mirror of
https://github.com/Z3Prover/z3
synced 2025-07-31 16:33:18 +00:00
First step towards explaining single bits
This commit is contained in:
parent
d5bc4b84a7
commit
ec06027515
8 changed files with 418 additions and 6 deletions
|
@ -8,6 +8,7 @@ z3_add_component(polysat
|
||||||
constraint.cpp
|
constraint.cpp
|
||||||
constraint_manager.cpp
|
constraint_manager.cpp
|
||||||
eq_explain.cpp
|
eq_explain.cpp
|
||||||
|
fixed_bits.cpp
|
||||||
forbidden_intervals.cpp
|
forbidden_intervals.cpp
|
||||||
inference_logger.cpp
|
inference_logger.cpp
|
||||||
justification.cpp
|
justification.cpp
|
||||||
|
|
|
@ -17,6 +17,7 @@ Author:
|
||||||
#include "math/polysat/interval.h"
|
#include "math/polysat/interval.h"
|
||||||
#include "math/polysat/assignment.h"
|
#include "math/polysat/assignment.h"
|
||||||
#include "math/polysat/univariate/univariate_solver.h"
|
#include "math/polysat/univariate/univariate_solver.h"
|
||||||
|
#include "util/tbv.h"
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
|
||||||
namespace polysat {
|
namespace polysat {
|
||||||
|
@ -84,6 +85,7 @@ namespace polysat {
|
||||||
bool is_currently_false(solver const& s, bool is_positive) const { return is_currently_true(s, !is_positive); }
|
bool is_currently_false(solver const& s, bool is_positive) const { return is_currently_true(s, !is_positive); }
|
||||||
|
|
||||||
virtual void narrow(solver& s, bool is_positive, bool first) = 0;
|
virtual void narrow(solver& s, bool is_positive, bool first) = 0;
|
||||||
|
virtual void propagate_bits(solver& s, bool is_positive) {}
|
||||||
/**
|
/**
|
||||||
* If possible, produce a lemma that contradicts the given assignment.
|
* If possible, produce a lemma that contradicts the given assignment.
|
||||||
* This method should not modify the solver's search state.
|
* This method should not modify the solver's search state.
|
||||||
|
|
222
src/math/polysat/fixed_bits.cpp
Normal file
222
src/math/polysat/fixed_bits.cpp
Normal file
|
@ -0,0 +1,222 @@
|
||||||
|
/*++
|
||||||
|
Copyright (c) 2022 Microsoft Corporation
|
||||||
|
|
||||||
|
Module Name:
|
||||||
|
|
||||||
|
fixed_bits
|
||||||
|
|
||||||
|
Abstract:
|
||||||
|
|
||||||
|
Associates every pdd with the set of already fixed bits and justifications for this
|
||||||
|
|
||||||
|
--*/
|
||||||
|
|
||||||
|
#include "math/polysat/fixed_bits.h"
|
||||||
|
#include "math/polysat/solver.h"
|
||||||
|
|
||||||
|
namespace polysat {
|
||||||
|
|
||||||
|
tbv_manager& fixed_bits::get_manager(unsigned sz){
|
||||||
|
m_tbv_managers.reserve(sz + 1);
|
||||||
|
if (!m_tbv_managers[sz])
|
||||||
|
m_tbv_managers.set(sz, alloc(tbv_manager, sz));
|
||||||
|
return *m_tbv_managers[sz];
|
||||||
|
}
|
||||||
|
|
||||||
|
tbv_manager& fixed_bits::get_manager(const pdd& v) {
|
||||||
|
return get_manager(v.power_of_2());
|
||||||
|
}
|
||||||
|
|
||||||
|
tbv_ref& fixed_bits::get_tbv(pvar v, unsigned sz) {
|
||||||
|
if (m_var_to_tbv.size() <= v) {
|
||||||
|
m_var_to_tbv.reserve(v + 1);
|
||||||
|
auto& manager = get_manager(sz);
|
||||||
|
m_var_to_tbv[v] = tbv_ref(manager, manager.allocate());
|
||||||
|
return *m_var_to_tbv[v];
|
||||||
