mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 02:15:19 +00:00
fixes to #596 and #592: use exponential step increments on integer problems, align int.to.str with canonizer and disequality checker
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
5250c3b9ed
commit
ec565ae7a0
|
@ -34,6 +34,7 @@ Notes:
|
|||
#include "arith_decl_plugin.h"
|
||||
#include "theory_arith.h"
|
||||
#include "ast_pp.h"
|
||||
#include "ast_util.h"
|
||||
#include "model_pp.h"
|
||||
#include "th_rewriter.h"
|
||||
#include "opt_params.hpp"
|
||||
|
@ -93,6 +94,158 @@ namespace opt {
|
|||
return l_true;
|
||||
}
|
||||
|
||||
/*
|
||||
Enumerate locally optimal assignments until fixedpoint.
|
||||
*/
|
||||
lbool optsmt::geometric_opt() {
|
||||
lbool is_sat = l_true;
|
||||
|
||||
expr_ref bound(m);
|
||||
|
||||
vector<inf_eps> lower(m_lower);
|
||||
unsigned steps = 0;
|
||||
unsigned step_incs = 0;
|
||||
rational delta_per_step(1);
|
||||
unsigned num_scopes = 0;
|
||||
unsigned delta_index = 0; // index of objective to speed up.
|
||||
|
||||
while (!m.canceled()) {
|
||||
SASSERT(delta_per_step.is_int());
|
||||
SASSERT(delta_per_step.is_pos());
|
||||
is_sat = m_s->check_sat(0, 0);
|
||||
if (is_sat == l_true) {
|
||||
bound = update_lower();
|
||||
if (!get_max_delta(lower, delta_index)) {
|
||||
delta_per_step = rational::one();
|
||||
}
|
||||
else if (steps > step_incs) {
|
||||
delta_per_step *= rational(2);
|
||||
++step_incs;
|
||||
steps = 0;
|
||||
}
|
||||
else {
|
||||
++steps;
|
||||
}
|
||||
if (delta_per_step > rational::one()) {
|
||||
m_s->push();
|
||||
++num_scopes;
|
||||
// only try to improve delta_index.
|
||||
bound = m_s->mk_ge(delta_index, m_lower[delta_index] + inf_eps(delta_per_step));
|
||||
}
|
||||
TRACE("opt", tout << delta_per_step << " " << bound << "\n";);
|
||||
m_s->assert_expr(bound);
|
||||
}
|
||||
else if (is_sat == l_false && delta_per_step > rational::one()) {
|
||||
steps = 0;
|
||||
step_incs = 0;
|
||||
delta_per_step = rational::one();
|
||||
SASSERT(num_scopes > 0);
|
||||
--num_scopes;
|
||||
m_s->pop(1);
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
m_s->pop(num_scopes);
|
||||
|
||||
if (m.canceled() || is_sat == l_undef) {
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
// set the solution tight.
|
||||
for (unsigned i = 0; i < m_lower.size(); ++i) {
|
||||
m_upper[i] = m_lower[i];
|
||||
}
|
||||
|
||||
return l_true;
|
||||
}
|
||||
|
||||
|
||||
lbool optsmt::geometric_lex(unsigned obj_index, bool is_maximize) {
|
||||
arith_util arith(m);
|
||||
bool is_int = arith.is_int(m_objs[obj_index].get());
|
||||
lbool is_sat = l_true;
|
||||
expr_ref bound(m);
|
||||
|
||||
for (unsigned i = 0; i < obj_index; ++i) {
|
||||
commit_assignment(i);
|
||||
}
|
||||
|
||||
unsigned steps = 0;
|
||||
unsigned step_incs = 0;
|
||||
rational delta_per_step(1);
|
||||
unsigned num_scopes = 0;
|
||||
|
||||
while (!m.canceled()) {
|
||||
SASSERT(delta_per_step.is_int());
|
||||
SASSERT(delta_per_step.is_pos());
|
||||
is_sat = m_s->check_sat(0, 0);
|
||||
if (is_sat == l_true) {
|
||||
m_s->maximize_objective(obj_index, bound);
|
||||
m_s->get_model(m_model);
|
||||
m_s->get_labels(m_labels);
|
||||
inf_eps obj = m_s->saved_objective_value(obj_index);
|
||||
update_lower_lex(obj_index, obj, is_maximize);
|
||||
if (!is_int || !m_lower[obj_index].is_finite()) {
|
||||
delta_per_step = rational(1);
|
||||
}
|
||||
else if (steps > step_incs) {
|
||||
delta_per_step *= rational(2);
|
||||
++step_incs;
|
||||
steps = 0;
|
||||
}
|
||||
else {
|
||||
++steps;
|
||||
}
|
||||
if (delta_per_step > rational::one()) {
|
||||
m_s->push();
|
||||
++num_scopes;
|
||||
bound = m_s->mk_ge(obj_index, obj + inf_eps(delta_per_step));
|
||||
}
|
||||
TRACE("opt", tout << delta_per_step << " " << bound << "\n";);
|
||||
m_s->assert_expr(bound);
|
||||
}
|
||||
else if (is_sat == l_false && delta_per_step > rational::one()) {
|
||||
steps = 0;
|
||||
step_incs = 0;
|
||||
delta_per_step = rational::one();
|
||||
SASSERT(num_scopes > 0);
|
||||
--num_scopes;
|
||||
m_s->pop(1);
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
m_s->pop(num_scopes);
|
||||
|
||||
if (m.canceled() || is_sat == l_undef) {
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
// set the solution tight.
