solver that
used cmd_context to access the assertion set.
Author:
Leonardo (leonardo) 2012-11-01
Notes:
--*/
#ifndef _STRATEGIC_SOLVER_CMD_H_
#define _STRATEGIC_SOLVER_CMD_H_
#include"strategic_solver.h"
class cmd_context;
/**
Specialization for the SMT 2.0 command language frontend.
The strategic solver does not have to maintain a copy of the assertion set in the cmd_context.
*/
class strategic_solver_cmd : public strategic_solver_core {
cmd_context & m_ctx;
public:
strategic_solver_cmd(cmd_context & ctx);
virtual unsigned get_num_assertions() const;
virtual expr * get_assertion(unsigned idx) const;
};
#endif

View file

@ -83,7 +83,7 @@ namespace smtlib {
benchmark.add_formula(m_ast_manager.mk_true());
}
m_ctx = alloc(cmd_context, &m_params, true, &m_ast_manager, benchmark.get_logic());
m_ctx->set_solver(mk_smt_strategic_solver(*m_ctx));
m_ctx->set_solver(mk_smt_strategic_solver(false));
theory::expr_iterator fit = benchmark.begin_formulas();
theory::expr_iterator fend = benchmark.end_formulas();
for (; fit != fend; ++fit)

View file

@ -106,7 +106,7 @@ unsigned read_smtlib2_commands(char const* file_name, front_end_params& front_en
ctx.set_solver(s);
}
else {
solver * s = mk_smt_strategic_solver(ctx);
solver * s = mk_smt_strategic_solver(false);
ctx.set_solver(s);
}
install_dl_cmds(ctx);

View file

@ -1,236 +0,0 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
ni_solver.cpp
Abstract:
Wrappers for smt::kernel that are non-incremental & (quasi-incremental).
Author:
Leonardo (leonardo) 2011-03-30
Notes:
--*/
#include"ni_solver.h"
#include"smt_kernel.h"
#include"cmd_context.h"
class ni_smt_solver : public solver {
protected:
cmd_context & m_cmd_ctx;
smt::kernel * m_context;
progress_callback * m_callback;
public:
ni_smt_solver(cmd_context & ctx):m_cmd_ctx(ctx), m_context(0), m_callback(0) {}
virtual ~ni_smt_solver() {
if (m_context != 0)
dealloc(m_context);
}
virtual void init(ast_manager & m, symbol const & logic) {
// do nothing
}
virtual void collect_statistics(statistics & st) const {
if (m_context == 0) {
return;
}
else {
m_context->collect_statistics(st);
}
}
virtual void reset() {
if (m_context != 0) {
#pragma omp critical (ni_solver)
{
dealloc(m_context);
m_context = 0;
}
}
}
virtual void assert_expr(expr * t) {
// do nothing
}
virtual void push() {
// do nothing
}
virtual void pop(unsigned n) {
// do nothing
}
virtual unsigned get_scope_level() const {
return m_cmd_ctx.num_scopes();
}
void assert_exprs() {
ptr_vector<expr>::const_iterator it = m_cmd_ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = m_cmd_ctx.end_assertions();
for (; it != end; ++it) {
m_context->assert_expr(*it);
}
}
void init_solver() {
reset();
#pragma omp critical (ni_solver)
{
m_context = alloc(smt::kernel, m_cmd_ctx.m(), m_cmd_ctx.params());
}
if (m_cmd_ctx.has_logic())
m_context->set_logic(m_cmd_ctx.get_logic());
if (m_callback)
m_context->set_progress_callback(m_callback);
assert_exprs();
}
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) {
// erase current solver, and create a new one.
init_solver();
if (num_assumptions == 0) {
return m_context->setup_and_check();
}
else {
return m_context->check(num_assumptions, assumptions);
}
}
virtual void get_unsat_core(ptr_vector<expr> & r) {
SASSERT(m_context);
unsigned sz = m_context->get_unsat_core_size();
for (unsigned i = 0; i < sz; i++)
r.push_back(m_context->get_unsat_core_expr(i));
}
virtual void get_model(model_ref & m) {
SASSERT(m_context);
m_context->get_model(m);
}
virtual proof * get_proof() {
SASSERT(m_context);
return m_context->get_proof();
}
virtual std::string reason_unknown() const {
SASSERT(m_context);
return m_context->last_failure_as_string();
}
virtual void get_labels(svector<symbol> & r) {
SASSERT(m_context);
buffer<symbol> tmp;
m_context->get_relevant_labels(0, tmp);
r.append(tmp.size(), tmp.c_ptr());
}
virtual void set_cancel(bool f) {
#pragma omp critical (ni_solver)
{
if (m_context)
m_context->set_cancel(f);
}
}
virtual void set_progress_callback(progress_callback * callback) {
m_callback = callback;
if (m_context)
m_context->set_progress_callback(callback);
}
virtual void collect_param_descrs(param_descrs & r) {
smt::kernel::collect_param_descrs(r);
}
};
solver * mk_non_incremental_smt_solver(cmd_context & ctx) {
return alloc(ni_smt_solver, ctx);
}
class qi_smt_solver : public ni_smt_solver {
bool m_inc_mode;
public:
qi_smt_solver(cmd_context & ctx):ni_smt_solver(ctx), m_inc_mode(false) {}
virtual ~qi_smt_solver() {}
virtual void init(ast_manager & m, symbol const & logic) {
if (m_inc_mode) {
init_solver();
m_inc_mode = true;
}
}
virtual void reset() {
ni_smt_solver::reset();
m_inc_mode = false;
}
void switch_to_inc() {
if (!m_inc_mode) {
init_solver();
m_inc_mode = true;
}
SASSERT(m_inc_mode);
}
virtual void assert_expr(expr * t) {
if (m_context != 0 && !m_inc_mode) {
// solver was already created to solve a check_sat query...
switch_to_inc();
}
if (m_inc_mode) {
SASSERT(m_context);
m_context->assert_expr(t);
}
}
virtual void push() {
switch_to_inc();
SASSERT(m_context);
m_context->push();
SASSERT(m_inc_mode);
}
virtual void pop(unsigned n) {
switch_to_inc();
SASSERT(m_context);
m_context->pop(n);
SASSERT(m_inc_mode);
}
virtual unsigned get_scope_level() const {
if (!m_inc_mode)
return 0;
else
return m_context->get_scope_level();
}
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) {
if (!m_inc_mode) {
lbool r = ni_smt_solver::check_sat(num_assumptions, assumptions);
SASSERT(!m_inc_mode);
return r;
}
else {
return m_context->check(num_assumptions, assumptions);
}
}
};
solver * mk_quasi_incremental_smt_solver(cmd_context & ctx) {
return alloc(qi_smt_solver, ctx);
}

