3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

Adding bv preprocessing techniques.

This commit is contained in:
Mikolas Janota 2016-09-01 17:22:49 +01:00 committed by Christoph M. Wintersteiger
parent 5290cd1ff5
commit ec47a1df50
11 changed files with 1545 additions and 3 deletions

View file

@ -0,0 +1,667 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
bv_bounds.cpp
Abstract:
Author:
Mikolas Janota (MikolasJanota)
Revision History:
--*/
#include"bv_bounds.h"
#include"ast_smt2_pp.h"
bv_bounds::~bv_bounds() {
reset();
}
bv_bounds::conv_res bv_bounds::record(app * v, numeral lo, numeral hi, bool negated, vector<ninterval>& nis) {
TRACE("bv_bounds", tout << "record0 " << mk_ismt2_pp(v, m_m) << ":" << (negated ? "~[" : "[") << lo << ";" << hi << "]" << std::endl;);
const unsigned bv_sz = m_bv_util.get_bv_size(v);
const numeral& zero = numeral::zero();
const numeral& one = numeral::one();
SASSERT(zero <= lo);
SASSERT(lo <= hi);
SASSERT(hi < numeral::power_of_two(bv_sz));
numeral vmax, vmin;
const bool has_upper = m_unsigned_uppers.find(v, vmax);
const bool has_lower = m_unsigned_lowers.find(v, vmin);
if (!has_lower) vmin = numeral::zero();
if (!has_upper) vmax = (numeral::power_of_two(bv_sz) - one);
bool lo_min = lo <= vmin;
bool hi_max = hi >= vmax;
if (negated) {
if (lo_min && hi_max) return UNSAT;
if (lo > vmax) return CONVERTED;
if (hi < vmin) return CONVERTED;
if (lo_min) {
negated = false; lo = hi + one; hi = vmax;
lo_min = lo <= vmin;
hi_max = true;
} else if (hi_max) {
negated = false; hi = lo - one; lo = vmin;
hi_max = hi >= vmax;
lo_min = true;
}
SASSERT(zero <= lo);
SASSERT(lo <= hi);
SASSERT(hi < numeral::power_of_two(bv_sz));
}
if (lo_min) lo = vmin;
if (hi_max) hi = vmax;
TRACE("bv_bounds", tout << "record1 " << mk_ismt2_pp(v, m_m) << ":" << (negated ? "~[" : "[") << lo << ";" << hi << "]" << std::endl;);
if (lo > hi) return negated ? CONVERTED : UNSAT;
if (lo_min && hi_max) return negated ? UNSAT : CONVERTED;
nis.resize(nis.size() + 1);
nis.back().v = v;
nis.back().lo = lo;
nis.back().hi = hi;
nis.back().negated = negated;
return CONVERTED;
}
bool bv_bounds::is_uleq(expr * e, expr * & v, numeral & c) {
// To detect the following rewrite from bv_rewriter:
// m().mk_and(
// m().mk_eq(m_mk_extract(bv_sz - 1, first_non_zero + 1, a), m_util.mk_numeral(numeral(0), bv_sz - first_non_zero - 1)),
// m_util.mk_ule(m_mk_extract(first_non_zero, 0, a), m_mk_extract(first_non_zero, 0, b)));
expr * eq;
expr * eql;
expr * eqr;
expr * ule;
expr * ulel;
expr * uler;
numeral eqr_val, uleqr_val;
unsigned eqr_sz, uleqr_sz;
if (!m_m.is_and(e, eq, ule)) return false;
if (!m_m.is_eq(eq, eql, eqr)) return false;
if (!m_bv_util.is_bv_ule(ule, ulel, uler)) return false;
if (!m_bv_util.is_extract(eql)) return false;
expr * const eql0 = to_app(eql)->get_arg(0);
const unsigned eql0_sz = m_bv_util.get_bv_size(eql0);
if (!m_bv_util.get_extract_high(eql) == (eql0_sz - 1)) return false;
if (!m_bv_util.is_numeral(eqr, eqr_val, eqr_sz)) return false;
if (!eqr_val.is_zero()) return false;
if (!m_bv_util.is_extract(ulel)) return false;
expr * const ulel0 = to_app(ulel)->get_arg(0);
if (ulel0 != eql0) return false;
if ((m_bv_util.get_extract_high(ulel) + 1) != m_bv_util.get_extract_low(eql)) return false;
if (!m_bv_util.get_extract_low(ulel) == 0) return false;
if (!m_bv_util.is_numeral(uler, uleqr_val, uleqr_sz)) return false;
SASSERT(m_bv_util.get_bv_size(ulel0) == uleqr_sz + eqr_sz);
v = ulel0;
c = uleqr_val;
return true;
}
bv_bounds::conv_res bv_bounds::convert(expr * e, vector<ninterval>& nis, bool negated) {
TRACE("bv_bounds", tout << "new constraint: " << (negated ? "~" : "" ) << mk_ismt2_pp(e, m_m) << std::endl;);
if (m_m.is_not(e)) {
negated = !negated;
e = to_app(e)->get_arg(0);
}
expr *lhs, *rhs;
numeral val, val1;
unsigned bv_sz1;
if (0) {
if (m_m.is_eq(e, lhs, rhs) && to_bound(lhs) && m_bv_util.is_numeral(rhs, val, bv_sz1)) {
return record(to_app(lhs), val, val, negated, nis);
}
if (m_m.is_eq(e, lhs, rhs) && to_bound(rhs) && m_bv_util.is_numeral(lhs, val, bv_sz1)) {
return record(to_app(rhs), val, val, negated, nis);
}
}
if (is_uleq(e, lhs, val) && to_bound(lhs)) {
return record(to_app(lhs), numeral::zero(), val, negated, nis);
}
if (1) {
numeral rhs_val;
unsigned rhs_sz;
if (m_m.is_eq(e, lhs, rhs)
&& m_bv_util.is_numeral(rhs, rhs_val, rhs_sz)
&& rhs_val.is_zero()
&& m_bv_util.is_extract(lhs)) {
expr * const lhs0 = to_app(lhs)->get_arg(0);
const unsigned lhs0_sz = m_bv_util.get_bv_size(lhs0);
if (m_bv_util.get_extract_high(lhs)+1 == lhs0_sz) {
const numeral u = numeral::power_of_two(m_bv_util.get_extract_low(lhs)) - numeral::one();
return record(to_app(lhs0), numeral::zero(), u, negated, nis);
}
}
}
if (m_bv_util.is_bv_ule(e, lhs, rhs)) {
unsigned bv_sz = m_bv_util.get_bv_size(lhs);
// unsigned inequality with one variable and a constant
if (to_bound(lhs) && m_bv_util.is_numeral(rhs, val, bv_sz)) // v <= val
return record(to_app(lhs), numeral::zero(), val, negated, nis);
if (to_bound(rhs) && m_bv_util.is_numeral(lhs, val, bv_sz)) // val <= v
return record(to_app(rhs), val, numeral::power_of_two(bv_sz) - numeral::one(), negated, nis);
// unsigned inequality with one variable, constant, and addition
expr *t1, *t2;
if (m_bv_util.is_bv_add(lhs, t1, t2)
&& m_bv_util.is_numeral(t1, val, bv_sz)
&& to_bound(t2)
&& t2 == rhs) { // val + v <= v
if (val.is_zero()) return negated ? UNSAT : CONVERTED;
SASSERT(val.is_pos());
const numeral mod = numeral::power_of_two(bv_sz);
return record(to_app(rhs), mod - val, mod - numeral::one(), negated, nis);
}
if (m_bv_util.is_bv_add(rhs, t1, t2)
&& m_bv_util.is_numeral(t1, val, bv_sz)
&& to_bound(t2)
&& m_bv_util.is_numeral(lhs, val1, bv_sz1)) { // val1 <= val + v
SASSERT(bv_sz1 == bv_sz);
const numeral mod = numeral::power_of_two(bv_sz);
if (val1.is_zero()) return negated ? UNSAT : CONVERTED;
if (val1 < val) {
const numeral nl = mod - val;
const numeral nh = mod + val1 - val - numeral::one();
return nl <= nh ? record(to_app(t2), nl, nh, !negated, nis) : (negated ? UNSAT : CONVERTED);
}
else {
const numeral l = val1 - val;
const numeral h = mod - val - numeral::one();
return l <= h ? record(to_app(t2), l, h, negated, nis) : (negated ? CONVERTED : UNSAT);
}
}
if (m_bv_util.is_bv_add(lhs, t1, t2)
&& m_bv_util.is_numeral(t1, val, bv_sz)
&& to_bound(t2)
&& m_bv_util.is_numeral(rhs, val1, bv_sz1)) { // val + v <= val1
SASSERT(bv_sz1 == bv_sz);
if (!val.is_pos() || !val1.is_pos()) return UNDEF;
const numeral mod = numeral::power_of_two(bv_sz);
if (val <= val1) {
const numeral nl = val1 - val + numeral::one();
const numeral nh = mod - val - numeral::one();
return nl <= nh ? record(to_app(t2), nl, nh, !negated, nis) : (negated ? UNSAT : CONVERTED);
}
else {
const numeral l = mod - val;
const numeral h = l + val1;
return record(to_app(t2), l, h, negated, nis);
}
}
// v + c1 <= v + c2
app * v1(NULL), *v2(NULL);
numeral val1, val2;
if (is_constant_add(bv_sz, lhs, v1, val1)
&& is_constant_add(bv_sz, rhs, v2, val2)
&& v1 == v2) {
if (val1 == val2) return negated ? UNSAT : CONVERTED;
const numeral mod = numeral::power_of_two(bv_sz);
if (val1 < val2) {
SASSERT(val1 < (mod - numeral::one()));
SASSERT(val2 > numeral::zero());
return record(v1, mod - val2, mod - val1 - numeral::one(), !negated, nis);
}
else {
SASSERT(val1 > val2);
SASSERT(val2 < (mod - numeral::one()));
SASSERT(val1 > numeral::zero());
return record(v1, mod - val1, mod - val2 - numeral::one(), negated, nis);