|
}
|
||||||
|
auto& old_manager = m_var_to_tbv[v]->manager();
|
||||||
|
if (old_manager.num_tbits() >= sz)
|
||||||
|
return *(m_var_to_tbv[v]);
|
||||||
|
tbv* old_tbv = m_var_to_tbv[v]->detach();
|
||||||
|
auto& new_manager = get_manager(sz);
|
||||||
|
tbv* new_tbv = new_manager.allocate();
|
||||||
|
old_manager.copy(*new_tbv, *old_tbv); // Copy the lower bits to the new (larger) tbv
|
||||||
|
old_manager.deallocate(old_tbv);
|
||||||
|
m_var_to_tbv[v] = tbv_ref(new_manager, new_tbv);
|
||||||
|
return *m_var_to_tbv[v];
|
||||||
|
}
|
||||||
|
|
||||||
|
tbv_ref& fixed_bits::get_tbv(const pdd& p) {
|
||||||
|
SASSERT(p.is_var());
|
||||||
|
return get_tbv(p.var(), p.power_of_2());
|
||||||
|
}
|
||||||
|
|
||||||
|
tbit fixed_bits::get_value(const pdd& p, unsigned idx) {
|
||||||
|
SASSERT(p.is_var());
|
||||||
|
return get_tbv(p)[idx];
|
||||||
|
}
|
||||||
|
|
||||||
|
bool fixed_bits::fix_value(solver& s, const pdd& p, unsigned idx, tbit val, constraint* c, bit_dependency& dep) {
|
||||||
|
SASSERT(val != BIT_x); // We don't use don't-cares
|
||||||
|
SASSERT(p.is_var());
|
||||||
|
if (val == BIT_z)
|
||||||
|
return true;
|
||||||
|
tbv_ref& tbv = get_tbv(p);
|
||||||
|
tbit curr_val = tbv[idx];
|
||||||
|
|
||||||
|
if (val == curr_val)
|
||||||
|
return true;
|
||||||
|
|
||||||
|
auto& m = tbv.manager();
|
||||||
|
|
||||||
|
if (curr_val == BIT_z) {
|
||||||
|
m.set(*tbv, idx, val);
|
||||||
|
m_tbv_to_justification[std::pair(tbv.get(), idx)] = bit_justication(c, (bit_dependency&&)std::move(dep));
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
SASSERT((curr_val == BIT_1 && val == BIT_0) || (curr_val == BIT_0 && val == BIT_1));
|
||||||
|
|
||||||
|
return false;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
void fixed_bits::clear_value(const pdd& p, unsigned idx) {
|
||||||
|
SASSERT(p.is_var());
|
||||||
|
tbv_ref& tbv = get_tbv(p);
|
||||||
|
auto& m = tbv.manager();
|
||||||
|
m.set(*tbv, idx, BIT_z);
|
||||||
|
|
||||||
|
SASSERT(m_tbv_to_justification.contains(std::pair(tbv.get(), idx)));
|
||||||
|
m_tbv_to_justification[std::pair(tbv.get(), idx)] = bit_justication();
|
||||||
|
}
|
||||||
|
|
||||||
|
#define COUNT(DOWN, TO_COUNT) \
|
||||||
|
do { \
|
||||||
|
unsigned sz = ref.num_tbits(); \
|
||||||
|
unsigned least = 0; \
|
||||||
|
for (; least < sz; least++) { \
|
||||||
|
if (ref[((DOWN) ? sz - least - 1 : least)] != (TO_COUNT)) \
|
||||||
|
break; \
|
||||||
|
} \
|
||||||
|
if (least == sz) \
|
||||||
|
return { sz, sz }; /* For sure TO_COUNT */ \
|
||||||
|
unsigned most = least; \
|
||||||
|
for (; most < sz; most++) { \
|
||||||
|
if (ref[((DOWN) ? sz - most - 1 : most)] == ((TO_COUNT) == BIT_0 ? BIT_1 : BIT_0)) \
|
||||||
|
break; \
|
||||||
|
} \
|
||||||
|
return { least, most }; /* There are between "least" and "most" leading/trailing TO_COUNT */ \
|
||||||
|
} while(false)
|
||||||
|
|
||||||
|
std::pair<unsigned, unsigned> fixed_bits::leading_zeros(const tbv_ref& ref) { COUNT(false, BIT_0); }
|
||||||
|
std::pair<unsigned, unsigned> fixed_bits::trailing_zeros(const tbv_ref& ref) { COUNT(true, BIT_0); }
|
||||||
|