View file

@ -1,30 +0,0 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
ni_solver.h
Abstract:
Wrappers for smt::context that are non-incremental & (quasi-incremental).
Author:
Leonardo (leonardo) 2011-03-30
Notes:
--*/
#ifndef _NI_SOLVER_H_
#define _NI_SOLVER_H_
#include"solver.h"
class cmd_context;
// Creates a solver that restarts from scratch for every call to check_sat
solver * mk_non_incremental_smt_solver(cmd_context & ctx);
// Creates a solver that restarts from scratch for the first call to check_sat, and then moves to incremental behavior.
solver * mk_quasi_incremental_smt_solver(cmd_context & ctx);
#endif

View file

@ -16,18 +16,19 @@ Author:
Notes:
--*/
#include"solver.h"
#include"solver_na2as.h"
#include"smt_kernel.h"
#include"reg_decl_plugins.h"
#include"front_end_params.h"
namespace smt {
class solver : public ::solver {
front_end_params * m_params;
smt::kernel * m_context;
class solver : public solver_na2as {
front_end_params * m_params;
smt::kernel * m_context;
progress_callback * m_callback;
public:
solver():m_params(0), m_context(0) {}
solver():m_params(0), m_context(0), m_callback(0) {}
virtual ~solver() {
if (m_context != 0)
@ -57,12 +58,14 @@ namespace smt {
}
}
virtual void init(ast_manager & m, symbol const & logic) {
virtual void init_core(ast_manager & m, symbol const & logic) {
SASSERT(m_params);
reset();
#pragma omp critical (solver)
{
m_context = alloc(smt::kernel, m, *m_params);
if (m_callback)
m_context->set_progress_callback(m_callback);
}
if (logic != symbol::null)
m_context->set_logic(logic);
@ -77,7 +80,7 @@ namespace smt {
}
}
virtual void reset() {
virtual void reset_core() {
if (m_context != 0) {
#pragma omp critical (solver)
{
@ -92,25 +95,19 @@ namespace smt {
m_context->assert_expr(t);
}
virtual void push() {
virtual void push_core() {
SASSERT(m_context);
m_context->push();
}
virtual void pop(unsigned n) {
virtual void pop_core(unsigned n) {
SASSERT(m_context);
m_context->pop(n);
}
virtual unsigned get_scope_level() const {
if (m_context)
return m_context->get_scope_level();
else
return 0;
}
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) {
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
SASSERT(m_context);
TRACE("solver_na2as", tout << "smt_solver::check_sat_core: " << num_assumptions << "\n";);
return m_context->check(num_assumptions, assumptions);
}
@ -152,8 +149,9 @@ namespace smt {
}
virtual void set_progress_callback(progress_callback * callback) {
SASSERT(m_context);
m_context->set_progress_callback(callback);
m_callback = callback;
if (m_context)
m_context->set_progress_callback(callback);
}
virtual unsigned get_num_assertions() const {

View file

@ -64,19 +64,20 @@ public:
/**
\brief Enable/Disable proof production for this solver object.
It is invoked after init(m, logic).
It is invoked before init(m, logic).
*/
virtual void set_produce_proofs(bool f) {}
/**
\brief Enable/Disable model generation for this solver object.
It is invoked after init(m, logic).
It is invoked before init(m, logic).
The user may optionally invoke it after init(m, logic).
*/
virtual void set_produce_models(bool f) {}
/**
\brief Enable/Disable unsat core generation for this solver object.
It is invoked after init(m, logic).
It is invoked before init(m, logic).
*/
virtual void set_produce_unsat_cores(bool f) {}
@ -95,6 +96,13 @@ public:
*/
virtual void assert_expr(expr * t) = 0;
/**
\brief Add a new formula \c t to the assertion stack, and "tag" it with \c a.
The propositional varialbe \c a is used to track the use of \c t in a proof
of unsatisfiability.
*/
virtual void assert_expr(expr * t, expr * a) = 0;
/**
\brief Create a backtracking point.
*/