}
}
}
if (m_bv_util.is_bv_sle(e, lhs, rhs)) {
unsigned bv_sz = m_bv_util.get_bv_size(lhs);
// signed inequality with one variable and a constant
if (to_bound(lhs) && m_bv_util.is_numeral(rhs, val, bv_sz)) { // v <= val
val = m_bv_util.norm(val, bv_sz, true);
return convert_signed(to_app(lhs), -numeral::power_of_two(bv_sz - 1), val, negated, nis);
}
if (to_bound(rhs) && m_bv_util.is_numeral(lhs, val, bv_sz)) { // val <= v
val = m_bv_util.norm(val, bv_sz, true);
return convert_signed(to_app(rhs), val, numeral::power_of_two(bv_sz - 1) - numeral::one(), negated, nis);
}
}
return UNDEF;
}
void bv_bounds::reset() {
intervals_map::iterator it = m_negative_intervals.begin();
const intervals_map::iterator end = m_negative_intervals.end();
for (; it != end; ++it) dealloc(it->m_value);
}
br_status bv_bounds::rewrite(unsigned limit, func_decl * f, unsigned num, expr * const * args, expr_ref& result) {
const family_id fid = f->get_family_id();
if (!m_m.is_bool(f->get_range())) return BR_FAILED;
const decl_kind k = f->get_decl_kind();
if ((k != OP_OR && k != OP_AND) || num > limit) return BR_FAILED;
const bool negated = k == OP_OR;
vector<ninterval> nis;
vector<unsigned> lengths;
vector<bool> ignore;
unsigned nis_head = 0;
for (unsigned i = 0; i < num && m_okay; ++i) {
expr * const curr = args[i];
const conv_res cr = convert(curr, nis, negated);
ignore.push_back(cr == UNDEF);
switch (cr) {
case UNDEF: continue;
case UNSAT: m_okay = false; break;
case CONVERTED:
{
for (unsigned i = nis_head; i < nis.size(); ++i) {
const ninterval& ni = nis[i];
m_okay = m_okay && add_bound_unsigned(ni.v, ni.lo, ni.hi, ni.negated);
}
lengths.push_back(nis.size());
nis_head = nis.size();
break;
}
default: UNREACHABLE();
}
}
if (!m_okay || !is_sat()) {
result = negated ? m_m.mk_true() : m_m.mk_false();
return BR_DONE;
}
nis_head = 0;
unsigned count = 0;
expr_ref_vector nargs(m_m);
bool has_singls = false;
for (unsigned i = 0; i < num && m_okay; ++i) {
TRACE("bv_bounds", tout << "check red: " << mk_ismt2_pp(args[i], m_m) << std::endl;);
if (ignore[i]) {
TRACE("bv_bounds", tout << "unprocessed" << std::endl;);
nargs.push_back(args[i]);
continue;
}
SASSERT(nis_head <= lengths[count]);
const bool redundant = nis_head == lengths[count];
bool is_singl = false;
if (nis_head < lengths[count]) {
app * const v = nis[nis_head].v;
numeral th, tl;
const unsigned bv_sz = m_bv_util.get_bv_size(v);
const bool has_upper = m_unsigned_uppers.find(v, th);
const bool has_lower = m_unsigned_lowers.find(v, tl);
const numeral& one = numeral::one();
if (!has_lower) tl = numeral::zero();
if (!has_upper) th = (numeral::power_of_two(bv_sz) - one);
TRACE("bv_bounds", tout << "bounds: " << mk_ismt2_pp(v, m_m) << "[" << tl << "-" << th << "]" << std::endl;);
is_singl = tl == th;
nis_head = lengths[count];
}
if (!redundant && !is_singl) nargs.push_back(args[i]);
has_singls |= is_singl;
CTRACE("bv_bounds", redundant, tout << "redundant: " << mk_ismt2_pp(args[i], m_m) << std::endl;);
++count;
}
if (nargs.size() == num && !has_singls) return BR_FAILED;
expr_ref eq(m_m);
for (bv_bounds::bound_map::iterator i = m_singletons.begin(); i != m_singletons.end(); ++i) {
app * const v = i->m_key;
const rational val = i->m_value;
eq = m_m.mk_eq(v, bvu().mk_numeral(val, v->get_decl()->get_range()));
if (negated) eq = m_m.mk_not(eq);
nargs.push_back(eq);
}
switch (nargs.size()) {
case 0: result = negated ? m_m.mk_false() : m_m.mk_true(); return BR_DONE;
case 1: result = nargs.get(0); return BR_DONE;
default: result = negated ? m_m.mk_or(nargs.size(), nargs.c_ptr())
: m_m.mk_and(nargs.size(), nargs.c_ptr());
return BR_DONE;
}
}
bool bv_bounds::add_constraint(expr* e) {
TRACE("bv_bounds", tout << "new constraint" << mk_ismt2_pp(e, m_m) << std::endl;);
if (!m_okay) return false;
bool negated = false;
if (m_m.is_not(e)) {
negated = true;
e = to_app(e)->get_arg(0);
}
expr *lhs, *rhs;
numeral val, val1;
unsigned bv_sz1;
if (0) {
if (m_m.is_eq(e, lhs, rhs) && to_bound(lhs) && m_bv_util.is_numeral(rhs, val, bv_sz1)) {
return add_bound_unsigned(to_app(lhs), val, val, negated);
}
if (m_m.is_eq(e, lhs, rhs) && to_bound(rhs) && m_bv_util.is_numeral(lhs, val, bv_sz1)) {
return add_bound_unsigned(to_app(rhs), val, val, negated);
}
}
if (m_bv_util.is_bv_ule(e, lhs, rhs)) {
unsigned bv_sz = m_bv_util.get_bv_size(lhs);
// unsigned inequality with one variable and a constant
if (to_bound(lhs) && m_bv_util.is_numeral(rhs, val, bv_sz)) // v <= val
return add_bound_unsigned(to_app(lhs), numeral::zero(), val, negated);
if (to_bound(rhs) && m_bv_util.is_numeral(lhs, val, bv_sz)) // val <= v
return add_bound_unsigned(to_app(rhs), val, numeral::power_of_two(bv_sz) - numeral::one(), negated);
// unsigned inequality with one variable, constant, and addition
expr *t1, *t2;
if (m_bv_util.is_bv_add(lhs, t1, t2)
&& m_bv_util.is_numeral(t1, val, bv_sz)
&& to_bound(t2)
&& t2 == rhs) { // val + v <= v
if (!val.is_pos()) return m_okay;
const numeral mod = numeral::power_of_two(bv_sz);
return add_bound_unsigned(to_app(rhs), mod - val, mod - numeral::one(), negated);
}
if (m_bv_util.is_bv_add(rhs, t1, t2)
&& m_bv_util.is_numeral(t1, val, bv_sz)
&& to_bound(t2)
&& m_bv_util.is_numeral(lhs, val1, bv_sz1)) { // val1 <= val + v
SASSERT(bv_sz1 == bv_sz);
if (!val.is_pos() || !val1.is_pos()) return m_okay;
const numeral mod = numeral::power_of_two(bv_sz);
if (val1 < val) {
const numeral nl = mod - val;
const numeral nh = mod + val1 - val - numeral::one();
return nl <= nh ? add_bound_unsigned(to_app(t2), nl, nh, !negated) : m_okay;
}
else {
const numeral l = val1 - val;
const numeral h = mod - val - numeral::one();
return l <= h ? add_bound_unsigned(to_app(t2), l, h, negated) : m_okay;
}
}
if (m_bv_util.is_bv_add(lhs, t1, t2)
&& m_bv_util.is_numeral(t1, val, bv_sz)
&& to_bound(t2)
&& m_bv_util.is_numeral(rhs, val1, bv_sz1)) { // val + v <= val1
SASSERT(bv_sz1 == bv_sz);
if (!val.is_pos() || !val1.is_pos()) return m_okay;
const numeral mod = numeral::power_of_two(bv_sz);
if (val <= val1) {
const numeral nl = val1 - val + numeral::one();
const numeral nh = mod - val - numeral::one();
return nl <= nh ? add_bound_unsigned(to_app(t2), nl, nh, !negated) : m_okay;
}
else {
const numeral l = mod - val;
const numeral h = l + val1;
return add_bound_unsigned(to_app(t2), l, h, negated);
}
}
// v + c1 <= v + c2
app * v1(NULL), *v2(NULL);
numeral val1, val2;
if (is_constant_add(bv_sz, lhs, v1, val1)
&& is_constant_add(bv_sz, rhs, v2, val2)
&& v1 == v2) {
if (val1 == val2) return m_okay;
const numeral mod = numeral::power_of_two(bv_sz);
if (val1 < val2) {
SASSERT(val1 < (mod - numeral::one()));
SASSERT(val2 > numeral::zero());
return add_bound_unsigned(v1, mod - val2, mod - val1 - numeral::one(), !negated);
}
else {
SASSERT(val1 > val2);
SASSERT(val2 < (mod - numeral::one()));
SASSERT(val1 > numeral::zero());
return add_bound_unsigned(v1, mod - val1, mod - val2 - numeral::one(), negated);
}
}
}
if (m_bv_util.is_bv_sle(e, lhs, rhs)) {
unsigned bv_sz = m_bv_util.get_bv_size(lhs);
// signed inequality with one variable and a constant
if (to_bound(lhs) && m_bv_util.is_numeral(rhs, val, bv_sz)) { // v <= val
val = m_bv_util.norm(val, bv_sz, true);
return add_bound_signed(to_app(lhs), -numeral::power_of_two(bv_sz - 1), val, negated);
}
if (to_bound(rhs) && m_bv_util.is_numeral(lhs, val, bv_sz)) { // val <= v
val = m_bv_util.norm(val, bv_sz, true);
return add_bound_signed(to_app(rhs), val, numeral::power_of_two(bv_sz - 1) - numeral::one(), negated);