std::pair<unsigned, unsigned> fixed_bits::leading_ones(const tbv_ref& ref) { COUNT(false, BIT_1); }
|
||||||
|
std::pair<unsigned, unsigned> fixed_bits::trailing_ones(const tbv_ref& ref) { COUNT(true, BIT_1); }
|
||||||
|
|
||||||
|
std::pair<rational, rational> fixed_bits::min_max(const tbv_ref& ref) {
|
||||||
|
unsigned sz = ref.num_tbits();
|
||||||
|
rational least(0);
|
||||||
|
rational most(0);
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < sz; i++) {
|
||||||
|
tbit v = ref[i];
|
||||||
|
least *= 2;
|
||||||
|
most *= 2;
|
||||||
|
if (v == BIT_1) {
|
||||||
|
least++;
|
||||||
|
most++;
|
||||||
|
}
|
||||||
|
else if (v == BIT_z)
|
||||||
|
most++;
|
||||||
|
}
|
||||||
|
|
||||||
|
return { least, most };
|
||||||
|
}
|
||||||
|
|
||||||
|
// multiplication: (1*p0 + 2*p1 + 4*p2 + 8*p3 + ...) * (1*q0 + 2*q1 + 4*q2 + 8*q3 + ...) =
|
||||||
|
// = 1 * (p0 q0) + 2 * (p0 q1 + p1 q0) + 4 * (p0 q2 + p1 q1 + p2 q0) + 8 * (p0 q3 + p1 q2 + p2 q1 + p3 q0) + ...
|
||||||
|
// maintains
|
||||||
|
void fixed_bits::multiply(tbv_ref& in_out, const tbv_ref& in2) {
|
||||||
|
auto m= in_out.manager();
|
||||||
|
m_aux_values.reserve(m.num_tbits());
|
||||||
|
|
||||||
|
unsigned min_bit_value = 0; // The value of the current bit assuming all unknown bits are 0
|
||||||
|
unsigned max_bit_value = 0; // The value of the current bit assuming all unknown bits are 1
|
||||||
|
|
||||||
|
// TODO: Check: Is the performance too worse? It is O(k^2)
|
||||||
|
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||||
|
for (unsigned x = 0, y = i; x <= i; x++, y--) {
|
||||||
|
tbit bit1 = in_out[x];
|
||||||
|
tbit bit2 = in2[y];
|
||||||
|
|
||||||
|
if (bit1 == BIT_1 && bit2 == BIT_1) {
|
||||||
|
min_bit_value++; // we get two 1
|
||||||
|
max_bit_value++;
|
||||||
|
}
|
||||||
|
else if (bit1 != BIT_0 && bit2 != BIT_0) {
|
||||||
|
max_bit_value++; // we could get two 1
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (min_bit_value == max_bit_value) {
|
||||||
|
// We know the value of this bit
|
||||||
|
// As we might access in_out in some later iteration again we first write to aux-list
|
||||||
|
m_aux_values[i] = min_bit_value & 1 ? BIT_1 : BIT_0;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
m_aux_values[i] = BIT_z;
|
||||||
|
}
|
||||||
|
// Subtract one; shift this to the next higher bit as "carry value"
|
||||||
|
min_bit_value >>= 1;
|
||||||
|
max_bit_value >>= 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Copy aux to result tbv
|
||||||
|
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||||
|
m.set(*in_out, i, (tbit)m_aux_values[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// similar to multiplying
|
||||||
|
void fixed_bits::add(tbv_ref& in_out, const tbv_ref& in2) {
|
||||||
|
auto m= in_out.manager();
|
||||||
|
|
||||||
|
unsigned min_bit_value = 0;
|
||||||
|
unsigned max_bit_value = 0;
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < m.num_tbits(); i++) {
|
||||||
|
tbit bit1 = in_out[i];
|
||||||
|
tbit bit2 = in2[i];
|
||||||
|
if (bit1 == BIT_1 && bit2 == BIT_1) {
|
||||||
|
min_bit_value++;
|
||||||
|
max_bit_value++;
|
||||||
|
}
|
||||||
|
else if (bit1 != BIT_0 && bit2 != BIT_0) {