101
src/solver/solver_na2as.cpp Normal file
View file

@ -0,0 +1,101 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
solver_na2as.cpp
Abstract:
Solver that implements "named" assertions using assumptions (aka answer literals).
That is, a named assertion assert_expr(t, a) is mapped into
a implies t
and 'a' is used as an extra assumption for check_sat.
Author:
Leonardo (leonardo) 2012-11-02
Notes:
--*/
#include"solver_na2as.h"
#include"ast_smt2_pp.h"
solver_na2as::solver_na2as() {
m_manager = 0;
}
solver_na2as::~solver_na2as() {
restore_assumptions(0);
}
void solver_na2as::assert_expr(expr * t, expr * a) {
SASSERT(m_manager != 0);
SASSERT(is_uninterp_const(a));
SASSERT(m_manager->is_bool(a));
TRACE("solver_na2as", tout << "asserting\n" << mk_ismt2_pp(t, *m_manager) << "\n" << mk_ismt2_pp(a, *m_manager) << "\n";);
m_manager->inc_ref(a);
m_assumptions.push_back(a);
expr_ref new_t(*m_manager);
new_t = m_manager->mk_implies(a, t);
assert_expr(new_t);
}
void solver_na2as::init(ast_manager & m, symbol const & logic) {
SASSERT(m_assumptions.empty());
m_manager = &m;
init_core(m, logic);
}
struct append_assumptions {
ptr_vector<expr> & m_assumptions;
unsigned m_old_sz;
append_assumptions(ptr_vector<expr> & _m_assumptions,
unsigned num_assumptions,
expr * const * assumptions):
m_assumptions(_m_assumptions) {
m_old_sz = m_assumptions.size();
m_assumptions.append(num_assumptions, assumptions);
}
~append_assumptions() {
m_assumptions.shrink(m_old_sz);
}
};
lbool solver_na2as::check_sat(unsigned num_assumptions, expr * const * assumptions) {
append_assumptions app(m_assumptions, num_assumptions, assumptions);
return check_sat_core(m_assumptions.size(), m_assumptions.c_ptr());
}
void solver_na2as::push() {
m_scopes.push_back(m_assumptions.size());
push_core();
}
void solver_na2as::pop(unsigned n) {
pop_core(n);
unsigned lvl = m_scopes.size();
SASSERT(n <= lvl);
unsigned new_lvl = lvl - n;
restore_assumptions(m_scopes[new_lvl]);
m_scopes.shrink(new_lvl);
}
void solver_na2as::restore_assumptions(unsigned old_sz) {
SASSERT(old_sz == 0 || m_manager != 0);
for (unsigned i = old_sz; i < m_assumptions.size(); i++) {
m_manager->dec_ref(m_assumptions[i]);
}
m_assumptions.shrink(old_sz);
}
unsigned solver_na2as::get_scope_level() const {
return m_scopes.size();
}
void solver_na2as::reset() {
reset_core();
restore_assumptions(0);
}

55
src/solver/solver_na2as.h Normal file
View file

@ -0,0 +1,55 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
solver_na2as.h
Abstract:
Solver that implements "named" assertions using assumptions (aka answer literals).
That is, a named assertion assert_expr(t, a) is mapped into
a implies t
and 'a' is used as an extra assumption for check_sat.
Author:
Leonardo (leonardo) 2012-11-02
Notes:
--*/
#ifndef _SOLVER_NA2AS_H_
#define _SOLVER_NA2AS_H_
#include"solver.h"
class solver_na2as : public solver {
ast_manager * m_manager;
ptr_vector<expr> m_assumptions;
unsigned_vector m_scopes;
void restore_assumptions(unsigned old_sz);
public:
solver_na2as();
virtual ~solver_na2as();
virtual void assert_expr(expr * t, expr * a);
virtual void assert_expr(expr * t) = 0;
// Subclasses of solver_na2as should redefine the following *_core methods instead of these ones.
virtual void init(ast_manager & m, symbol const & logic);
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions);
virtual void push();
virtual void pop(unsigned n);
virtual unsigned get_scope_level() const;
virtual void reset();
protected:
virtual void init_core(ast_manager & m, symbol const & logic) = 0;
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) = 0;
virtual void push_core() = 0;
virtual void pop_core(unsigned n) = 0;
virtual void reset_core() = 0;
};
#endif

