3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00

working on core focused refinement loop

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2019-10-15 15:52:34 -07:00
parent 77c3f1fb82
commit ed149ea449

View file

@ -123,6 +123,7 @@ Note:
#include "util/obj_hashtable.h"
#include "ast/ast_util.h"
#include "ast/ast_pp.h"
#include "ast/ast_ll_pp.h"
#include "ast/for_each_expr.h"
#include "ast/pb_decl_plugin.h"
#include "ast/rewriter/th_rewriter.h"
@ -337,12 +338,14 @@ namespace smtfd {
class theory_plugin;
class plugin_context {
ast_manager& m;
smtfd_abs& m_abs;
expr_ref_vector m_lemmas;
unsigned m_max_lemmas;
ptr_vector<theory_plugin> m_plugins;
public:
plugin_context(smtfd_abs& a, ast_manager& m, unsigned max):
m(m),
m_abs(a),
m_lemmas(m),
m_max_lemmas(max)
@ -350,7 +353,12 @@ namespace smtfd {
smtfd_abs& get_abs() { return m_abs; }
void add(expr* f) { m_lemmas.push_back(f); }
void add(expr* f) {
expr_ref _fml(f, m);
// std::cout << "add " << mk_bounded_pp(f, m, 2) << "\n";
TRACE("smtfd", tout << _fml << "\n";);
m_lemmas.push_back(m_abs.abs(f));
}
ast_manager& get_manager() { return m_lemmas.get_manager(); }
@ -360,6 +368,7 @@ namespace smtfd {
expr_ref_vector::iterator end() { return m_lemmas.end(); }
unsigned size() const { return m_lemmas.size(); }
bool empty() const { return m_lemmas.empty(); }
void reset_lemmas() { m_lemmas.reset(); }
void add_plugin(theory_plugin* p) { m_plugins.push_back(p); }
@ -367,8 +376,26 @@ namespace smtfd {
expr_ref model_value(sort* s);
bool term_covered(expr* t);
bool sort_covered(sort* s);
/**
* \brief use propositional model to create a model of uninterpreted functions
*/
void populate_model(model_ref& mdl, expr_ref_vector const& core);
/**
* \brief check consistency properties that can only be achived using a global analysis of terms
*/
void global_check(expr_ref_vector const& core);
/**
* \brief add theory axioms that are violdated in the current model
* the round indicator is used to prioritize "cheap" axioms before
* expensive axiom instantiation.
*/
bool add_theory_axioms(expr_ref_vector const& core, unsigned round);
std::ostream& display(std::ostream& out);
};
struct f_app_eq {
@ -391,6 +418,7 @@ namespace smtfd {
ast_manager& m;
smtfd_abs& m_abs;
plugin_context& m_context;
th_rewriter m_rewriter;
model_ref m_model;
expr_ref_vector m_values;
ast_ref_vector m_pinned;
@ -422,6 +450,7 @@ namespace smtfd {
m(context.get_manager()),
m_abs(context.get_abs()),
m_context(context),
m_rewriter(m),
m_model(mdl),
m_values(m),
m_pinned(m),
@ -448,10 +477,8 @@ namespace smtfd {
ast_manager& get_manager() { return m; }
void add_lemma(expr* fml) {
expr_ref _fml(fml, m);
TRACE("smtfd", tout << _fml << "\n";);
m_context.add(m_abs.abs(fml));
void add_lemma(expr* fml) {
m_context.add(fml);
}
expr_ref eval_abs(expr* t) { return (*m_model)(m_abs.abs(t)); }
@ -483,7 +510,7 @@ namespace smtfd {
m_args.reset();
for (unsigned i = 0; i < t->get_num_args(); ++i) {
m_args.push_back(m.mk_eq(f1.m_t->get_arg(i), f2.m_t->get_arg(i)));
}
}
add_lemma(m.mk_implies(mk_and(m_args), m.mk_eq(f1.m_t, f2.m_t)));
}
@ -510,6 +537,7 @@ namespace smtfd {
expr_ref model_value(expr* t) { return m_context.model_value(t); }
expr_ref model_value(sort* s) { return m_context.model_value(s); }
virtual void global_check(expr_ref_vector const& core) {}
virtual void check_term(expr* t, unsigned round) = 0;
virtual expr_ref model_value_core(expr* t) = 0;
virtual expr_ref model_value_core(sort* s) = 0;
@ -519,6 +547,33 @@ namespace smtfd {
virtual void populate_model(model_ref& mdl, expr_ref_vector const& core) {}
};