|
||||||
|
max_bit_value++;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (min_bit_value == max_bit_value)
|
||||||
|
// for addition we don't need previous values so we can directly write to the output variable
|
||||||
|
m.set(*in_out, i, min_bit_value & 1 ? BIT_1 : BIT_0);
|
||||||
|
else
|
||||||
|
m.set(*in_out, i, BIT_z);
|
||||||
|
|
||||||
|
min_bit_value >>= 1;
|
||||||
|
max_bit_value >>= 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
tbv_ref fixed_bits::eval(const pdd& p) {
|
||||||
|
tbv_manager m = get_manager(p);
|
||||||
|
unsigned sz = m.num_tbits();
|
||||||
|
tbv_ref ret = tbv_ref(m, m.allocate(0ull));
|
||||||
|
for (const dd::pdd_monomial& s : p) {
|
||||||
|
SASSERT(!s.coeff.is_zero());
|
||||||
|
tbv_ref sum = tbv_ref(m, m.allocate(s.coeff));
|
||||||
|
for (pvar fac : s.vars) {
|
||||||
|
multiply(sum, get_tbv(fac, sz));
|
||||||
|
}
|
||||||
|
add(ret, sum);
|
||||||
|
}
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
}
|
102
src/math/polysat/fixed_bits.h
Normal file
102
src/math/polysat/fixed_bits.h
Normal file
|
@ -0,0 +1,102 @@
|
||||||
|
/*++
|
||||||
|
Copyright (c) 2022 Microsoft Corporation
|
||||||
|
|
||||||
|
Module Name:
|
||||||
|
|
||||||
|
fixed_bits
|
||||||
|
|
||||||
|
Abstract:
|
||||||
|
|
||||||
|
Associates every pdd with the set of already fixed bits and justifications for this
|
||||||
|
|
||||||
|
--*/
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "types.h"
|
||||||
|
#include "util/hash.h"
|
||||||
|
#include "util/optional.h"
|
||||||
|
#include "util/tbv.h"
|
||||||
|
|
||||||
|
|
||||||
|
namespace polysat {
|
||||||
|
|
||||||
|
class solver;
|
||||||
|
|
||||||
|
using bit_dependency = vector<std::pair<pdd, unsigned>>;
|
||||||
|
|
||||||
|
struct bit_justication {
|
||||||
|
constraint* m_constraint = nullptr;
|
||||||
|
|
||||||
|
// variables + resp., bit-index
|
||||||
|
// (a variable might occur multiple times if more bits are relevant)
|
||||||
|
bit_dependency m_dependencies;
|
||||||
|
|
||||||
|
public:
|
||||||
|
bit_justication(constraint *pRaint, bit_dependency vector) = default;
|
||||||
|
bit_justication(constraint* c) : m_constraint(c) { }
|
||||||
|
bit_justication(constraint* c, bit_dependency&& dep) : m_constraint(c), m_dependencies(dep) { }
|
||||||
|
};
|
||||||
|
|
||||||
|
class fixed_bits {
|
||||||
|
|
||||||
|
solver& m_solver;
|
||||||
|
|
||||||
|
scoped_ptr_vector<tbv_manager> m_tbv_managers;
|
||||||
|
|
||||||
|
char_vector m_aux_values;
|
||||||
|
|
||||||
|
//using pdd_to_tbv_key = optional<pdd>;
|
||||||
|
//using pdd_to_tbv_eq = default_eq<pdd_to_tbv_key>;
|
||||||
|
//struct pdd_to_tbv_hash {
|
||||||
|
// unsigned operator()(pdd_to_tbv_key const& args) const {
|
||||||
|
// return args ? args->hash() : 0;
|
||||||
|
// }
|
||||||
|
//};
|
||||||
|
//using pdd_to_tbv_map = map<pdd_to_tbv_key, tbv_ref, pdd_to_tbv_hash, pdd_to_tbv_eq>;
|
||||||
|
|
||||||
|
using tbv_to_justification_key = std::pair<tbv*, unsigned>;
|
||||||
|
using tbv_to_justification_eq = default_eq<tbv_to_justification_key>;
|
||||||
|
struct tbv_to_justification_hash {
|
||||||
|