|
||||
m_upper[obj_index] = m_lower[obj_index];
|
||||
for (unsigned i = obj_index+1; i < m_lower.size(); ++i) {
|
||||
m_lower[i] = inf_eps(rational(-1), inf_rational(0));
|
||||
}
|
||||
return l_true;
|
||||
}
|
||||
|
||||
bool optsmt::get_max_delta(vector<inf_eps> const& lower, unsigned& idx) {
|
||||
arith_util arith(m);
|
||||
inf_eps max_delta;
|
||||
for (unsigned i = 0; i < m_lower.size(); ++i) {
|
||||
if (arith.is_int(m_objs[i].get())) {
|
||||
inf_eps delta = m_lower[i] - lower[i];
|
||||
if (m_lower[i].is_finite() && delta > max_delta) {
|
||||
max_delta = delta;
|
||||
}
|
||||
}
|
||||
}
|
||||
return max_delta.is_pos();
|
||||
}
|
||||
|
||||
/*
|
||||
Enumerate locally optimal assignments until fixedpoint.
|
||||
*/
|
||||
|
@ -122,6 +275,7 @@ namespace opt {
|
|||
}
|
||||
|
||||
lbool optsmt::symba_opt() {
|
||||
|
||||
smt::theory_opt& opt = m_s->get_optimizer();
|
||||
|
||||
if (typeid(smt::theory_inf_arith) != typeid(opt)) {
|
||||
|
@ -138,7 +292,7 @@ namespace opt {
|
|||
}
|
||||
|
||||
|
||||
fml = m.mk_or(ors.size(), ors.c_ptr());
|
||||
fml = mk_or(ors);
|
||||
tmp = m.mk_fresh_const("b", m.mk_bool_sort());
|
||||
fml = m.mk_implies(tmp, fml);
|
||||
vars[0] = tmp;
|
||||
|
@ -163,7 +317,7 @@ namespace opt {
|
|||
}
|
||||
}
|
||||
set_max(m_lower, m_s->get_objective_values(), disj);
|
||||
fml = m.mk_or(ors.size(), ors.c_ptr());
|
||||
fml = mk_or(ors);
|
||||
tmp = m.mk_fresh_const("b", m.mk_bool_sort());
|
||||
fml = m.mk_implies(tmp, fml);
|
||||
vars[0] = tmp;
|
||||
|
@ -176,13 +330,30 @@ namespace opt {
|
|||
}
|
||||
}
|
||||
}
|
||||
bound = m.mk_or(m_lower_fmls.size(), m_lower_fmls.c_ptr());
|
||||
bound = mk_or(m_lower_fmls);
|
||||
m_s->assert_expr(bound);
|
||||
|
||||
if (m.canceled()) {
|
||||
return l_undef;
|
||||
}
|
||||
return basic_opt();
|
||||
return geometric_opt();
|
||||
}
|
||||
|
||||
void optsmt::update_lower_lex(unsigned idx, inf_eps const& v, bool is_maximize) {
|
||||
if (v > m_lower[idx]) {
|
||||
m_lower[idx] = v;
|
||||
IF_VERBOSE(1,
|
||||
if (is_maximize)
|
||||
verbose_stream() << "(optsmt lower bound: " << v << ")\n";
|
||||
else
|
||||
verbose_stream() << "(optsmt upper bound: " << (-v) << ")\n";
|
||||
);
|
||||
expr_ref tmp(m);
|
||||
for (unsigned i = idx+1; i < m_vars.size(); ++i) {
|
||||
m_s->maximize_objective(i, tmp);
|
||||
m_lower[i] = m_s->saved_objective_value(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void optsmt::update_lower(unsigned idx, inf_eps const& v) {
|
||||
|
@ -196,28 +367,22 @@ namespace opt {
|
|||
m_upper[idx] = v;
|
||||
}
|
||||
|
||||
std::ostream& operator<<(std::ostream& out, vector<inf_eps> const& vs) {
|
||||
for (unsigned i = 0; i < vs.size(); ++i) {
|
||||
out << vs[i] << " ";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
expr_ref optsmt::update_lower() {
|
||||
expr_ref_vector disj(m);
|
||||
m_s->get_model(m_model);
|
||||
m_s->get_labels(m_labels);
|
||||
m_s->maximize_objectives(disj);