}
}
return m_okay;
}
bool bv_bounds::add_bound_unsigned(app * v, numeral a, numeral b, bool negate) {
TRACE("bv_bounds", tout << "bound_unsigned " << mk_ismt2_pp(v, m_m) << ": " << (negate ? "~[" : "[") << a << ";" << b << "]" << std::endl;);
const unsigned bv_sz = m_bv_util.get_bv_size(v);
const numeral& zero = numeral::zero();
const numeral& one = numeral::one();
SASSERT(zero <= a);
SASSERT(a <= b);
SASSERT(b < numeral::power_of_two(bv_sz));
const bool a_min = a == zero;
const bool b_max = b == (numeral::power_of_two(bv_sz) - one);
if (negate) {
if (a_min && b_max) return m_okay = false;
if (a_min) return bound_lo(v, b + one);
if (b_max) return bound_up(v, a - one);
return add_neg_bound(v, a, b);
}
else {
if (!a_min) m_okay &= bound_lo(v, a);
if (!b_max) m_okay &= bound_up(v, b);
return m_okay;
}
}
bv_bounds::conv_res bv_bounds::convert_signed(app * v, numeral a, numeral b, bool negate, vector<ninterval>& nis) {
TRACE("bv_bounds", tout << "convert_signed " << mk_ismt2_pp(v, m_m) << ":" << (negate ? "~[" : "[") << a << ";" << b << "]" << std::endl;);
const unsigned bv_sz = m_bv_util.get_bv_size(v);
SASSERT(a <= b);
const numeral& zero = numeral::zero();
const numeral& one = numeral::one();
const bool a_neg = a < zero;
const bool b_neg = b < zero;
if (!a_neg && !b_neg) return record(v, a, b, negate, nis);
const numeral mod = numeral::power_of_two(bv_sz);
if (a_neg && b_neg) return record(v, mod + a, mod + b, negate, nis);
SASSERT(a_neg && !b_neg);
if (negate) {
const conv_res r1 = record(v, mod + a, mod - one, true, nis);
const conv_res r2 = record(v, zero, b, true, nis);
return r1 == UNSAT || r2 == UNSAT ? UNSAT : CONVERTED;
}
else {
const numeral l = b + one;
const numeral u = mod + a - one;
return l <= u ? record(v, l, u, true, nis) : CONVERTED;
}
}
bool bv_bounds::add_bound_signed(app * v, numeral a, numeral b, bool negate) {
TRACE("bv_bounds", tout << "bound_signed " << mk_ismt2_pp(v, m_m) << ":" << (negate ? "~" : " ") << a << ";" << b << std::endl;);
const unsigned bv_sz = m_bv_util.get_bv_size(v);
SASSERT(a <= b);
const numeral& zero = numeral::zero();
const numeral& one = numeral::one();
const bool a_neg = a < zero;
const bool b_neg = b < zero;
if (!a_neg && !b_neg) return add_bound_unsigned(v, a, b, negate);
const numeral mod = numeral::power_of_two(bv_sz);
if (a_neg && b_neg) return add_bound_unsigned(v, mod + a, mod + b, negate);
SASSERT(a_neg && !b_neg);
if (negate) {
return add_bound_unsigned(v, mod + a, mod - one, true)
&& add_bound_unsigned(v, zero, b, true);
}
else {
const numeral l = b + one;
const numeral u = mod + a - one;
return (l <= u) ? add_bound_unsigned(v, l, u, true) : m_okay;
}
}
bool bv_bounds::bound_lo(app * v, numeral l) {
SASSERT(in_range(v, l));
TRACE("bv_bounds", tout << "lower " << mk_ismt2_pp(v, m_m) << ":" << l << std::endl;);
// l <= v
bound_map::obj_map_entry * const entry = m_unsigned_lowers.insert_if_not_there2(v, l);
if (!(entry->get_data().m_value < l)) return m_okay;
// improve bound
entry->get_data().m_value = l;
return m_okay;
}
bool bv_bounds::bound_up(app * v, numeral u) {
SASSERT(in_range(v, u));
TRACE("bv_bounds", tout << "upper " << mk_ismt2_pp(v, m_m) << ":" << u << std::endl;);
// v <= u
bound_map::obj_map_entry * const entry = m_unsigned_uppers.insert_if_not_there2(v, u);
if (!(u < entry->get_data().m_value)) return m_okay;
// improve bound
entry->get_data().m_value = u;
return m_okay;
}
bool bv_bounds::add_neg_bound(app * v, numeral a, numeral b) {
TRACE("bv_bounds", tout << "negative bound " << mk_ismt2_pp(v, m_m) << ":" << a << ";" << b << std::endl;);
bv_bounds::interval negative_interval(a, b);
SASSERT(m_bv_util.is_bv(v));
SASSERT(a >= numeral::zero());
SASSERT(b < numeral::power_of_two(m_bv_util.get_bv_size(v)));
SASSERT(a <= b);
intervals_map::obj_map_entry * const e = m_negative_intervals.find_core(v);
intervals * ivs(NULL);
if (e == 0) {
ivs = alloc(intervals);
m_negative_intervals.insert(v, ivs);
}
else {
ivs = e->get_data().get_value();
}
ivs->push_back(negative_interval);
return m_okay;
}
bool bv_bounds::is_sat() {
if (!m_okay) return false;
obj_hashtable<app> seen;
obj_hashtable<app>::entry *dummy;
for (bound_map::iterator i = m_unsigned_lowers.begin(); i != m_unsigned_lowers.end(); ++i) {
app * const v = i->m_key;
if (!seen.insert_if_not_there_core(v, dummy)) continue;
if (!is_sat(v)) return false;
}
for (bound_map::iterator i = m_unsigned_uppers.begin(); i != m_unsigned_uppers.end(); ++i) {
app * const v = i->m_key;
if (!seen.insert_if_not_there_core(v, dummy)) continue;
if (!is_sat(v)) return false;
}
for (intervals_map::iterator i = m_negative_intervals.begin(); i != m_negative_intervals.end(); ++i) {
app * const v = i->m_key;
if (!seen.insert_if_not_there_core(v, dummy)) continue;
if (!is_sat(v)) return false;
}
return true;
}
struct interval_comp_t {
bool operator() (bv_bounds::interval i, bv_bounds::interval j) {
return (i.first < j.first);
}
} interval_comp;
void bv_bounds::record_singleton(app * v, numeral& singleton_value) {
TRACE("bv_bounds", tout << "singleton:" << mk_ismt2_pp(v, m_m) << ":" << singleton_value << std::endl;);
SASSERT(!m_singletons.find(v, singleton_value));
m_singletons.insert(v, singleton_value);
}
bool bv_bounds::is_sat(app * v) {
TRACE("bv_bounds", tout << "is_sat " << mk_ismt2_pp(v, m_m) << std::endl;);
const bool rv = is_sat_core(v);
TRACE("bv_bounds", tout << "is_sat " << mk_ismt2_pp(v, m_m) << "\nres: " << rv << std::endl;);
return rv;
}
bool bv_bounds::is_sat_core(app * v) {
SASSERT(m_bv_util.is_bv(v));
if (!m_okay) return false;
func_decl * const d = v->get_decl();
unsigned const bv_sz = m_bv_util.get_bv_size(v);
numeral lower, upper;
const bool has_upper = m_unsigned_uppers.find(v, upper);
const bool has_lower = m_unsigned_lowers.find(v, lower);
if (has_upper && has_lower && lower > upper) return false;
const numeral& one = numeral::one();
if (!has_lower) lower = numeral::zero();
if (!has_upper) upper = (numeral::power_of_two(bv_sz) - one);
TRACE("bv_bounds", tout << "is_sat bound:" << lower << "-" << upper << std::endl;);
intervals * negative_intervals(NULL);
const bool has_neg_intervals = m_negative_intervals.find(v, negative_intervals);
bool is_sat(false);
numeral new_lo = lower;
numeral new_hi = lower - one;
numeral ptr = lower;
if (has_neg_intervals) {
SASSERT(negative_intervals != NULL);
std::sort(negative_intervals->begin(), negative_intervals->end(), interval_comp);
intervals::const_iterator e = negative_intervals->end();
for (intervals::const_iterator i = negative_intervals->begin(); i != e; ++i) {
const numeral negative_lower = i->first;
const numeral negative_upper = i->second;
if (ptr > negative_upper) continue;
if (ptr < negative_lower) {
if (!is_sat) new_lo = ptr;
new_hi = negative_lower - one;
if (new_hi > upper) new_hi = upper;
is_sat = true;
}
TRACE("bv_bounds", tout << "is_sat new_lo, new_hi:" << new_lo << "-" << new_hi << std::endl;);
ptr = negative_upper + one;
TRACE("bv_bounds", tout << "is_sat ptr, new_hi:" << ptr << "-" << new_hi << std::endl;);
if (ptr > upper) break;
}
}
if (ptr <= upper) {
if (!is_sat) new_lo = ptr;
new_hi = upper;
is_sat = true;
}
if (new_hi < upper) bound_up(v, new_hi);
if (new_lo > lower) bound_lo(v, new_lo);
TRACE("bv_bounds", tout << "is_sat new_lo, new_hi:" << new_lo << "-" << new_hi << std::endl;);
const bool is_singleton = is_sat && new_hi == new_lo;
if (is_singleton) record_singleton(v, new_lo);
return is_sat;
}