unsigned operator()(tbv_to_justification_key const& args) const {
|
||||||
|
return combine_hash((unsigned)args.first, args.second);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
using tbv_to_justification_map = map<tbv_to_justification_key, bit_justication, tbv_to_justification_hash, tbv_to_justification_eq>;
|
||||||
|
|
||||||
|
vector<optional<tbv_ref>> m_var_to_tbv;
|
||||||
|
tbv_to_justification_map m_tbv_to_justification;
|
||||||
|
|
||||||
|
tbv_manager& get_manager(const pdd& v);
|
||||||
|
tbv_manager& get_manager(unsigned sz);
|
||||||
|
|
||||||
|
void add(tbv_ref& in_out, const tbv_ref& in2);
|
||||||
|
void multiply(tbv_ref& in_out, const tbv_ref& in2);
|
||||||
|
|
||||||
|
tbv_ref& get_tbv(pvar v, unsigned sz);
|
||||||
|
tbv_ref& get_tbv(const pdd& p);
|
||||||
|
|
||||||
|
public:
|
||||||
|
|
||||||
|
fixed_bits(solver& s) : m_solver(s) {}
|
||||||
|
|
||||||
|
// #count [min; max]
|
||||||
|
static std::pair<unsigned, unsigned> leading_zeros(const tbv_ref& ref);
|
||||||
|
static std::pair<unsigned, unsigned> trailing_zeros(const tbv_ref& ref);
|
||||||
|
static std::pair<unsigned, unsigned> leading_ones(const tbv_ref& ref);
|
||||||
|
static std::pair<unsigned, unsigned> trailing_ones(const tbv_ref& ref);
|
||||||
|
static std::pair<rational, rational> min_max(const tbv_ref& ref);
|
||||||
|
|
||||||
|
tbit get_value(const pdd& p, unsigned idx); // More efficient than calling "eval" and accessing the returned tbv elements
|
||||||
|
bool fix_value(solver& s, const pdd& p, unsigned idx, tbit val, constraint* c, bit_dependency& dep);
|
||||||
|
bool fix_value(solver& s, const pdd& p, unsigned idx, tbit val, constraint* c, std::pair<pdd, unsigned> v1, std::pair<pdd, unsigned> v2) {
|
||||||
|
bit_dependency dep(2);
|
||||||
|
dep.push_back(v1);
|
||||||
|
dep.push_back(v2);
|
||||||
|
return fix_value(s, p, idx, val, c, dep);
|
||||||
|
}
|
||||||
|
void clear_value(const pdd& p, unsigned idx);
|
||||||
|
|
||||||
|
tbv_ref eval(const pdd& p);
|
||||||
|
|
||||||
|
};
|
||||||
|
}
|
|
@ -113,6 +113,9 @@ namespace polysat {
|
||||||
if (first)
|
if (first)
|
||||||
activate(s);
|
activate(s);
|
||||||
|
|
||||||
|
if (!propagate_bits(s, is_positive))
|
||||||
|
return; // conflict
|
||||||
|
|
||||||
if (clause_ref lemma = produce_lemma(s, s.assignment()))
|
if (clause_ref lemma = produce_lemma(s, s.assignment()))
|
||||||
s.add_clause(*lemma);
|
s.add_clause(*lemma);
|
||||||
|
|
||||||
|
@ -120,6 +123,20 @@ namespace polysat {
|
||||||
s.set_conflict(signed_constraint(this, is_positive));
|
s.set_conflict(signed_constraint(this, is_positive));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool op_constraint::propagate_bits(solver& s, bool is_positive) {
|
||||||
|
switch (m_op) {
|
||||||
|
case code::lshr_op:
|
||||||
|
return propagate_bits_lshr(s, is_positive);
|
||||||
|
case code::shl_op:
|
||||||
|
return propagate_bits_shl(s, is_positive);
|
||||||
|
case code::and_op:
|
||||||
|
return propagate_bits_and(s, is_positive);
|
||||||
|
default:
|
||||||
|
NOT_IMPLEMENTED_YET();
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Produce lemmas that contradict the given assignment.