|
||||
set_max(m_lower, m_s->get_objective_values(), disj);
|
||||
TRACE("opt",
|
||||
for (unsigned i = 0; i < m_lower.size(); ++i) {
|
||||
tout << m_lower[i] << " ";
|
||||
}
|
||||
tout << "\n";
|
||||
model_pp(tout, *m_model);
|
||||
);
|
||||
IF_VERBOSE(2, verbose_stream() << "(optsmt.lower ";
|
||||
for (unsigned i = 0; i < m_lower.size(); ++i) {
|
||||
verbose_stream() << m_lower[i] << " ";
|
||||
}
|
||||
verbose_stream() << ")\n";);
|
||||
IF_VERBOSE(3, verbose_stream() << disj << "\n";);
|
||||
IF_VERBOSE(3, model_pp(verbose_stream(), *m_model););
|
||||
|
||||
return expr_ref(m.mk_or(disj.size(), disj.c_ptr()), m);
|
||||
TRACE("opt", model_pp(tout << m_lower << "\n", *m_model););
|
||||
IF_VERBOSE(2, verbose_stream() << "(optsmt.lower " << m_lower << ")\n";);
|
||||
return mk_or(disj);
|
||||
}
|
||||
|
||||
lbool optsmt::update_upper() {
|
||||
|
@ -312,12 +477,21 @@ namespace opt {
|
|||
TRACE("opt", tout << "optsmt:lex\n";);
|
||||
solver::scoped_push _push(*m_s);
|
||||
SASSERT(obj_index < m_vars.size());
|
||||
return basic_lex(obj_index, is_maximize);
|
||||
if (is_maximize && m_optsmt_engine == symbol("farkas")) {
|
||||
return farkas_opt();
|
||||
}
|
||||
else if (is_maximize && m_optsmt_engine == symbol("symba")) {
|
||||
return symba_opt();
|
||||
}
|
||||
else {
|
||||
return geometric_lex(obj_index, is_maximize);
|
||||
}
|
||||
}
|
||||
|
||||
// deprecated
|
||||
lbool optsmt::basic_lex(unsigned obj_index, bool is_maximize) {
|
||||
lbool is_sat = l_true;
|
||||
expr_ref block(m), tmp(m);
|
||||
expr_ref bound(m);
|
||||
|
||||
for (unsigned i = 0; i < obj_index; ++i) {
|
||||
commit_assignment(i);
|
||||
|
@ -326,25 +500,13 @@ namespace opt {
|
|||
is_sat = m_s->check_sat(0, 0);
|
||||
if (is_sat != l_true) break;
|
||||
|
||||
m_s->maximize_objective(obj_index, block);
|
||||
m_s->maximize_objective(obj_index, bound);
|
||||
m_s->get_model(m_model);
|
||||
m_s->get_labels(m_labels);
|
||||
inf_eps obj = m_s->saved_objective_value(obj_index);
|
||||
if (obj > m_lower[obj_index]) {
|
||||
m_lower[obj_index] = obj;
|
||||
IF_VERBOSE(1,
|
||||
if (is_maximize)
|
||||
verbose_stream() << "(optsmt lower bound: " << obj << ")\n";
|
||||
else
|
||||
verbose_stream() << "(optsmt upper bound: " << (-obj) << ")\n";
|
||||
);
|
||||
for (unsigned i = obj_index+1; i < m_vars.size(); ++i) {
|
||||
m_s->maximize_objective(i, tmp);
|
||||
m_lower[i] = m_s->saved_objective_value(i);
|
||||
}
|
||||
}
|
||||
TRACE("opt", tout << "strengthen bound: " << block << "\n";);
|
||||
m_s->assert_expr(block);
|
||||
update_lower_lex(obj_index, obj, is_maximize);
|
||||
TRACE("opt", tout << "strengthen bound: " << bound << "\n";);
|
||||
m_s->assert_expr(bound);
|
||||
|
||||
// TBD: only works for simplex
|
||||
// blocking formula should be extracted based
|
||||
|
@ -365,6 +527,7 @@ namespace opt {
|
|||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
Takes solver with hard constraints added.