View file

@ -0,0 +1,130 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
bv_bounds.h
Abstract:
A class used to determine bounds on bit-vector variables.
The satisfiability procedure is polynomial.
Author:
Mikolas Janota (MikolasJanota)
Revision History:
--*/
#ifndef BV_BOUNDS_H_23754
#define BV_BOUNDS_H_23754
#include"ast.h"
#include"bv_decl_plugin.h"
#include"rewriter_types.h"
/* \brief A class to analyze constraints on bit vectors.
The objective is to identify inconsistencies in polynomial time.
All bounds/intervals are closed. Methods that add new constraints
return false if inconsistency has already been reached.
Typical usage is to call repeatedly add_constraint(e) and call is_sat() in the end.
*/
class bv_bounds {
public:
typedef rational numeral;
typedef std::pair<numeral, numeral> interval;
typedef obj_map<app, numeral> bound_map;
bv_bounds(ast_manager& m) : m_m(m), m_bv_util(m), m_okay(true) {};
~bv_bounds();
public: // bounds addition methods
br_status rewrite(unsigned limit, func_decl * f, unsigned num, expr * const * args, expr_ref& result);
/** \brief Add a constraint to the system.
The added constraints are to be considered by is_sat.
Currently, only special types of inequalities are supported, e.g. v <= v+1.
Other constraints are ignored.
Returns false if the system became trivially unsatisfiable
**/
bool add_constraint(expr* e);
bool bound_up(app * v, numeral u); // v <= u
bool bound_lo(app * v, numeral l); // l <= v
inline bool add_neg_bound(app * v, numeral a, numeral b); // not (a<=v<=b)
bool add_bound_signed(app * v, numeral a, numeral b, bool negate);
bool add_bound_unsigned(app * v, numeral a, numeral b, bool negate);
public:
bool is_sat(); ///< Determine if the set of considered constraints is satisfiable.
bool is_okay();
const bound_map& singletons() { return m_singletons; }
bv_util& bvu() { return m_bv_util; }
void reset();
protected:
struct ninterval {
//ninterval(app * v, numeral lo, numeral hi, bool negated) : v(v), lo(lo), hi(hi), negated(negated) {}
app * v;
numeral lo, hi;
bool negated;
};
enum conv_res { CONVERTED, UNSAT, UNDEF };
conv_res convert(expr * e, vector<ninterval>& nis, bool negated);
conv_res record(app * v, numeral lo, numeral hi, bool negated, vector<ninterval>& nis);
conv_res convert_signed(app * v, numeral a, numeral b, bool negate, vector<ninterval>& nis);
typedef vector<interval> intervals;
typedef obj_map<app, intervals*> intervals_map;
ast_manager& m_m;
bound_map m_unsigned_lowers;
bound_map m_unsigned_uppers;
intervals_map m_negative_intervals;
bound_map m_singletons;
bv_util m_bv_util;
bool m_okay;
bool is_sat(app * v);
bool is_sat_core(app * v);
inline bool in_range(app *v, numeral l);
inline bool is_constant_add(unsigned bv_sz, expr * e, app*& v, numeral& val);
void record_singleton(app * v, numeral& singleton_value);
inline bool to_bound(const expr * e) const;
bool is_uleq(expr * e, expr * & v, numeral & c);
};
inline bool bv_bounds::is_okay() { return m_okay; }
inline bool bv_bounds::to_bound(const expr * e) const {
return is_app(e) && m_bv_util.is_bv(e)
&& !m_bv_util.is_bv_add(e)
&& !m_bv_util.is_numeral(e);
}
inline bool bv_bounds::in_range(app *v, bv_bounds::numeral n) {
const unsigned bv_sz = m_bv_util.get_bv_size(v);
const bv_bounds::numeral zero(0);
const bv_bounds::numeral mod(rational::power_of_two(bv_sz));
return (zero <= n) && (n < mod);
}
inline bool bv_bounds::is_constant_add(unsigned bv_sz, expr * e, app*& v, numeral& val) {
SASSERT(e && !v);
SASSERT(m_bv_util.get_bv_size(e) == bv_sz);
expr *lhs(NULL), *rhs(NULL);
if (!m_bv_util.is_bv_add(e, lhs, rhs)) {
v = to_app(e);
val = rational(0);
return true;
}
if (to_bound(lhs) && m_bv_util.is_numeral(rhs, val, bv_sz)) {
v = to_app(lhs);
return true;
}
if (to_bound(rhs) && m_bv_util.is_numeral(lhs, val, bv_sz)) {
v = to_app(rhs);
return true;
}
return false;
}
#endif /* BV_BOUNDS_H_23754 */

View file

@ -29,12 +29,18 @@ void bv_rewriter::updt_local_params(params_ref const & _p) {
m_mul2concat = p.mul2concat();
m_bit2bool = p.bit2bool();
m_trailing = p.bv_trailing();
m_urem_simpl = p.bv_urem_simpl();
m_blast_eq_value = p.blast_eq_value();
m_split_concat_eq = p.split_concat_eq();
m_udiv2mul = p.udiv2mul();
m_bvnot2arith = p.bvnot2arith();
m_bvnot_simpl = p.bv_not_simpl();
m_bv_sort_ac = p.bv_sort_ac();
m_mkbv2num = _p.get_bool("mkbv2num", false);
m_extract_prop = p.bv_extract_prop();
m_ite2id = p.bv_ite2id();
m_le_extra = p.bv_le_extra();
set_sort_sums(p.bv_sort_ac());
}
void bv_rewriter::updt_params(params_ref const & p) {
@ -234,6 +240,198 @@ br_status bv_rewriter::mk_slt(expr * a, expr * b, expr_ref & result) {
return BR_REWRITE2;
}
// short-circuited concat
expr * bv_rewriter::concat(unsigned num_args, expr * const * args) {
SASSERT(num_args);
switch (num_args) {
case 0: return m_util.mk_concat(num_args, args);
case 1: return args[0];
default: return m_util.mk_concat(num_args, args);
}
}
// finds a commonality in sums, e.g. 2 + x + y and 5 + x + y
bool bv_rewriter::are_eq_upto_num(expr * _a, expr * _b,
expr_ref& common,
numeral& a0_val, numeral& b0_val) {
const bool aadd = m_util.is_bv_add(_a);
const bool badd = m_util.is_bv_add(_b);
const bool has_num_a = aadd && to_app(_a)->get_num_args() && is_numeral(to_app(_a)->get_arg(0));
const bool has_num_b = badd && to_app(_b)->get_num_args() && is_numeral(to_app(_b)->get_arg(0));
a0_val = numeral::zero();
b0_val = numeral::zero();
if (!aadd && !badd) {
if (_a == _b) {
common = _a;
return true;
} else {
return false;
}
}
if (!aadd && badd) {
if (to_app(_a)->get_num_args() != 2 || !has_num_a || to_app(_a)->get_arg(0) != _b)
return false;
common = _b;
return true;
}
if (aadd && !badd) {
if (to_app(_b)->get_num_args() != 2 || !has_num_b || to_app(_b)->get_arg(0) != _a)
return false;
common = _a;
return true;
}
SASSERT(aadd && badd);
app * const a = to_app(_a);
app * const b = to_app(_b);
const unsigned numa = a->get_num_args();
const unsigned numb = b->get_num_args();
if (!numa || !numb) return false;
if ((numa - (has_num_a ? 1 : 0)) != (numb - (has_num_b ? 1 : 0))) return false;
unsigned ai = has_num_a ? 1 : 0;
unsigned bi = has_num_b ? 1 : 0;
while (ai < numa) {
if (a->get_arg(ai) != b->get_arg(bi)) return false;
++ai;
++bi;
}
a0_val = numeral::zero();
b0_val = numeral::zero();
const unsigned sz = m_util.get_bv_size(a);
unsigned a0_sz(sz), b0_sz(sz);
if (has_num_a) is_numeral(a->get_arg(0), a0_val, a0_sz);
if (has_num_b) is_numeral(b->get_arg(0), b0_val, b0_sz);
SASSERT(a0_sz == m_util.get_bv_size(a) && b0_sz == m_util.get_bv_size(a));
if (has_num_a && numa > 2) {
common = m().mk_app(m_util.get_fid(), add_decl_kind(), numa - 1, a->get_args() + 1);
}
else {
common = has_num_a ? a->get_arg(1) : a;
}
return true;
}
// simplifies expressions as (bvuleq (X + c1) (X + c2)) for some common expression X and numerals c1, c2
br_status bv_rewriter::rw_leq_overflow(bool is_signed, expr * a, expr * b, expr_ref & result) {
if (is_signed) return BR_FAILED;
expr_ref common(m());
numeral a0_val, b0_val;
if (!are_eq_upto_num(a, b, common, a0_val, b0_val)) return BR_FAILED;
SASSERT(a0_val.is_nonneg() && b0_val.is_nonneg());
const unsigned sz = m_util.get_bv_size(a);
if (a0_val == b0_val) {
result = m().mk_true();
return BR_DONE;
}
if (a0_val < b0_val) {
result = m_util.mk_ule(m_util.mk_numeral(b0_val - a0_val, sz), b);
return BR_REWRITE2;
}
SASSERT(a0_val > b0_val);
SASSERT(!a0_val.is_zero());
const numeral lower = rational::power_of_two(sz) - a0_val;
const numeral upper = rational::power_of_two(sz) - b0_val - numeral::one();
if (lower == upper) {
result = m().mk_eq(common, mk_numeral(lower, sz));
}
else if (b0_val.is_zero()) {
result = m_util.mk_ule(mk_numeral(lower, sz), common);
}
else {
SASSERT(lower.is_pos());
result = m().mk_and(m_util.mk_ule(mk_numeral(lower, sz), common),
m_util.mk_ule(common, mk_numeral(upper, sz)));
}
return BR_REWRITE2;
}
// simplification for leq comparison between two concatenations
br_status bv_rewriter::rw_leq_concats(bool is_signed, expr * _a, expr * _b, expr_ref & result) {
if (!m_util.is_concat(_a) || !m_util.is_concat(_b))
return BR_FAILED;
const app * const a = to_app(_a);
const app * const b = to_app(_b);
const unsigned numa = a->get_num_args();
const unsigned numb = b->get_num_args();
const unsigned num_min = std::min(numa, numb);
if (numa && numb) { // first arg numeral
numeral af, bf;
unsigned af_sz, bf_sz;
if ( is_numeral(a->get_arg(0), af, af_sz)
&& is_numeral(b->get_arg(0), bf, bf_sz) ) {
const unsigned sz_min = std::min(af_sz, bf_sz);
const numeral hi_af = m_util.norm(af_sz > sz_min ? div(af, rational::power_of_two(af_sz - sz_min)) : af,
sz_min, is_signed);
const numeral hi_bf = m_util.norm(bf_sz > sz_min ? div(bf, rational::power_of_two(bf_sz - sz_min)) : bf,
sz_min, is_signed);
if (hi_af != hi_bf) {
result = hi_af < hi_bf ? m().mk_true() : m().mk_false();
return BR_DONE;
}
expr_ref new_a(m());
expr_ref new_b(m());
if (af_sz > sz_min) {
ptr_buffer<expr> new_args;
new_args.push_back(mk_numeral(af, af_sz - sz_min));
for (unsigned i = 1; i < numa; ++i) new_args.push_back(a->get_arg(i));
new_a = concat(new_args.size(), new_args.c_ptr());
} else {
new_a = concat(numa - 1, a->get_args() + 1);
}
if (bf_sz > sz_min) {
ptr_buffer<expr> new_args;
new_args.push_back(mk_numeral(bf, bf_sz - sz_min));
for (unsigned i = 1; i < numb; ++i) new_args.push_back(b->get_arg(i));
new_b = concat(new_args.size(), new_args.c_ptr());
} else {
new_b = concat(numb - 1, b->get_args() + 1);
}
result = m_util.mk_ule(new_a, new_b);
return BR_REWRITE2;
}
}
{ // common prefix
unsigned common = 0;
while (common < num_min && m().are_equal(a->get_arg(common), b->get_arg(common))) ++common;
SASSERT((common == numa) == (common == numb));
if (common == numa) {
SASSERT(0); // shouldn't get here as both sides are equal
result = m().mk_true();
return BR_DONE;
}
if (common > 0) {
result = m_util.mk_ule(concat(numa - common, a->get_args() + common),
concat(numb - common, b->get_args() + common));
return BR_REWRITE2;
}
}
{ // common postfix
unsigned new_numa = a->get_num_args();
unsigned new_numb = b->get_num_args();
while (new_numa && new_numb) {
expr * const last_a = a->get_arg(new_numa - 1);
expr * const last_b = b->get_arg(new_numb - 1);
if (!m().are_equal(last_a, last_b)) break;
new_numa--;
new_numb--;
}
if (new_numa == 0) {
SASSERT(0); // shouldn't get here as both sides are equal
result = m().mk_true();
return BR_DONE;
}
if (new_numa != numa) {
result = is_signed ? m_util.mk_sle(concat(new_numa, a->get_args()), concat(new_numb, b->get_args()))
: m_util.mk_ule(concat(new_numa, a->get_args()), concat(new_numb, b->get_args()));
return BR_REWRITE2;
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref & result) {
numeral r1, r2, r3;
@ -309,6 +507,24 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
return BR_REWRITE2;
}
if (m_le_extra) {
const br_status cst = rw_leq_concats(is_signed, a, b, result);
if (cst != BR_FAILED) {
TRACE("le_extra", tout << (is_signed ? "bv_sle\n" : "bv_ule\n")
<< mk_ismt2_pp(a, m(), 2) << "\n" << mk_ismt2_pp(b, m(), 2) << "\n--->\n"<< mk_ismt2_pp(result, m(), 2) << "\n";);
return cst;
}
}
if (m_le_extra) {
const br_status cst = rw_leq_overflow(is_signed, a, b, result);
if (cst != BR_FAILED) {
TRACE("le_extra", tout << (is_signed ? "bv_sle\n" : "bv_ule\n")
<< mk_ismt2_pp(a, m(), 2) << "\n" << mk_ismt2_pp(b, m(), 2) << "\n--->\n"<< mk_ismt2_pp(result, m(), 2) << "\n";);
return cst;
}
}
#if 0
if (!is_signed && m_util.is_concat(b) && to_app(b)->get_num_args() == 2 && m_util.is_zero(to_app(b)->get_arg(0))) {
//
@ -366,6 +582,89 @@ br_status bv_rewriter::mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref
return BR_FAILED;
}
// attempt to chop off bits that are above the position high for bv_mul and bv_add,
// returns how many bits were chopped off
// e.g. (bvadd(concat #b11 p) #x1)) with high=1, returns 2 and sets result = p + #b01
// the sz of results is the sz of arg minus the return value