View file

@ -25,7 +25,13 @@ Notes:
// minimum verbosity level for portfolio verbose messages
#define PS_VB_LVL 15
strategic_solver_core::strategic_solver_core():
strategic_solver::ctx::ctx(ast_manager & m):
m_assertions(m),
m_assertion_names(m) {
}
strategic_solver::strategic_solver():
m_manager(0),
m_fparams(0),
m_force_tactic(false),
@ -37,6 +43,7 @@ strategic_solver_core::strategic_solver_core():
m_default_fct(0),
m_curr_tactic(0),
m_proof(0),
m_core(0),
m_callback(0) {
m_use_inc_solver_results = false;
DEBUG_CODE(m_num_scopes = 0;);
@ -45,7 +52,7 @@ strategic_solver_core::strategic_solver_core():
m_produce_unsat_cores = false;
}
strategic_solver_core::~strategic_solver_core() {
strategic_solver::~strategic_solver() {
SASSERT(!m_curr_tactic);
dictionary<tactic_factory*>::iterator it = m_logic2fct.begin();
dictionary<tactic_factory*>::iterator end = m_logic2fct.end();
@ -54,9 +61,11 @@ strategic_solver_core::~strategic_solver_core() {
}
if (m_proof)
m().dec_ref(m_proof);
if (m_core)
m().dec_ref(m_core);
}
bool strategic_solver_core::has_quantifiers() const {
bool strategic_solver::has_quantifiers() const {
unsigned sz = get_num_assertions();
for (unsigned i = 0; i < sz; i++) {
if (::has_quantifiers(get_assertion(i)))
@ -68,7 +77,7 @@ bool strategic_solver_core::has_quantifiers() const {
/**
\brief Return true if a tactic should be used when the incremental solver returns unknown.
*/
bool strategic_solver_core::use_tactic_when_undef() const {
bool strategic_solver::use_tactic_when_undef() const {
switch (m_inc_unknown_behavior) {
case IUB_RETURN_UNDEF: return false;
case IUB_USE_TACTIC_IF_QF: return !has_quantifiers();
@ -79,7 +88,7 @@ bool strategic_solver_core::use_tactic_when_undef() const {
}
}
void strategic_solver_core::set_inc_solver(solver * s) {
void strategic_solver::set_inc_solver(solver * s) {
SASSERT(m_inc_solver == 0);
SASSERT(m_num_scopes == 0);
m_inc_solver = s;
@ -87,7 +96,7 @@ void strategic_solver_core::set_inc_solver(solver * s) {
m_inc_solver->set_progress_callback(m_callback);
}
void strategic_solver_core::updt_params(params_ref const & p) {
void strategic_solver::updt_params(params_ref const & p) {
if (m_inc_solver)
m_inc_solver->updt_params(p);
if (m_fparams)
@ -95,7 +104,7 @@ void strategic_solver_core::updt_params(params_ref const & p) {
}
void strategic_solver_core::collect_param_descrs(param_descrs & r) {
void strategic_solver::collect_param_descrs(param_descrs & r) {
if (m_inc_solver)
m_inc_solver->collect_param_descrs(r);
}
@ -105,7 +114,7 @@ void strategic_solver_core::collect_param_descrs(param_descrs & r) {
timeout == UINT_MAX means infinite
After the timeout a strategy is used.
*/
void strategic_solver_core::set_inc_solver_timeout(unsigned timeout) {
void strategic_solver::set_inc_solver_timeout(unsigned timeout) {
m_inc_solver_timeout = timeout;
}
@ -113,14 +122,14 @@ void strategic_solver_core::set_inc_solver_timeout(unsigned timeout) {
\brief Set the default tactic factory.
It is used if there is no tactic for a given logic.
*/
void strategic_solver_core::set_default_tactic(tactic_factory * fct) {
void strategic_solver::set_default_tactic(tactic_factory * fct) {
m_default_fct = fct;
}
/**
\brief Set a tactic factory for a given logic.
*/
void strategic_solver_core::set_tactic_for(symbol const & logic, tactic_factory * fct) {
void strategic_solver::set_tactic_for(symbol const & logic, tactic_factory * fct) {
tactic_factory * old_fct;
if (m_logic2fct.find(logic, old_fct)) {
dealloc(old_fct);
@ -128,31 +137,77 @@ void strategic_solver_core::set_tactic_for(symbol const & logic, tactic_factory
m_logic2fct.insert(logic, fct);
}
void strategic_solver_core::init(ast_manager & m, symbol const & logic) {
void strategic_solver::init(ast_manager & m, symbol const & logic) {
m_manager = &m;
m_logic = logic;
if (m_inc_mode) {
SASSERT(m_inc_solver);
m_inc_solver->init(m, logic);
}
m_ctx = alloc(ctx, m);
TRACE("strategic_solver", tout << "strategic_solver was initialized.\n";);
}
unsigned strategic_solver::get_num_assertions() const {
if (m_ctx == 0)
return 0;
return m_ctx->m_assertions.size();
}
expr * strategic_solver::get_assertion(unsigned idx) const {
SASSERT(m_ctx);
return m_ctx->m_assertions.get(idx);
}
expr * strategic_solver::get_assertion_name(unsigned idx) const {
SASSERT(m_ctx);
SASSERT(m_produce_unsat_cores);
return m_ctx->m_assertion_names.get(idx);
}
void strategic_solver::set_produce_proofs(bool f) {
m_produce_proofs = f;
// do not need to propagate to inc_solver since flag cannot be changed after initialization
}
void strategic_solver::set_produce_models(bool f) {
m_produce_models = f;
if (m_inc_solver)
m_inc_solver->set_produce_models(f);
}
void strategic_solver::set_produce_unsat_cores(bool f) {
m_produce_unsat_cores = f;
// do not need to propagate to inc_solver since flag cannot be changed after initialization
}
// delayed inc solver initialization