|
||||
Returns an optimal assignment to objective functions.
|
||||
|
@ -383,7 +546,7 @@ namespace opt {
|
|||
is_sat = symba_opt();
|
||||
}
|
||||
else {
|
||||
is_sat = basic_opt();
|
||||
is_sat = geometric_opt();
|
||||
}
|
||||
return is_sat;
|
||||
}
|
||||
|
|
|
@ -69,19 +69,28 @@ namespace opt {
|
|||
void reset();
|
||||
|
||||
private:
|
||||
|
||||
bool get_max_delta(vector<inf_eps> const& lower, unsigned& idx);
|
||||
|
||||
lbool basic_opt();
|
||||
|
||||
lbool geometric_opt();
|
||||
|
||||
lbool symba_opt();
|
||||
|
||||
lbool basic_lex(unsigned idx, bool is_maximize);
|
||||
|
||||
lbool geometric_lex(unsigned idx, bool is_maximize);
|
||||
|
||||
lbool farkas_opt();
|
||||
|
||||
void set_max(vector<inf_eps>& dst, vector<inf_eps> const& src, expr_ref_vector& fmls);
|
||||
|
||||
expr_ref update_lower();
|
||||
|
||||
void update_lower_lex(unsigned idx, inf_eps const& r, bool is_maximize);
|
||||
|
||||
|
||||
lbool update_upper();
|
||||
|
||||
|
||||
|
|
|
@ -813,7 +813,7 @@ namespace smt {
|
|||
continue;
|
||||
if (proofs_enabled()) {
|
||||
new_bound.push_lit(l, ante.lit_coeffs()[i]);
|
||||
}
|
||||
}
|
||||
else {
|
||||
new_bound.push_lit(l, numeral::zero());
|
||||
lits.insert(l.index());
|
||||
|
|
|
@ -1820,16 +1820,23 @@ bool theory_seq::solve_ne(unsigned idx) {
|
|||
TRACE("seq", display_disequation(tout << "reduces to false: ", n););
|
||||
return true;
|
||||
}
|
||||
else if (!change) {
|
||||
TRACE("seq", tout << "no change " << n.ls(i) << " " << n.rs(i) << "\n";);
|
||||
if (updated) {
|
||||
new_ls.push_back(n.ls(i));
|
||||
new_rs.push_back(n.rs(i));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
else {
|
||||
|
||||
// eliminate ite expressions.