|
* Produce lemmas that contradict the given assignment.
|
||||||
*
|
*
|
||||||
|
@ -335,6 +352,39 @@ namespace polysat {
|
||||||
return l_undef;
|
return l_undef;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool op_constraint::propagate_bits_shl(solver& s, bool is_positive) {
|
||||||
|
tbv_ref p_val = s.m_fixed_bits.eval(m_p);
|
||||||
|
tbv_ref q_val = s.m_fixed_bits.eval(m_q);
|
||||||
|
tbv_ref r_val = s.m_fixed_bits.eval(m_r);
|
||||||
|
unsigned sz = m_p.power_of_2();
|
||||||
|
|
||||||
|
auto [shift_min, shift_max] = s.m_fixed_bits.min_max(q_val);
|
||||||
|
|
||||||
|
unsigned shift_min_u, shift_max_u;
|
||||||
|
|
||||||
|
if (!shift_min.is_unsigned() || shift_min.get_unsigned() > sz)
|
||||||
|
shift_min_u = sz;
|
||||||
|
else
|
||||||
|
shift_min_u = shift_min.get_unsigned();
|
||||||
|
|
||||||
|
if (!shift_max.is_unsigned() || shift_max.get_unsigned() > sz)
|
||||||
|
shift_max_u = sz;
|
||||||
|
else
|
||||||
|
shift_max_u = shift_max.get_unsigned();
|
||||||
|
|
||||||
|
SASSERT(shift_max_u <= sz);
|
||||||
|
SASSERT(shift_min_u <= shift_max_u);
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < shift_min_u; i++) {
|
||||||
|
if (!s.m_fixed_bits.fix_value(s, m_r, i, BIT_0, this, s.))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
for (unsigned i = shift_min_u; i < sz; i++) {
|
||||||
|
propagate_bit(s, m_r.var(), i, p_val[i - shift_min_u]);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
void op_constraint::activate_and(solver& s) {
|
void op_constraint::activate_and(solver& s) {
|
||||||
auto x = p(), y = q();
|
auto x = p(), y = q();
|
||||||
if (x.is_val())
|
if (x.is_val())
|
||||||
|
@ -448,6 +498,31 @@ namespace polysat {
|
||||||
return l_undef;
|
return l_undef;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool op_constraint::propagate_bits_and(solver& s, bool is_positive){
|
||||||
|
tbv_ref p_val = s.m_fixed_bits.eval(m_p);
|
||||||
|
tbv_ref q_val = s.m_fixed_bits.eval(m_q);
|
||||||
|
tbv_ref r_val = s.m_fixed_bits.eval(m_r);
|
||||||
|
unsigned sz = m_p.power_of_2();
|
||||||
|
|
||||||
|
for (int i = 0; i < sz; i++) {
|
||||||
|
tbit bp = p_val[i];
|
||||||
|
tbit bq = q_val[i];
|
||||||
|
tbit br = r_val[i];
|
||||||
|
|
||||||
|
// TODO: Propagate from the result to the operands. e.g., 110... = xx1... & yyy...