void strategic_solver_core::init_inc_solver() {
void strategic_solver::init_inc_solver() {
if (m_inc_mode)
return; // solver was already initialized
if (!m_inc_solver)
return; // inc solver was not installed
m_inc_mode = true;
m_inc_solver->set_produce_proofs(m_produce_proofs);
m_inc_solver->set_produce_models(m_produce_models);
m_inc_solver->set_produce_unsat_cores(m_produce_unsat_cores);
m_inc_solver->set_front_end_params(*m_fparams);
m_inc_solver->init(m(), m_logic);
unsigned sz = get_num_assertions();
for (unsigned i = 0; i < sz; i++) {
m_inc_solver->assert_expr(get_assertion(i));
if (m_produce_unsat_cores) {
SASSERT(m_ctx->m_assertions.size() == m_ctx->m_assertion_names.size());
for (unsigned i = 0; i < sz; i++) {
m_inc_solver->assert_expr(get_assertion(i), get_assertion_name(i));
}
}
else {
for (unsigned i = 0; i < sz; i++) {
m_inc_solver->assert_expr(get_assertion(i));
}
}
}
void strategic_solver_core::collect_statistics(statistics & st) const {
void strategic_solver::collect_statistics(statistics & st) const {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->collect_statistics(st);
@ -165,7 +220,8 @@ void strategic_solver_core::collect_statistics(statistics & st) const {
}
}
void strategic_solver_core::reset() {
void strategic_solver::reset() {
m_ctx = 0;
m_logic = symbol::null;
m_inc_mode = false;
m_check_sat_executed = false;
@ -176,18 +232,22 @@ void strategic_solver_core::reset() {
reset_results();
}
void strategic_solver_core::reset_results() {
void strategic_solver::reset_results() {
m_use_inc_solver_results = false;
m_model = 0;
if (m_proof) {
m().dec_ref(m_proof);
m_proof = 0;
}
if (m_core) {
m().dec_ref(m_core);
m_core = 0;
}
m_reason_unknown.clear();
m_stats.reset();
}
void strategic_solver_core::assert_expr(expr * t) {
void strategic_solver::assert_expr(expr * t) {
if (m_check_sat_executed && !m_inc_mode) {
// a check sat was already executed --> switch to incremental mode
init_inc_solver();
@ -197,16 +257,37 @@ void strategic_solver_core::assert_expr(expr * t) {
SASSERT(m_inc_solver);
m_inc_solver->assert_expr(t);
}
SASSERT(m_ctx);
m_ctx->m_assertions.push_back(t);
if (m_produce_unsat_cores)
m_ctx->m_assertion_names.push_back(0);
}
void strategic_solver_core::push() {
void strategic_solver::assert_expr(expr * t, expr * a) {
if (m_check_sat_executed && !m_inc_mode) {
// a check sat was already executed --> switch to incremental mode
init_inc_solver();
SASSERT(m_inc_solver == 0 || m_inc_mode);
}
if (m_inc_mode) {
SASSERT(m_inc_solver);
m_inc_solver->assert_expr(t, a);
}
SASSERT(m_ctx);
m_ctx->m_assertions.push_back(t);
if (m_produce_unsat_cores)
m_ctx->m_assertion_names.push_back(a);
}
void strategic_solver::push() {
DEBUG_CODE(m_num_scopes++;);
init_inc_solver();
if (m_inc_solver)
m_inc_solver->push();
m_ctx->m_scopes.push_back(m_ctx->m_assertions.size());
}
void strategic_solver_core::pop(unsigned n) {
void strategic_solver::pop(unsigned n) {
DEBUG_CODE({
SASSERT(n <= m_num_scopes);
m_num_scopes -= n;
@ -214,13 +295,20 @@ void strategic_solver_core::pop(unsigned n) {
init_inc_solver();
if (m_inc_solver)
m_inc_solver->pop(n);
SASSERT(m_ctx);
unsigned new_lvl = m_ctx->m_scopes.size() - n;
unsigned old_sz = m_ctx->m_scopes[new_lvl];
m_ctx->m_assertions.shrink(old_sz);
if (m_produce_unsat_cores)
m_ctx->m_assertion_names.shrink(old_sz);
m_ctx->m_scopes.shrink(new_lvl);
}
unsigned strategic_solver_core::get_scope_level() const {
if (m_inc_solver)
return m_inc_solver->get_scope_level();
else
unsigned strategic_solver::get_scope_level() const {
if (m_ctx == 0)
return 0;
return m_ctx->m_assertions.size();
}
struct aux_timeout_eh : public event_handler {
@ -233,10 +321,10 @@ struct aux_timeout_eh : public event_handler {
}
};
struct strategic_solver_core::mk_tactic {
strategic_solver_core * m_solver;
struct strategic_solver::mk_tactic {
strategic_solver * m_solver;
mk_tactic(strategic_solver_core * s, tactic_factory * f):m_solver(s) {
mk_tactic(strategic_solver * s, tactic_factory * f):m_solver(s) {
ast_manager & m = s->m();
params_ref p;
front_end_params2params(*s->m_fparams, p);
@ -259,14 +347,14 @@ struct strategic_solver_core::mk_tactic {
}
};
tactic_factory * strategic_solver_core::get_tactic_factory() const {
tactic_factory * strategic_solver::get_tactic_factory() const {
tactic_factory * f = 0;
if (m_logic2fct.find(m_logic, f))
return f;
return m_default_fct.get();
}
lbool strategic_solver_core::check_sat_with_assumptions(unsigned num_assumptions, expr * const * assumptions) {
lbool strategic_solver::check_sat_with_assumptions(unsigned num_assumptions, expr * const * assumptions) {
if (!m_inc_solver) {
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "incremental solver was not installed, returning unknown...\n";);
m_use_inc_solver_results = false;
@ -275,10 +363,16 @@ lbool strategic_solver_core::check_sat_with_assumptions(unsigned num_assumptions
}
init_inc_solver();