unsigned bv_rewriter::propagate_extract(unsigned high, expr * arg, expr_ref & result) {
if (!m_util.is_bv_add(arg) && !m_util.is_bv_mul(arg))
return 0;
const unsigned sz = m_util.get_bv_size(arg);
const unsigned to_remove = high + 1 < sz ? sz - high - 1 : 0;
if (to_remove == 0)
return 0; // high goes to the top, nothing to do
const app * const a = to_app(arg);
const unsigned num = a->get_num_args();
bool all_numerals = true;
unsigned removable = to_remove;
numeral val;
unsigned curr_first_sz = -1;
// calculate how much can be removed
for (unsigned i = 0; i < num; i++) {
expr * const curr = a->get_arg(i);
const bool curr_is_conc = m_util.is_concat(curr);
if (curr_is_conc && to_app(curr)->get_num_args() == 0) continue;
expr * const curr_first = curr_is_conc ? to_app(curr)->get_arg(0) : curr;
if (!all_numerals) {
if (removable != m_util.get_bv_size(curr_first))
return 0;
continue;
}
if (is_numeral(curr_first, val, curr_first_sz)) {
removable = std::min(removable, curr_first_sz);
} else {
all_numerals = false;
curr_first_sz = m_util.get_bv_size(curr_first);
if (curr_first_sz > removable) return 0;
removable = curr_first_sz;
}
if (removable == 0) return 0;
}
// perform removal
SASSERT(removable <= to_remove);
const unsigned new_sz = sz - removable;
ptr_buffer<expr> new_args;
ptr_buffer<expr> new_concat_args;
for (unsigned i = 0; i < num; i++) {
expr * const curr = a->get_arg(i);
const bool curr_is_conc = m_util.is_concat(curr);
if (curr_is_conc && to_app(curr)->get_num_args() == 0) continue;
expr * const curr_first = curr_is_conc ? to_app(curr)->get_arg(0) : curr;
expr * new_first = NULL;
if (is_numeral(curr_first, val, curr_first_sz)) {
SASSERT(curr_first_sz >= removable);
const unsigned new_num_sz = curr_first_sz - removable;
new_first = new_num_sz ? mk_numeral(val, new_num_sz) : NULL;
}
expr * new_arg = NULL;
if (curr_is_conc) {
const unsigned conc_num = to_app(curr)->get_num_args();
if (new_first) {
new_concat_args.reset();
new_concat_args.push_back(new_first);
for (unsigned j = 1; j < conc_num; ++j)
new_concat_args.push_back(to_app(curr)->get_arg(j));
new_arg = m_util.mk_concat(new_concat_args.size(), new_concat_args.c_ptr());
} else {
// remove first element of concat
expr * const * const old_conc_args = to_app(curr)->get_args();
switch (conc_num) {
case 0: UNREACHABLE(); break;
case 1: new_arg = NULL; break;
case 2: new_arg = to_app(curr)->get_arg(1); break;
default: new_arg = m_util.mk_concat(conc_num - 1, old_conc_args + 1);
}
}
} else {
new_arg = new_first;
}
if (new_arg) new_args.push_back(new_arg);
}
result = m().mk_app(get_fid(), a->get_decl()->get_decl_kind(), new_args.size(), new_args.c_ptr());
SASSERT(m_util.is_bv(result));
return removable;
}
br_status bv_rewriter::mk_extract(unsigned high, unsigned low, expr * arg, expr_ref & result) {
unsigned sz = get_bv_size(arg);
SASSERT(sz > 0);
@ -469,6 +768,17 @@ br_status bv_rewriter::mk_extract(unsigned high, unsigned low, expr * arg, expr_
return BR_REWRITE2;
}
if (m_extract_prop && (high >= low)) {
expr_ref ep_res(m());
const unsigned ep_rm = propagate_extract(high, arg, ep_res);
if (ep_rm != 0) {
result = m_mk_extract(high, low, ep_res);
TRACE("extract_prop", tout << mk_ismt2_pp(arg, m()) << "\n[" << high <<"," << low << "]\n" << ep_rm << "---->\n"
<< mk_ismt2_pp(result.get(), m()) << "\n";);
return BR_REWRITE2;
}
}
if (m().is_ite(arg)) {
result = m().mk_ite(to_app(arg)->get_arg(0),
m_mk_extract(high, low, to_app(arg)->get_arg(1)),
@ -842,6 +1152,22 @@ bool bv_rewriter::is_minus_one_core(expr * arg) const {
return false;
}
bool bv_rewriter::is_negatable(expr * arg, expr_ref& x) {
numeral r;
unsigned bv_size;
if (is_numeral(arg, r, bv_size)) {
r = bitwise_not(bv_size, r);
x = mk_numeral(r, bv_size);
return true;
}
if (m_util.is_bv_not(arg)) {
SASSERT(to_app(arg)->get_num_args() == 1);
x = to_app(arg)->get_arg(0);
return true;
}
return false;
}
bool bv_rewriter::is_x_minus_one(expr * arg, expr * & x) {
if (is_add(arg) && to_app(arg)->get_num_args() == 2) {
if (is_minus_one_core(to_app(arg)->get_arg(0))) {
@ -1046,6 +1372,7 @@ br_status bv_rewriter::mk_bv2int(expr * arg, expr_ref & result) {
return BR_FAILED;
}
br_status bv_rewriter::mk_concat(unsigned num_args, expr * const * args, expr_ref & result) {
expr_ref_buffer new_args(m());
numeral v1;
@ -1534,6 +1861,35 @@ br_status bv_rewriter::mk_bv_not(expr * arg, expr_ref & result) {
return BR_REWRITE1;
}
if (m_bvnot_simpl) {
expr *s(0), *t(0);
if (m_util.is_bv_mul(arg, s, t)) {
// ~(-1 * x) --> (x - 1)
bv_size = m_util.get_bv_size(s);
if (m_util.is_allone(s)) {
rational minus_one = (rational::power_of_two(bv_size) - rational::one());
result = m_util.mk_bv_add(m_util.mk_numeral(minus_one, bv_size), t);
return BR_REWRITE1;
}
if (m_util.is_allone(t)) {
rational minus_one = (rational::power_of_two(bv_size) - rational::one());
result = m_util.mk_bv_add(m_util.mk_numeral(minus_one, bv_size), s);
return BR_REWRITE1;
}
}
if (m_util.is_bv_add(arg, s, t)) {
expr_ref ns(m());
expr_ref nt(m());
// ~(x + y) --> (~x + ~y + 1) when x and y are easy to negate
if (is_negatable(t, nt) && is_negatable(s, ns)) {
bv_size = m_util.get_bv_size(s);
expr * nargs[3] = { m_util.mk_numeral(rational::one(), bv_size), ns.get(), nt.get() };
result = m().mk_app(m_util.get_fid(), OP_BADD, 3, nargs);
return BR_REWRITE1;
}
}
}
return BR_FAILED;
}
@ -2076,6 +2432,16 @@ br_status bv_rewriter::mk_mul_eq(expr * lhs, expr * rhs, expr_ref & result) {
return BR_FAILED;
}
bool bv_rewriter::is_urem_any(expr * e, expr * & dividend, expr * & divisor) {
if (!m_util.is_bv_urem(e) && !m_util.is_bv_uremi(e))
return false;
const app * const a = to_app(e);
SASSERT(a->get_num_args() == 2);
dividend = a->get_arg(0);
divisor = a->get_arg(1);
return true;
}
br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
if (lhs == rhs) {
result = m().mk_true();
@ -2127,6 +2493,25 @@ br_status bv_rewriter::mk_eq_core(expr * lhs, expr * rhs, expr_ref & result) {
return st;
}
if (m_urem_simpl) {
expr * dividend;
expr * divisor;
numeral divisor_val, rhs_val;
unsigned divisor_sz, rhs_sz;
if (is_urem_any(lhs, dividend, divisor)
&& is_numeral(rhs, rhs_val, rhs_sz)
&& is_numeral(divisor, divisor_val, divisor_sz)) {
if (rhs_val >= divisor_val) {//(= (bvurem x c1) c2) where c2 >= c1
result = m().mk_false();
return BR_DONE;
}
if ((divisor_val + rhs_val) >= rational::power_of_two(divisor_sz)) {//(= (bvurem x c1) c2) where c1+c2 >= 2^width
result = m().mk_eq(dividend, rhs);
return BR_REWRITE2;
}
}
}
expr_ref new_lhs(m());
expr_ref new_rhs(m());
@ -2194,6 +2579,55 @@ br_status bv_rewriter::mk_mkbv(unsigned num, expr * const * args, expr_ref & res
return BR_FAILED;
}
br_status bv_rewriter::mk_ite_core(expr * c, expr * t, expr * e, expr_ref & result) {
TRACE("bv_ite", tout << "mk_ite_core:\n" << mk_ismt2_pp(c, m()) << "?\n"
<< mk_ismt2_pp(t, m()) << "\n:" << mk_ismt2_pp(e, m()) << "\n";);
if (m().are_equal(t, e)) {
result = e;
return BR_REWRITE1;
}
if (m().is_not(c)) {
result = m().mk_ite(to_app(c)->get_arg(0), e, t);
return BR_REWRITE1;
}
if (m_ite2id && m().is_eq(c) && is_bv(t) && is_bv(e)) {
// detect when ite is actually some simple function based on the pattern (lhs=rhs) ? t : e
expr * lhs = to_app(c)->get_arg(0);
expr * rhs = to_app(c)->get_arg(1);
if (is_bv(rhs)) {
if (is_numeral(lhs))
std::swap(lhs, rhs);
if ( (m().are_equal(lhs, t) && m().are_equal(rhs, e))
|| (m().are_equal(lhs, e) && m().are_equal(rhs, t))) {
// (a = b ? a : b) is b. (a = b ? b : a) is a
result = e;
return BR_REWRITE1;
}
const unsigned sz = m_util.get_bv_size(rhs);
if (sz == 1) { // detect (lhs = N) ? C : D, where N, C, D are 1 bit numberals
numeral rhs_n, e_n, t_n;
unsigned rhs_sz, e_sz, t_sz;
if (is_numeral(rhs, rhs_n, rhs_sz)
&& is_numeral(t, t_n, t_sz) && is_numeral(e, e_n, e_sz)) {
if (t_sz == 1) {
SASSERT(rhs_sz == sz && e_sz == sz && t_sz == sz);
SASSERT(!m().are_equal(t, e));
result = m().are_equal(rhs, t) ? lhs : m_util.mk_bv_not(lhs);
return BR_REWRITE1;
}
}
}
}
}
return BR_FAILED;
}
br_status bv_rewriter::mk_bvsmul_no_overflow(unsigned num, expr * const * args, expr_ref & result) {
SASSERT(num == 2);
unsigned bv_sz;

View file

@ -56,11 +56,16 @@ class bv_rewriter : public poly_rewriter<bv_rewriter_core> {
bool m_bit2bool;
bool m_blast_eq_value;
bool m_mkbv2num;
bool m_ite2id;
bool m_split_concat_eq;
bool m_udiv2mul;
bool m_bvnot2arith;
bool m_bv_sort_ac;
bool m_trailing;
bool m_extract_prop;
bool m_bvnot_simpl;
bool m_le_extra;
bool m_urem_simpl;
bool is_zero_bit(expr * x, unsigned idx);
@ -70,13 +75,19 @@ class bv_rewriter : public poly_rewriter<bv_rewriter_core> {
br_status mk_sle(expr * a, expr * b, expr_ref & result);
br_status mk_sge(expr * a, expr * b, expr_ref & result);
br_status mk_slt(expr * a, expr * b, expr_ref & result);
br_status rw_leq_concats(bool is_signed, expr * a, expr * b, expr_ref & result);
bool are_eq_upto_num(expr * a, expr * b, expr_ref& common, numeral& a0_val, numeral& b0_val);
br_status rw_leq_overflow(bool is_signed, expr * _a, expr * _b, expr_ref & result);
br_status mk_leq_core(bool is_signed, expr * a, expr * b, expr_ref & result);
br_status fuse_concat(unsigned num_args, expr * const * args, expr_ref & result);
br_status mk_concat(unsigned num_args, expr * const * args, expr_ref & result);
unsigned propagate_extract(unsigned high, expr * arg, expr_ref & result);
br_status mk_extract(unsigned high, unsigned low, expr * arg, expr_ref & result);
br_status mk_repeat(unsigned n, expr * arg, expr_ref & result);
br_status mk_zero_extend(unsigned n, expr * arg, expr_ref & result);
br_status mk_sign_extend(unsigned n, expr * arg, expr_ref & result);
bool is_negatable(expr * arg, expr_ref& x);
br_status mk_bv_not(expr * arg, expr_ref & result);
br_status mk_bv_or(unsigned num, expr * const * args, expr_ref & result);
br_status mk_bv_xor(unsigned num, expr * const * args, expr_ref & result);
@ -139,6 +150,7 @@ class bv_rewriter : public poly_rewriter<bv_rewriter_core> {
void updt_local_params(params_ref const & p);
expr * concat(unsigned num_args, expr * const * args);
public:
bv_rewriter(ast_manager & m, params_ref const & p = params_ref()):
poly_rewriter<bv_rewriter_core>(m, p),
@ -167,7 +179,9 @@ public:
result = m().mk_app(f, num_args, args);
}
bool is_urem_any(expr * e, expr * & dividend, expr * & divisor);
br_status mk_eq_core(expr * lhs, expr * rhs, expr_ref & result);
br_status mk_ite_core(expr * c, expr * t, expr * e, expr_ref & resul);
bool hi_div0() const { return m_hi_div0; }

View file

@ -10,5 +10,10 @@ def_module_params(module_name='rewriter',
("mul2concat", BOOL, False, "replace multiplication by a power of two into a concatenation"),
("bvnot2arith", BOOL, False, "replace (bvnot x) with (bvsub -1 x)"),
("bv_sort_ac", BOOL, False, "sort the arguments of all AC operators"),
("bv_trailing", BOOL, False, "lean removal of trailing zeros")
("bv_trailing", BOOL, False, "lean removal of trailing zeros"),
("bv_extract_prop", BOOL, False, "attempt to partially propagate extraction inwards"),
("bv_not_simpl", BOOL, False, "apply simplifications for bvnot"),
("bv_ite2id", BOOL, False, "rewrite ite that can be simplified to identity"),
("bv_le_extra", BOOL, False, "additional bu_(u/s)le simplifications"),
("bv_urem_simpl", BOOL, False, "additional simplification for bvurem")
))

View file

@ -36,11 +36,14 @@ struct bv_trailing::imp {
: m_mk_extract(mk_extract)
, m_util(mk_extract.bvutil())
, m(mk_extract.m()) {
TRACE("bv-trailing", tout << "ctor\n";);
for (unsigned i = 0; i <= TRAILING_DEPTH; ++i)
m_count_cache[i] = NULL;
}
virtual ~imp() {
TRACE("bv-trailing", tout << "dtor\n";);
reset_cache(0);
}
@ -337,6 +340,7 @@ struct bv_trailing::imp {
if (depth == 0) return;
if (m_count_cache[depth] == NULL)
m_count_cache[depth] = alloc(map);
SASSERT(!m_count_cache[depth]->contains(e));
m.inc_ref(e);
m_count_cache[depth]->insert(e, std::make_pair(min, max));
TRACE("bv-trailing", tout << "caching@" << depth <<": " << mk_ismt2_pp(e, m) << '[' << m_util.get_bv_size(e) << "]\n: " << min << '-' << max << "\n";);
@ -359,11 +363,13 @@ struct bv_trailing::imp {
return true;
}
void reset_cache(unsigned condition) {
void reset_cache(const unsigned condition) {
SASSERT(m_count_cache[0] == NULL);
for (unsigned i = 1; i <= TRAILING_DEPTH; ++i) {
if (m_count_cache[i] == NULL) continue;
if (m_count_cache[i]->size() < condition) continue;
TRACE("bv-trailing", tout << "may reset cache " << i << " " << condition << "\n";);
if (condition && m_count_cache[i]->size() < condition) continue;
TRACE("bv-trailing", tout << "reset cache " << i << "\n";);
map::iterator it = m_count_cache[i]->begin();
map::iterator end = m_count_cache[i]->end();
for (; it != end; ++it) m.dec_ref(it->m_key);

View file

@ -7,5 +7,6 @@ def_module_params('rewriter',
("push_ite_arith", BOOL, False, "push if-then-else over arithmetic terms."),
("push_ite_bv", BOOL, False, "push if-then-else over bit-vector terms."),
("pull_cheap_ite", BOOL, False, "pull if-then-else terms when cheap."),
("bv_ineq_consistency_test_max", UINT, 0, "max size of conjunctions on which to perform consistency test based on inequalities on bitvectors."),
("cache_all", BOOL, False, "cache all intermediate results.")))