|
||||||
|
// TODO: ==> x = 111..., y = 110...
|
||||||
|
if (bp == BIT_0 || bq == BIT_0) {
|
||||||
|
if (!s.m_fixed_bits.fix_value(s, m_r, i, BIT_0, this, std::pair(m_p, i), std::pair(m_q, i)))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
else if (bp == BIT_1 && bq == BIT_1) {
|
||||||
|
if (!s.m_fixed_bits.fix_value(s, m_r, i, BIT_1, this, std::pair(m_p, i), std::pair(m_q, i)))
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
void op_constraint::add_to_univariate_solver(solver& s, univariate_solver& us, unsigned dep, bool is_positive) const {
|
void op_constraint::add_to_univariate_solver(solver& s, univariate_solver& us, unsigned dep, bool is_positive) const {
|
||||||
auto p_coeff = s.subst(p()).get_univariate_coefficients();
|
auto p_coeff = s.subst(p()).get_univariate_coefficients();
|
||||||
auto q_coeff = s.subst(q()).get_univariate_coefficients();
|
auto q_coeff = s.subst(q()).get_univariate_coefficients();
|
||||||
|
|
|
@ -31,9 +31,9 @@ namespace polysat {
|
||||||
friend class constraint_manager;
|
friend class constraint_manager;
|
||||||
|
|
||||||
code m_op;
|
code m_op;
|
||||||
pdd m_p;
|
pdd m_p; // operand1
|
||||||
pdd m_q;
|
pdd m_q; // operand2
|
||||||
pdd m_r;
|
pdd m_r; // result
|
||||||
|
|
||||||
op_constraint(constraint_manager& m, code c, pdd const& p, pdd const& q, pdd const& r);
|
op_constraint(constraint_manager& m, code c, pdd const& p, pdd const& q, pdd const& r);
|
||||||
lbool eval(pdd const& p, pdd const& q, pdd const& r) const;
|
lbool eval(pdd const& p, pdd const& q, pdd const& r) const;
|
||||||
|
@ -41,12 +41,15 @@ namespace polysat {
|
||||||
|
|
||||||
clause_ref lemma_lshr(solver& s, assignment const& a);
|
clause_ref lemma_lshr(solver& s, assignment const& a);
|
||||||
static lbool eval_lshr(pdd const& p, pdd const& q, pdd const& r);
|
static lbool eval_lshr(pdd const& p, pdd const& q, pdd const& r);
|
||||||
|
bool propagate_bits_lshr(solver& s, bool is_positive);
|
||||||
|
|
||||||
clause_ref lemma_shl(solver& s, assignment const& a);
|
clause_ref lemma_shl(solver& s, assignment const& a);
|
||||||
static lbool eval_shl(pdd const& p, pdd const& q, pdd const& r);
|
static lbool eval_shl(pdd const& p, pdd const& q, pdd const& r);
|
||||||
|
bool propagate_bits_shl(solver& s, bool is_positive);
|
||||||
|
|
||||||
clause_ref lemma_and(solver& s, assignment const& a);
|
clause_ref lemma_and(solver& s, assignment const& a);
|
||||||
static lbool eval_and(pdd const& p, pdd const& q, pdd const& r);
|
static lbool eval_and(pdd const& p, pdd const& q, pdd const& r);
|
||||||
|
bool propagate_bits_and(solver& s, bool is_positive);
|
||||||
|
|
||||||
std::ostream& display(std::ostream& out, char const* eq) const;
|
std::ostream& display(std::ostream& out, char const* eq) const;
|
||||||
|
|
||||||
|
@ -64,6 +67,7 @@ namespace polysat {
|
||||||
lbool eval() const override;
|
lbool eval() const override;
|
||||||
lbool eval(assignment const& a) const override;
|
lbool eval(assignment const& a) const override;
|
||||||
void narrow(solver& s, bool is_positive, bool first) override;