void plugin_context::global_check(expr_ref_vector const& core) {
for (theory_plugin* p : m_plugins) {
p->global_check(core);
}
}
bool plugin_context::add_theory_axioms(expr_ref_vector const& core, unsigned round) {
unsigned max_rounds = 0;
for (theory_plugin* p : m_plugins) {
max_rounds = std::max(max_rounds, p->max_rounds());
}
if (max_rounds < round) {
return false;
}
else if (round < max_rounds) {
for (expr* t : subterms(core)) {
for (theory_plugin* p : m_plugins) {
p->check_term(t, round);
}
}
}
else if (round == max_rounds) {
global_check(core);
}
return true;
}
expr_ref plugin_context::model_value(expr* t) {
expr_ref r(get_manager());
for (theory_plugin* p : m_plugins) {
@ -771,7 +826,7 @@ namespace smtfd {
add_lemma(m.mk_eq(sel, stored_value));
}
m_pinned.push_back(sel);
TRACE("smtfd", tout << sel << "\n";);
TRACE("smtfd", tout << mk_bounded_pp(sel, m, 2) << "\n";);
check_select(sel);
}
@ -1055,7 +1110,7 @@ namespace smtfd {
unsigned max_rounds() override { return 2; }
void global_check(expr_ref_vector const& core) {
void global_check(expr_ref_vector const& core) override {
expr_mark seen;
expr_ref_vector shared(m), sharedvals(m);
for (expr* t : subterms(core)) {
@ -1183,7 +1238,6 @@ namespace smtfd {
else {
body = m.mk_implies(body, q);
}
body = abs(body);
m_context.add(body);
}
}
@ -1211,7 +1265,7 @@ namespace smtfd {
body = m.mk_implies(body, q);
}
m_enforced.insert(q);
m_context.add(abs(body));
m_context.add(body);
return l_true;
}
@ -1331,7 +1385,7 @@ namespace smtfd {
expr_ref_vector asms(m);
m_fd_sat_solver->get_model(m_model);
m_model->set_model_completion(true);
init_literals(num_assumptions, assumptions, asms);
init_model_assumptions(num_assumptions, assumptions, asms);
TRACE("smtfd", display(tout << asms););
SASSERT(asms.contains(m_not_toggle));
lbool r = m_fd_core_solver->check_sat(asms);
@ -1342,12 +1396,12 @@ namespace smtfd {
core.erase(m_not_toggle.get());
SASSERT(asms.contains(m_not_toggle));
SASSERT(!asms.contains(m_toggle));
rep(core);
}
return r;
}
lbool check_smt(expr_ref_vector& core) {
rep(core);
IF_VERBOSE(10, verbose_stream() << "core: " << core.size() << "\n");
params_ref p;
p.set_uint("max_conflicts", m_max_conflicts);
@ -1380,20 +1434,11 @@ namespace smtfd {
}
bool add_theory_lemmas(expr_ref_vector const& core) {
bool add_theory_axioms(expr_ref_vector const& core) {
plugin_context context(m_abs, m, m_max_lemmas);
a_plugin ap(context, m_model);
uf_plugin uf(context, m_model);
unsigned max_rounds = std::max(ap.max_rounds(), uf.max_rounds());
for (unsigned round = 0; round < max_rounds; ++round) {
for (expr* t : subterms(core)) {
if (context.at_max()) break;
ap.check_term(t, round);
uf.check_term(t, round);
}
}
ap.global_check(core);
for (unsigned round = 0; !context.at_max() && context.add_theory_axioms(core, round); ++round);
TRACE("smtfd", context.display(tout););
for (expr* f : context) {
@ -1417,19 +1462,20 @@ namespace smtfd {
bool has_q = false;
bool has_non_covered = false;
lbool is_decided = l_true;
for (expr* t : subterms(core)) {
if (is_forall(t) || is_exists(t)) {
has_q = true;
}
else if (!context.term_covered(t) || !context.sort_covered(m.get_sort(t))) {
has_non_covered = true;
is_decided = l_false;
}
}
context.populate_model(m_model, core);
TRACE("smtfd", tout << has_q << " " << has_non_covered << "\n";);
if (!has_q) {
return has_non_covered ? l_false : l_true;
return is_decided;
}
if (!m_mbqi_solver) {
m_mbqi_solver = alloc(solver, m, get_params());
@ -1443,13 +1489,7 @@ namespace smtfd {
assert_fd(f);
}
m_stats.m_num_mbqi += context.size();
if (context.empty()) {