View file

@ -189,6 +189,14 @@ struct th_rewriter_cfg : public default_rewriter_cfg {
if (st != BR_FAILED)
return st;
}
if (k == OP_ITE) {
SASSERT(num == 3);
family_id s_fid = m().get_sort(args[1])->get_family_id();
if (s_fid == m_bv_rw.get_fid())
st = m_bv_rw.mk_ite_core(args[0], args[1], args[2], result);
if (st != BR_FAILED)
return st;
}
return m_b_rw.mk_app_core(f, num, args, result);
}
if (fid == m_a_rw.get_fid())

View file

@ -0,0 +1,245 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
bv_bound_chk_tactic.cpp
Abstract:
Author:
Mikolas Janota
Revision History:
--*/
#include"bv_bound_chk_tactic.h"
#include"ast.h"
#include"rewriter.h"
#include"rewriter_def.h"
#include"bv_bounds.h"
#include"rewriter_params.hpp"
#include"bool_rewriter.h"
#include"cooperate.h"
struct bv_bound_chk_stats {
unsigned m_unsats;
unsigned m_singletons;
unsigned m_reduces;
bv_bound_chk_stats() : m_unsats(0), m_singletons(0), m_reduces(0) {};
};
struct bv_bound_chk_rewriter_cfg : public default_rewriter_cfg {
ast_manager & m_m;
unsigned m_bv_ineq_consistency_test_max;
bool_rewriter m_b_rw;
unsigned long long m_max_steps;
unsigned long long m_max_memory; // in bytes
bv_bound_chk_stats& m_stats;
bv_bound_chk_rewriter_cfg(ast_manager & m, bv_bound_chk_stats& stats)
: m_m(m), m_b_rw(m), m_stats(stats) {}
~bv_bound_chk_rewriter_cfg() {}
void updt_params(params_ref const & _p) {
rewriter_params p(_p);
m_bv_ineq_consistency_test_max = p.bv_ineq_consistency_test_max();
m_max_memory = p.max_memory();
m_max_steps = p.max_steps();
}
ast_manager & m() const { return m_m; }
bool rewrite_patterns() const { return false; }
bool flat_assoc(func_decl * f) const { return true; }
br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
const br_status st = reduce_app_core(f, num, args, result, result_pr);
CTRACE("bv_bound_chk_step", st != BR_FAILED,
tout << f->get_name() << "\n";
for (unsigned i = 0; i < num; i++) tout << mk_ismt2_pp(args[i], m()) << "\n";
tout << "---------->\n" << mk_ismt2_pp(result, m()) << "\n";);
return st;
}
br_status reduce_app_core(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) {
result_pr = 0;
const family_id fid = f->get_family_id();
if (fid != m_b_rw.get_fid()) return BR_FAILED;
const decl_kind k = f->get_decl_kind();
bv_bounds bvb(m());
const br_status rv = bvb.rewrite(m_bv_ineq_consistency_test_max, f, num, args, result);
if (rv != BR_FAILED && (m_m.is_false(result) || m_m.is_true(result))) m_stats.m_unsats++;
else if (rv != BR_FAILED && bvb.singletons().size()) m_stats.m_singletons++;
else if (rv != BR_FAILED && is_app(result) && to_app(result)->get_num_args() < num) m_stats.m_reduces++;
return rv;
}
bool max_steps_exceeded(unsigned long long num_steps) const {
cooperate("bv-bound-chk");
if (num_steps > m_max_steps)
return true;
if (memory::get_allocation_size() > m_max_memory)
throw tactic_exception(TACTIC_MAX_MEMORY_MSG);
return false;
}
void reset_statistics() {
m_stats.m_unsats = 0;
m_stats.m_singletons = 0;
m_stats.m_reduces = 0;
}
void collect_statistics(statistics & st) const {
st.update("unsat bv bounds", m_stats.m_unsats);
st.update("bv singletons", m_stats.m_singletons);
st.update("bv reduces", m_stats.m_reduces);
}
};
struct bv_bound_chk_rewriter : public rewriter_tpl<bv_bound_chk_rewriter_cfg> {
bv_bound_chk_rewriter_cfg m_cfg;
bv_bound_chk_rewriter(ast_manager & m, params_ref const & p, bv_bound_chk_stats& stats)
: rewriter_tpl<bv_bound_chk_rewriter_cfg>(m, false, m_cfg)
, m_cfg(m, stats)
{
updt_params(p);
}
virtual ~bv_bound_chk_rewriter() {}
void updt_params(params_ref const & _p) {
m_cfg.updt_params(_p);
}
void collect_statistics(statistics & st) const {
m_cfg.collect_statistics(st);
}
void reset_statistics() {
m_cfg.reset_statistics();
}
};
class bv_bound_chk_tactic : public tactic {
class imp;
imp * m_imp;
params_ref m_params;
bv_bound_chk_stats m_stats;
public:
bv_bound_chk_tactic(ast_manager & m, params_ref const & p);
virtual ~bv_bound_chk_tactic();
void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core);
virtual tactic * translate(ast_manager & m);
virtual void updt_params(params_ref const & p);
void cleanup();
void collect_statistics(statistics & st) const;
void reset_statistics();
};
class bv_bound_chk_tactic::imp {
bv_bound_chk_rewriter m_rw;
public:
imp(ast_manager & m, params_ref const & p, bv_bound_chk_stats& stats)
: m_rw(m, p, stats) { }
virtual ~imp() { }
ast_manager& m() { return m_rw.m(); }
void operator()(goal_ref const & g) {
SASSERT(g->is_well_sorted());
tactic_report report("bv-bound-chk", *g);
ast_manager& m(g->m());
expr_ref new_curr(m);
const unsigned size = g->size();
for (unsigned idx = 0; idx < size; idx++) {
if (g->inconsistent()) break;
expr * curr = g->form(idx);
m_rw(curr, new_curr);
g->update(idx, new_curr);
}
m_rw.m_cfg.cleanup();
}
virtual void updt_params(params_ref const & p) {
m_rw.updt_params(p);
}
void collect_statistics(statistics & st) const {
m_rw.collect_statistics(st);
}
void reset_statistics() {
m_rw.reset_statistics();
}
};
bv_bound_chk_tactic::bv_bound_chk_tactic(ast_manager & m, params_ref const & p)
: m_params(p)
{
m_imp = alloc(imp, m, p, m_stats);
}
bv_bound_chk_tactic::~bv_bound_chk_tactic() {
dealloc(m_imp);
}
void bv_bound_chk_tactic::operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
SASSERT(g->is_well_sorted());
fail_if_proof_generation("bv-bound-chk", g);
fail_if_unsat_core_generation("bv-bound-chk", g);
TRACE("bv-bound-chk", g->display(tout << "before:"); tout << std::endl;);
mc = 0; pc = 0; core = 0; result.reset();
m_imp->operator()(g);
g->inc_depth();
result.push_back(g.get());
TRACE("bv-bound-chk", g->display(tout << "after:"););
SASSERT(g->is_well_sorted());
}
tactic * bv_bound_chk_tactic::translate(ast_manager & m) {
return alloc(bv_bound_chk_tactic, m, m_params);
}
void bv_bound_chk_tactic::updt_params(params_ref const & p) {
m_params = p;
m_imp->updt_params(p);
}
void bv_bound_chk_tactic::cleanup() {
imp * d = alloc(imp, m_imp->m(), m_params, m_stats);
std::swap(d, m_imp);
dealloc(d);
}
void bv_bound_chk_tactic::collect_statistics(statistics & st) const {
m_imp->collect_statistics(st);
}
void bv_bound_chk_tactic::reset_statistics() {
m_imp->reset_statistics();
}
tactic* mk_bv_bound_chk_tactic(ast_manager & m, params_ref const & p) {
return alloc(bv_bound_chk_tactic, m, p);
}

View file

@ -0,0 +1,30 @@
/*++
Copyright (c) 2016 Microsoft Corporation
Module Name:
bv_bound_chk_tactic.h
Abstract:
Author:
Mikolas Janota
Revision History:
--*/
#ifndef BV_BOUND_CHK_TACTIC_H_
#define BV_BOUND_CHK_TACTIC_H_
#include"tactical.h"
#include"params.h"
#include"ast.h"
tactic* mk_bv_bound_chk_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("bv_bound_chk", "attempts to detect inconsistencies of bounds on bv expressions.", "mk_bv_bound_chk_tactic(m, p)")
*/
#endif /* BV_BOUND_CHK_TACTIC_H_*/

View file

@ -39,6 +39,7 @@ Notes:
#include"qfaufbv_tactic.h"
#include"qfbv_tactic.h"
#include"tactic2solver.h"
#include"bv_bound_chk_tactic.h"
///////////////
class qfufbv_ackr_tactic : public tactic {
@ -149,6 +150,7 @@ static tactic * mk_qfufbv_preamble1(ast_manager & m, params_ref const & p) {
return and_then(
mk_simplify_tactic(m),
mk_propagate_values_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_bv_bound_chk_tactic(m))),
//using_params(mk_ctx_simplify_tactic(m_m), ctx_simp_p),
mk_solve_eqs_tactic(m),
mk_elim_uncnstr_tactic(m),