m_use_inc_solver_results = true;
TRACE("strategic_solver", tout << "invoking inc_solver with " << num_assumptions << " assumptions\n";);
return m_inc_solver->check_sat(num_assumptions, assumptions);
}
lbool strategic_solver_core::check_sat(unsigned num_assumptions, expr * const * assumptions) {
lbool strategic_solver::check_sat(unsigned num_assumptions, expr * const * assumptions) {
TRACE("strategic_solver", tout << "assumptions at strategic_solver:\n";
for (unsigned i = 0; i < num_assumptions; i++) {
tout << mk_ismt2_pp(assumptions[i], m()) << "\n";
}
tout << "m_produce_unsat_cores: " << m_produce_unsat_cores << ", m_inc_mode: " << m_inc_mode << "\n";);
reset_results();
m_check_sat_executed = true;
if (num_assumptions > 0 || // assumptions were provided
@ -333,10 +427,18 @@ lbool strategic_solver_core::check_sat(unsigned num_assumptions, expr * const *
goal_ref g = alloc(goal, m(), m_produce_proofs, m_produce_models, m_produce_unsat_cores);
unsigned sz = get_num_assertions();
for (unsigned i = 0; i < sz; i++) {
g->assert_expr(get_assertion(i));
if (m_produce_unsat_cores) {
SASSERT(m_ctx->m_assertions.size() == m_ctx->m_assertion_names.size());
for (unsigned i = 0; i < sz; i++)
g->assert_expr(get_assertion(i), get_assertion_name(i));
}
else {
for (unsigned i = 0; i < sz; i++)
g->assert_expr(get_assertion(i));
}
expr_dependency_ref core(m());
TRACE("strategic_solver", tout << "using goal...\n"; g->display_with_dependencies(tout););
mk_tactic tct_maker(this, factory);
SASSERT(m_curr_tactic);
@ -348,10 +450,14 @@ lbool strategic_solver_core::check_sat(unsigned num_assumptions, expr * const *
m_proof = pr;
m().inc_ref(m_proof);
}
if (core) {
m_core = core;
m().inc_ref(m_core);
}
return r;
}
void strategic_solver_core::set_cancel(bool f) {
void strategic_solver::set_cancel(bool f) {
if (m_inc_solver)
m_inc_solver->set_cancel(f);
#pragma omp critical (strategic_solver)
@ -361,14 +467,18 @@ void strategic_solver_core::set_cancel(bool f) {
}
}
void strategic_solver_core::get_unsat_core(ptr_vector<expr> & r) {
void strategic_solver::get_unsat_core(ptr_vector<expr> & r) {
TRACE("strategic_solver", tout << "get_unsat_core, m_use_inc_solver_results: " << m_use_inc_solver_results << "\n";);
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->get_unsat_core(r);
}
else {
m().linearize(m_core, r);
}
}
void strategic_solver_core::get_model(model_ref & m) {
void strategic_solver::get_model(model_ref & m) {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->get_model(m);
@ -378,7 +488,7 @@ void strategic_solver_core::get_model(model_ref & m) {
}
}
proof * strategic_solver_core::get_proof() {
proof * strategic_solver::get_proof() {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
return m_inc_solver->get_proof();
@ -388,7 +498,7 @@ proof * strategic_solver_core::get_proof() {
}
}
std::string strategic_solver_core::reason_unknown() const {
std::string strategic_solver::reason_unknown() const {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
return m_inc_solver->reason_unknown();
@ -396,20 +506,20 @@ std::string strategic_solver_core::reason_unknown() const {
return m_reason_unknown;
}
void strategic_solver_core::get_labels(svector<symbol> & r) {
void strategic_solver::get_labels(svector<symbol> & r) {
if (m_use_inc_solver_results) {
SASSERT(m_inc_solver);
m_inc_solver->get_labels(r);
}
}
void strategic_solver_core::set_progress_callback(progress_callback * callback) {
void strategic_solver::set_progress_callback(progress_callback * callback) {
m_callback = callback;
if (m_inc_solver)
m_inc_solver->set_progress_callback(callback);
}
void strategic_solver_core::display(std::ostream & out) const {
void strategic_solver::display(std::ostream & out) const {
if (m_manager) {
unsigned num = get_num_assertions();
out << "(solver";
@ -424,50 +534,7 @@ void strategic_solver_core::display(std::ostream & out) const {
}
strategic_solver::ctx::ctx(ast_manager & m):m_assertions(m) {
}
void strategic_solver::init(ast_manager & m, symbol const & logic) {
strategic_solver_core::init(m, logic);
m_ctx = alloc(ctx, m);
}
unsigned strategic_solver::get_num_assertions() const {
if (m_ctx == 0)
return 0;
return m_ctx->m_assertions.size();
}
expr * strategic_solver::get_assertion(unsigned idx) const {
SASSERT(m_ctx);
return m_ctx->m_assertions.get(idx);
}
void strategic_solver::assert_expr(expr * t) {
SASSERT(m_ctx);
strategic_solver_core::assert_expr(t);
m_ctx->m_assertions.push_back(t);
}
void strategic_solver::push() {
SASSERT(m_ctx);
strategic_solver_core::push();
m_ctx->m_scopes.push_back(m_ctx->m_assertions.size());
}
void strategic_solver::pop(unsigned n) {
SASSERT(m_ctx);
unsigned new_lvl = m_ctx->m_scopes.size() - n;
unsigned old_sz = m_ctx->m_scopes[new_lvl];
m_ctx->m_assertions.shrink(old_sz);
m_ctx->m_scopes.shrink(new_lvl);
strategic_solver_core::pop(n);
}
void strategic_solver::reset() {
m_ctx = 0;
strategic_solver_core::reset();
}

View file

@ -46,7 +46,7 @@ struct front_end_params;
It goes back to non_incremental mode when:
- reset is invoked.
*/
class strategic_solver_core : public solver {
class strategic_solver : public solver {
public:
// Behavior when the incremental solver returns unknown.
enum inc_unknown_behavior {
@ -73,9 +73,18 @@ private:
bool m_use_inc_solver_results;
model_ref m_model;
proof * m_proof;
expr_dependency * m_core;
std::string m_reason_unknown;
statistics m_stats;
struct ctx {
expr_ref_vector m_assertions;
expr_ref_vector m_assertion_names;
unsigned_vector m_scopes;
ctx(ast_manager & m);
};
scoped_ptr<ctx> m_ctx;
#ifdef Z3DEBUG
unsigned m_num_scopes;
#endif
@ -97,8 +106,8 @@ private:
bool use_tactic_when_undef() const;
public:
strategic_solver_core();
~strategic_solver_core();
strategic_solver();
~strategic_solver();
ast_manager & m() const { SASSERT(m_manager); return *m_manager; }
@ -114,19 +123,21 @@ public:
virtual void updt_params(params_ref const & p);
virtual void collect_param_descrs(param_descrs & r);
virtual void set_produce_proofs(bool f) { m_produce_proofs = f; }
virtual void set_produce_models(bool f) { m_produce_models = f; }
virtual void set_produce_unsat_cores(bool f) { m_produce_unsat_cores = f; }
virtual void set_produce_proofs(bool f);
virtual void set_produce_models(bool f);
virtual void set_produce_unsat_cores(bool f);
unsigned get_num_assertions() const;
expr * get_assertion(unsigned idx) const;
expr * get_assertion_name(unsigned idx) const;
virtual unsigned get_num_assertions() const = 0;
virtual expr * get_assertion(unsigned idx) const = 0;
virtual void display(std::ostream & out) const;
virtual void init(ast_manager & m, symbol const & logic);
virtual void collect_statistics(statistics & st) const;
virtual void reset();
virtual void assert_expr(expr * t);
virtual void assert_expr(expr * t, expr * a);
virtual void push();
virtual void pop(unsigned n);
virtual unsigned get_scope_level() const;
@ -140,30 +151,4 @@ public:
virtual void set_progress_callback(progress_callback * callback);
};
/**
\brief Default implementation of strategic_solver_core
*/
class strategic_solver : public strategic_solver_core {
struct ctx {
expr_ref_vector m_assertions;
unsigned_vector m_scopes;
ctx(ast_manager & m);
};
scoped_ptr<ctx> m_ctx;
public:
strategic_solver() {}
virtual void init(ast_manager & m, symbol const & logic);
virtual void assert_expr(expr * t);
virtual void push();
virtual void pop(unsigned n);
virtual void reset();
virtual unsigned get_num_assertions() const;
virtual expr * get_assertion(unsigned idx) const;
};
#endif

View file

@ -31,7 +31,7 @@ tactic2solver_core::ctx::ctx(ast_manager & m, symbol const & logic):
tactic2solver_core::~tactic2solver_core() {
}
void tactic2solver_core::init(ast_manager & m, symbol const & logic) {
void tactic2solver_core::init_core(ast_manager & m, symbol const & logic) {
m_ctx = alloc(ctx, m, logic);
}
@ -62,7 +62,7 @@ void tactic2solver_core::collect_param_descrs(param_descrs & r) {
}
}
void tactic2solver_core::reset() {
void tactic2solver_core::reset_core() {
SASSERT(m_ctx);
m_ctx->m_assertions.reset();
m_ctx->m_scopes.reset();
@ -75,13 +75,13 @@ void tactic2solver_core::assert_expr(expr * t) {
m_ctx->m_result = 0;
}
void tactic2solver_core::push() {
void tactic2solver_core::push_core() {
SASSERT(m_ctx);
m_ctx->m_scopes.push_back(m_ctx->m_assertions.size());
m_ctx->m_result = 0;
}
void tactic2solver_core::pop(unsigned n) {
void tactic2solver_core::pop_core(unsigned n) {
SASSERT(m_ctx);
unsigned new_lvl = m_ctx->m_scopes.size() - n;
unsigned old_sz = m_ctx->m_scopes[new_lvl];
@ -90,12 +90,7 @@ void tactic2solver_core::pop(unsigned n) {
m_ctx->m_result = 0;
}
unsigned tactic2solver_core::get_scope_level() const {
SASSERT(m_ctx);
return m_ctx->m_scopes.size();
}
lbool tactic2solver_core::check_sat(unsigned num_assumptions, expr * const * assumptions) {
lbool tactic2solver_core::check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
SASSERT(m_ctx);
ast_manager & m = m_ctx->m();
params_ref p = m_params;

View file

@ -22,7 +22,7 @@ Notes:
#ifndef _TACTIC2SOLVER_H_
#define _TACTIC2SOLVER_H_
#include"solver.h"
#include"solver_na2as.h"
#include"tactic.h"
/**
@ -32,7 +32,7 @@ Notes:
option for applications trying to solve many easy queries that a
similar to each other.
*/
class tactic2solver_core : public solver {
class tactic2solver_core : public solver_na2as {
struct ctx {
symbol m_logic;
expr_ref_vector m_assertions;
@ -63,13 +63,13 @@ public:
virtual void set_produce_models(bool f) { m_produce_models = f; }
virtual void set_produce_unsat_cores(bool f) { m_produce_unsat_cores = f; }
virtual void init(ast_manager & m, symbol const & logic);
virtual void reset();
virtual void assert_expr(expr * t);
virtual void push();
virtual void pop(unsigned n);
virtual unsigned get_scope_level() const;
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions);
virtual void init_core(ast_manager & m, symbol const & logic);
virtual void reset_core();
virtual void push_core();
virtual void pop_core(unsigned n);
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions);
virtual void set_cancel(bool f);

View file

@ -209,6 +209,7 @@ class propagate_values_tactic : public tactic {
result.push_back(m_goal);
SASSERT(m_goal->is_well_sorted());
TRACE("propagate_values", m_goal->display(tout););
TRACE("propagate_values_core", m_goal->display_with_dependencies(tout););
m_goal = 0;
}
};

View file

@ -233,6 +233,10 @@ void goal::assert_expr(expr * f, proof * pr, expr_dependency * d) {
quick_process(false, f, d);
}
void goal::assert_expr(expr * f, expr_dependency * d) {
assert_expr(f, proofs_enabled() ? m().mk_asserted(f) : 0, d);
}
void goal::get_formulas(ptr_vector<expr> & result) {
unsigned sz = size();
for (unsigned i = 0; i < sz; i++) {

View file

@ -105,9 +105,9 @@ public:
void copy_from(goal const & src) { src.copy_to(*this); }
void assert_expr(expr * f, proof * pr, expr_dependency * d);
void assert_expr(expr * f) {
assert_expr(f, proofs_enabled() ? m().mk_asserted(f) : 0, 0);
}
void assert_expr(expr * f, expr_dependency * d);
void assert_expr(expr * f, expr * d) { assert_expr(f, m().mk_leaf(d)); }
void assert_expr(expr * f) { assert_expr(f, static_cast<expr_dependency*>(0)); }
unsigned size() const { return m().size(m_forms); }

View file

@ -18,8 +18,7 @@ Notes:
--*/
#include"cmd_context.h"
#include"ni_solver.h"
#include"strategic_solver_cmd.h"
#include"strategic_solver.h"
#include"qfbv_tactic.h"
#include"qflia_tactic.h"
#include"qfnia_tactic.h"
@ -56,7 +55,7 @@ MK_SIMPLE_TACTIC_FACTORY(qfnra_fct, mk_qfnra_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qffpa_fct, mk_qffpa_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(ufbv_fct, mk_ufbv_tactic(m, p));
static void init(strategic_solver_core * s) {
static void init(strategic_solver * s) {
s->set_default_tactic(alloc(default_fct));
s->set_tactic_for(symbol("QF_UF"), alloc(qfuf_fct));
s->set_tactic_for(symbol("QF_BV"), alloc(qfbv_fct));
@ -80,13 +79,6 @@ static void init(strategic_solver_core * s) {
s->set_tactic_for(symbol("QF_FPA"), alloc(qffpa_fct));
}
solver * mk_smt_strategic_solver(cmd_context & ctx) {
strategic_solver_cmd * s = alloc(strategic_solver_cmd, ctx);
s->set_inc_solver(mk_quasi_incremental_smt_solver(ctx));
init(s);
return s;
}
solver * mk_smt_strategic_solver(bool force_tactic) {
strategic_solver * s = alloc(strategic_solver);
s->force_tactic(force_tactic);

View file

@ -20,9 +20,7 @@ Notes:
#ifndef _SMT_STRATEGIC_SOLVER_H_
#define _SMT_STRATEGIC_SOLVER_H_
class cmd_context;
// Create a strategic solver for the SMT 2.0 frontend.
solver * mk_smt_strategic_solver(cmd_context & ctx);
class solver;
// Create a strategic solver for the Z3 API
solver * mk_smt_strategic_solver(bool force_tactic=false);