return has_non_covered ? l_false : l_true;
}
else {
return l_undef;
}
return context.empty() ? is_decided : l_undef;
}
void init_assumptions(unsigned sz, expr* const* user_asms, expr_ref_vector& asms) {
@ -1460,7 +1500,7 @@ namespace smtfd {
}
}
void init_literals(unsigned sz, expr* const* user_asms, expr_ref_vector& asms) {
void init_model_assumptions(unsigned sz, expr* const* user_asms, expr_ref_vector& asms) {
asms.reset();
asms.push_back(m_not_toggle);
for (unsigned i = 0; i < sz; ++i) {
@ -1564,16 +1604,25 @@ namespace smtfd {
m_assertions_qhead = m_assertions.size();
}
void assert_fd(expr* fml) {
m_fd_sat_solver->assert_expr(fml);
m_fd_core_solver->assert_expr(fml);
void flush_atom_defs() {
for (expr* f : m_abs.atom_defs()) {
m_fd_sat_solver->assert_expr(f);
m_fd_core_solver->assert_expr(f);
}
m_abs.reset_atom_defs();
}
void assert_fd(expr* fml) {
m_fd_sat_solver->assert_expr(fml);
m_fd_core_solver->assert_expr(fml);
flush_atom_defs();
}
void block_core(expr_ref_vector& core) {
assert_fd(m.mk_not(mk_and(abs(core))));
}
#if 1
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
init();
flush_assertions();
@ -1604,9 +1653,9 @@ namespace smtfd {
// phase 4: add theory lemmas
if (r == l_false) {
assert_fd(m.mk_not(mk_and(abs(core))));
block_core(core);
}
if (add_theory_lemmas(core)) {
if (add_theory_axioms(core)) {
continue;
}
if (r != l_undef) {
@ -1625,7 +1674,7 @@ namespace smtfd {
return l_undef;
}
#if 0
#else
lbool check_sat_core2(unsigned num_assumptions, expr * const * assumptions) override {
init();
@ -1651,10 +1700,32 @@ namespace smtfd {
// phase 3: check if prime implicate is really valid, or add theory lemmas until there is a theory core
r = refine_core(core);
if (r != l_false) {
switch (r) {
case l_true:
switch (is_decided_sat(core)) {
case l_true:
return l_true;
case l_undef:
break;
case l_false:
r = check_smt(core);
switch (r) {
case l_true:
return r;
case l_false:
block_core(core);
break;
case l_undef:
break;
}
}
break;
case l_false:
block_core(core);
break;
case l_undef:
return r;
}
assert_fd(m.mk_not(mk_and(abs(core))));
}
return r;
}
@ -1665,34 +1736,46 @@ namespace smtfd {
uf_plugin uf(context, m_model);
lbool r = l_undef;
unsigned max_rounds = std::max(ap.max_rounds(), uf.max_rounds());
for (unsigned round = 0; round < max_rounds; ++round) {
for (expr* t : subterms(core)) {
ap.check_term(t, round);
uf.check_term(t, round);
}
unsigned round = 0;
while (context.add_theory_axioms(core, round)) {
std::cout << round << "\n";
round = context.empty() ? round + 1 : 0;
r = refine_core(context, core);
if (r != l_true) {
return r;
}
}
}
ap.global_check(core);
r = refine_core(context, core);
if (r != l_true) {
return r;
}
// m_stats.m_num_lemmas += number of literals that are not from original core;
return l_undef;
// context is satisfiable
SASSERT(r == l_true);
return r;
}
lbool refine_core(plugin_context& context, expr_ref_vector& core) {
// add theory axioms to core
// check sat
// return unsat cores if unsat
// update m_model by checking satisfiability after round
return l_undef;
lbool refine_core(plugin_context& context, expr_ref_vector& core) {
if (context.empty()) {
return l_true;
}
abs(core);
for (expr* f : context) {
// std::cout << "refine: " << mk_pp(f, m) << "\n";
core.push_back(f);
}
flush_atom_defs();
context.reset_lemmas();
lbool r = m_fd_sat_solver->check_sat(core);
update_reason_unknown(r, m_fd_sat_solver);
switch (r) {
case l_false:
m_fd_sat_solver->get_unsat_core(core);
rep(core);
break;
case l_true:
m_fd_sat_solver->get_model(m_model);
rep(core);
break;
default:
break;
}
return r;
}
#endif