|
||||
reduce_ite(lhs, new_lits, num_undef_lits, change);
|
||||
reduce_ite(rhs, new_lits, num_undef_lits, change);
|
||||
reduce_ite(ls, new_lits, num_undef_lits, change);
|
||||
reduce_ite(rs, new_lits, num_undef_lits, change);
|
||||
|
||||
if (!change) {
|
||||
TRACE("seq", tout << "no change " << n.ls(i) << " " << n.rs(i) << "\n";);
|
||||
if (updated) {
|
||||
new_ls.push_back(n.ls(i));
|
||||
new_rs.push_back(n.rs(i));
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!updated) {
|
||||
for (unsigned j = 0; j < i; ++j) {
|
||||
new_ls.push_back(n.ls(j));
|
||||
|
@ -1933,6 +1940,33 @@ bool theory_seq::solve_ne(unsigned idx) {
|
|||
return updated;
|
||||
}
|
||||
|
||||
void theory_seq::reduce_ite(expr_ref_vector & ls, literal_vector& new_lits, unsigned& num_undef_lits, bool& change) {
|
||||
expr* cond, *th, *el;
|
||||
context& ctx = get_context();
|
||||
for (unsigned i = 0; i < ls.size(); ++i) {
|
||||
expr* e = ls[i].get();
|
||||
if (m.is_ite(e, cond, th, el)) {
|
||||
literal lit(mk_literal(cond));
|
||||
switch (ctx.get_assignment(lit)) {
|
||||
case l_true:
|
||||
change = true;
|
||||
new_lits.push_back(lit);
|
||||
ls[i] = th;
|
||||
break;
|
||||
case l_false:
|
||||
change = true;
|
||||
new_lits.push_back(~lit);
|
||||
ls[i] = el;
|
||||
break;
|
||||
case l_undef:
|
||||
++num_undef_lits;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
bool theory_seq::solve_nc(unsigned idx) {
|
||||
nc const& n = m_ncs[idx];
|
||||
|
||||
|
@ -2212,7 +2246,6 @@ bool theory_seq::add_itos_axiom(expr* e) {
|
|||
if (get_value(n, val)) {
|
||||
if (!m_itos_axioms.contains(val)) {
|
||||
m_itos_axioms.insert(val);
|
||||
|
||||
app_ref e1(m_util.str.mk_string(symbol(val.to_string().c_str())), m);
|
||||
expr_ref n1(arith_util(m).mk_numeral(val, true), m);
|
||||
add_axiom(mk_eq(m_util.str.mk_itos(n1), e1, false));
|
||||
|
@ -2604,6 +2637,32 @@ expr_ref theory_seq::expand(expr* e0, dependency*& eqs) {
|
|||
else if (m_util.str.is_index(e, e1, e2, e3)) {
|
||||
result = m_util.str.mk_index(expand(e1, deps), expand(e2, deps), e3);
|
||||
}
|
||||
else if (m_util.str.is_itos(e, e1)) {
|
||||
rational val;
|
||||
if (get_value(e1, val)) {
|
||||
expr_ref num(m), res(m);
|
||||
context& ctx = get_context();
|
||||
num = m_autil.mk_numeral(val, true);
|
||||
if (!ctx.e_internalized(num)) {
|
||||
ctx.internalize(num, false);
|
||||
}
|
||||
enode* n1 = ctx.get_enode(num);
|
||||
enode* n2 = ctx.get_enode(e1);
|
||||
res = m_util.str.mk_string(symbol(val.to_string().c_str()));
|
||||
if (n1->get_root() == n2->get_root()) {
|
||||
result = res;
|
||||
deps = m_dm.mk_join(deps, m_dm.mk_leaf(assumption(n1, n2)));
|
||||
}
|
||||
else {
|
||||
add_axiom(~mk_eq(num, e1, false), mk_eq(e, res, false));
|
||||
add_axiom(mk_eq(num, e1, false), ~mk_eq(e, res, false));
|
||||
result = e;
|
||||
}
|
||||
}
|
||||
else {
|
||||
result = e;
|
||||
}
|
||||
}
|
||||
else {
|
||||
result = e;
|
||||
}
|
||||
|
|
|
@ -410,6 +410,7 @@ namespace smt {
|
|||
bool solve_nqs(unsigned i);
|
||||
bool solve_ne(unsigned i);
|
||||
bool solve_nc(unsigned i);
|
||||
void reduce_ite(expr_ref_vector& ls, literal_vector& new_lits, unsigned& num_undef_lits, bool& change);
|
||||
|
||||
struct cell {
|
||||
cell* m_parent;
|
||||
|
|
|
@ -71,12 +71,14 @@ void solver_na2as::push() {
|
|||
}
|
||||
|
||||
void solver_na2as::pop(unsigned n) {
|
||||
pop_core(n);
|
||||
unsigned lvl = m_scopes.size();
|
||||
SASSERT(n <= lvl);
|
||||
unsigned new_lvl = lvl - n;
|
||||
restore_assumptions(m_scopes[new_lvl]);
|
||||
m_scopes.shrink(new_lvl);
|
||||
if (n > 0) {
|
||||
pop_core(n);
|
||||
unsigned lvl = m_scopes.size();
|
||||
SASSERT(n <= lvl);
|
||||
unsigned new_lvl = lvl - n;
|
||||
restore_assumptions(m_scopes[new_lvl]);
|
||||
m_scopes.shrink(new_lvl);
|
||||
}
|
||||
}
|
||||
|
||||
void solver_na2as::restore_assumptions(unsigned old_sz) {
|
||||
|
|
Loading…
Reference in a new issue