|
void narrow(solver& s, bool is_positive, bool first) override;
|
||||||
|
bool propagate_bits(solver& s, bool is_positive) override;
|
||||||
virtual clause_ref produce_lemma(solver& s, assignment const& a, bool is_positive) override;
|
virtual clause_ref produce_lemma(solver& s, assignment const& a, bool is_positive) override;
|
||||||
unsigned hash() const override;
|
unsigned hash() const override;
|
||||||
bool operator==(constraint const& other) const override;
|
bool operator==(constraint const& other) const override;
|
||||||
|
|
|
@ -24,6 +24,7 @@ Author:
|
||||||
#include "math/polysat/constraint.h"
|
#include "math/polysat/constraint.h"
|
||||||
#include "math/polysat/constraint_manager.h"
|
#include "math/polysat/constraint_manager.h"
|
||||||
#include "math/polysat/clause_builder.h"
|
#include "math/polysat/clause_builder.h"
|
||||||
|
#include "math/polysat/fixed_bits.h"
|
||||||
#include "math/polysat/simplify_clause.h"
|
#include "math/polysat/simplify_clause.h"
|
||||||
#include "math/polysat/simplify.h"
|
#include "math/polysat/simplify.h"
|
||||||
#include "math/polysat/restart.h"
|
#include "math/polysat/restart.h"
|
||||||
|
@ -146,6 +147,7 @@ namespace polysat {
|
||||||
viable m_viable; // viable sets per variable
|
viable m_viable; // viable sets per variable
|
||||||
viable_fallback m_viable_fallback; // fallback for viable, using bitblasting over univariate constraints
|
viable_fallback m_viable_fallback; // fallback for viable, using bitblasting over univariate constraints
|
||||||
linear_solver m_linear_solver;
|
linear_solver m_linear_solver;
|
||||||
|
fixed_bits m_fixed_bits;
|
||||||
conflict m_conflict;
|
conflict m_conflict;
|
||||||
simplify_clause m_simplify_clause;
|
simplify_clause m_simplify_clause;
|
||||||
simplify m_simplify;
|
simplify m_simplify;
|
||||||
|
|
|
@ -132,8 +132,9 @@ class tbv_ref {
|
||||||
tbv_manager& mgr;
|
tbv_manager& mgr;
|
||||||
tbv* d;
|
tbv* d;
|
||||||
public:
|
public:
|
||||||
tbv_ref(tbv_manager& mgr):mgr(mgr),d(nullptr) {}
|
tbv_ref(tbv_manager& mgr) : mgr(mgr), d(nullptr) {}
|
||||||
tbv_ref(tbv_manager& mgr, tbv* d):mgr(mgr),d(d) {}
|
tbv_ref(tbv_manager& mgr, tbv* d) : mgr(mgr), d(d) {}
|
||||||
|
tbv_ref(tbv_ref&& d) : mgr(d.mgr), d(d.detach()) {}
|
||||||
~tbv_ref() {
|
~tbv_ref() {
|
||||||
if (d) mgr.deallocate(d);
|
if (d) mgr.deallocate(d);
|
||||||
}
|
}
|
||||||
|
@ -144,8 +145,11 @@ public:
|
||||||
}
|
}
|
||||||
tbv& operator*() { return *d; }
|
tbv& operator*() { return *d; }
|
||||||
tbv* operator->() { return d; }
|
tbv* operator->() { return d; }
|
||||||
tbv* get() { return d; }
|
tbit operator[](unsigned idx) const { return (*d)[idx]; }
|
||||||
|
tbv* get() const { return d; }
|
||||||
tbv* detach() { tbv* result = d; d = nullptr; return result; }
|
tbv* detach() { tbv* result = d; d = nullptr; return result; }
|
||||||
|
tbv_manager& manager() const { return mgr; }
|
||||||
|
unsigned num_tbits() const { return mgr.num_tbits(); }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue