3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00

First step towards explaining single bits

This commit is contained in:
Clemens Eisenhofer 2022-12-19 12:27:37 +01:00
parent d5bc4b84a7
commit ec06027515
8 changed files with 418 additions and 6 deletions

View file

@ -8,6 +8,7 @@ z3_add_component(polysat
constraint.cpp
constraint_manager.cpp
eq_explain.cpp
fixed_bits.cpp
forbidden_intervals.cpp
inference_logger.cpp
justification.cpp

View file

@ -17,6 +17,7 @@ Author:
#include "math/polysat/interval.h"
#include "math/polysat/assignment.h"
#include "math/polysat/univariate/univariate_solver.h"
#include "util/tbv.h"
#include <iostream>
namespace polysat {
@ -84,6 +85,7 @@ namespace polysat {
bool is_currently_false(solver const& s, bool is_positive) const { return is_currently_true(s, !is_positive); }
virtual void narrow(solver& s, bool is_positive, bool first) = 0;
virtual void propagate_bits(solver& s, bool is_positive) {}
/**
* If possible, produce a lemma that contradicts the given assignment.
* This method should not modify the solver's search state.

View file

@ -0,0 +1,222 @@
/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
fixed_bits
Abstract:
Associates every pdd with the set of already fixed bits and justifications for this
--*/
#include "math/polysat/fixed_bits.h"
#include "math/polysat/solver.h"
namespace polysat {
tbv_manager& fixed_bits::get_manager(unsigned sz){
m_tbv_managers.reserve(sz + 1);
if (!m_tbv_managers[sz])
m_tbv_managers.set(sz, alloc(tbv_manager, sz));
return *m_tbv_managers[sz];
}
tbv_manager& fixed_bits::get_manager(const pdd& v) {
return get_manager(v.power_of_2());
}
tbv_ref& fixed_bits::get_tbv(pvar v, unsigned sz) {
if (m_var_to_tbv.size() <= v) {
m_var_to_tbv.reserve(v + 1);
auto& manager = get_manager(sz);
m_var_to_tbv[v] = tbv_ref(manager, manager.allocate());
return *m_var_to_tbv[v];
}
auto& old_manager = m_var_to_tbv[v]->manager();
if (old_manager.num_tbits() >= sz)
return *(m_var_to_tbv[v]);
tbv* old_tbv = m_var_to_tbv[v]->detach();
auto& new_manager = get_manager(sz);
tbv* new_tbv = new_manager.allocate();
old_manager.copy(*new_tbv, *old_tbv); // Copy the lower bits to the new (larger) tbv
old_manager.deallocate(old_tbv);
m_var_to_tbv[v] = tbv_ref(new_manager, new_tbv);
return *m_var_to_tbv[v];
}
tbv_ref& fixed_bits::get_tbv(const pdd& p) {
SASSERT(p.is_var());
return get_tbv(p.var(), p.power_of_2());
}
tbit fixed_bits::get_value(const pdd& p, unsigned idx) {
SASSERT(p.is_var());
return get_tbv(p)[idx];
}
bool fixed_bits::fix_value(solver& s, const pdd& p, unsigned idx, tbit val, constraint* c, bit_dependency& dep) {
SASSERT(val != BIT_x); // We don't use don't-cares
SASSERT(p.is_var());
if (val == BIT_z)
return true;
tbv_ref& tbv = get_tbv(p);
tbit curr_val = tbv[idx];
if (val == curr_val)
return true;
auto& m = tbv.manager();
if (curr_val == BIT_z) {
m.set(*tbv, idx, val);
m_tbv_to_justification[std::pair(tbv.get(), idx)] = bit_justication(c, (bit_dependency&&)std::move(dep));
return true;
}
SASSERT((curr_val == BIT_1 && val == BIT_0) || (curr_val == BIT_0 && val == BIT_1));
return false;
}
void fixed_bits::clear_value(const pdd& p, unsigned idx) {
SASSERT(p.is_var());
tbv_ref& tbv = get_tbv(p);
auto& m = tbv.manager();
m.set(*tbv, idx, BIT_z);
SASSERT(m_tbv_to_justification.contains(std::pair(tbv.get(), idx)));
m_tbv_to_justification[std::pair(tbv.get(), idx)] = bit_justication();
}
#define COUNT(DOWN, TO_COUNT) \
do { \
unsigned sz = ref.num_tbits(); \
unsigned least = 0; \
for (; least < sz; least++) { \
if (ref[((DOWN) ? sz - least - 1 : least)] != (TO_COUNT)) \
break; \
} \
if (least == sz) \
return { sz, sz }; /* For sure TO_COUNT */ \
unsigned most = least; \
for (; most < sz; most++) { \
if (ref[((DOWN) ? sz - most - 1 : most)] == ((TO_COUNT) == BIT_0 ? BIT_1 : BIT_0)) \
break; \
} \
return { least, most }; /* There are between "least" and "most" leading/trailing TO_COUNT */ \
} while(false)
std::pair<unsigned, unsigned> fixed_bits::leading_zeros(const tbv_ref& ref) { COUNT(false, BIT_0); }
std::pair<unsigned, unsigned> fixed_bits::trailing_zeros(const tbv_ref& ref) { COUNT(true, BIT_0); }
std::pair<unsigned, unsigned> fixed_bits::leading_ones(const tbv_ref& ref) { COUNT(false, BIT_1); }
std::pair<unsigned, unsigned> fixed_bits::trailing_ones(const tbv_ref& ref) { COUNT(true, BIT_1); }
std::pair<rational, rational> fixed_bits::min_max(const tbv_ref& ref) {
unsigned sz = ref.num_tbits();
rational least(0);
rational most(0);
for (unsigned i = 0; i < sz; i++) {
tbit v = ref[i];
least *= 2;
most *= 2;
if (v == BIT_1) {
least++;
most++;
}
else if (v == BIT_z)
most++;
}
return { least, most };
}
// multiplication: (1*p0 + 2*p1 + 4*p2 + 8*p3 + ...) * (1*q0 + 2*q1 + 4*q2 + 8*q3 + ...) =
// = 1 * (p0 q0) + 2 * (p0 q1 + p1 q0) + 4 * (p0 q2 + p1 q1 + p2 q0) + 8 * (p0 q3 + p1 q2 + p2 q1 + p3 q0) + ...
// maintains
void fixed_bits::multiply(tbv_ref& in_out, const tbv_ref& in2) {
auto m= in_out.manager();
m_aux_values.reserve(m.num_tbits());
unsigned min_bit_value = 0; // The value of the current bit assuming all unknown bits are 0
unsigned max_bit_value = 0; // The value of the current bit assuming all unknown bits are 1
// TODO: Check: Is the performance too worse? It is O(k^2)
for (unsigned i = 0; i < m.num_tbits(); i++) {
for (unsigned x = 0, y = i; x <= i; x++, y--) {
tbit bit1 = in_out[x];
tbit bit2 = in2[y];
if (bit1 == BIT_1 && bit2 == BIT_1) {
min_bit_value++; // we get two 1
max_bit_value++;
}
else if (bit1 != BIT_0 && bit2 != BIT_0) {
max_bit_value++; // we could get two 1
}
}
if (min_bit_value == max_bit_value) {
// We know the value of this bit
// As we might access in_out in some later iteration again we first write to aux-list
m_aux_values[i] = min_bit_value & 1 ? BIT_1 : BIT_0;
}
else {
m_aux_values[i] = BIT_z;
}
// Subtract one; shift this to the next higher bit as "carry value"
min_bit_value >>= 1;
max_bit_value >>= 1;
}
// Copy aux to result tbv
for (unsigned i = 0; i < m.num_tbits(); i++) {
m.set(*in_out, i, (tbit)m_aux_values[i]);
}
}
// similar to multiplying
void fixed_bits::add(tbv_ref& in_out, const tbv_ref& in2) {
auto m= in_out.manager();
unsigned min_bit_value = 0;
unsigned max_bit_value = 0;
for (unsigned i = 0; i < m.num_tbits(); i++) {
tbit bit1 = in_out[i];
tbit bit2 = in2[i];
if (bit1 == BIT_1 && bit2 == BIT_1) {
min_bit_value++;
max_bit_value++;
}
else if (bit1 != BIT_0 && bit2 != BIT_0) {
max_bit_value++;
}
if (min_bit_value == max_bit_value)
// for addition we don't need previous values so we can directly write to the output variable
m.set(*in_out, i, min_bit_value & 1 ? BIT_1 : BIT_0);
else
m.set(*in_out, i, BIT_z);
min_bit_value >>= 1;
max_bit_value >>= 1;
}
}
tbv_ref fixed_bits::eval(const pdd& p) {
tbv_manager m = get_manager(p);
unsigned sz = m.num_tbits();
tbv_ref ret = tbv_ref(m, m.allocate(0ull));
for (const dd::pdd_monomial& s : p) {
SASSERT(!s.coeff.is_zero());
tbv_ref sum = tbv_ref(m, m.allocate(s.coeff));
for (pvar fac : s.vars) {
multiply(sum, get_tbv(fac, sz));
}
add(ret, sum);
}
return ret;
}
}

View file

@ -0,0 +1,102 @@
/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
fixed_bits
Abstract:
Associates every pdd with the set of already fixed bits and justifications for this
--*/
#pragma once
#include "types.h"
#include "util/hash.h"
#include "util/optional.h"
#include "util/tbv.h"
namespace polysat {
class solver;
using bit_dependency = vector<std::pair<pdd, unsigned>>;
struct bit_justication {
constraint* m_constraint = nullptr;
// variables + resp., bit-index
// (a variable might occur multiple times if more bits are relevant)
bit_dependency m_dependencies;
public:
bit_justication(constraint *pRaint, bit_dependency vector) = default;
bit_justication(constraint* c) : m_constraint(c) { }
bit_justication(constraint* c, bit_dependency&& dep) : m_constraint(c), m_dependencies(dep) { }
};
class fixed_bits {
solver& m_solver;
scoped_ptr_vector<tbv_manager> m_tbv_managers;
char_vector m_aux_values;
//using pdd_to_tbv_key = optional<pdd>;
//using pdd_to_tbv_eq = default_eq<pdd_to_tbv_key>;
//struct pdd_to_tbv_hash {
// unsigned operator()(pdd_to_tbv_key const& args) const {
// return args ? args->hash() : 0;
// }
//};
//using pdd_to_tbv_map = map<pdd_to_tbv_key, tbv_ref, pdd_to_tbv_hash, pdd_to_tbv_eq>;
using tbv_to_justification_key = std::pair<tbv*, unsigned>;
using tbv_to_justification_eq = default_eq<tbv_to_justification_key>;
struct tbv_to_justification_hash {
unsigned operator()(tbv_to_justification_key const& args) const {
return combine_hash((unsigned)args.first, args.second);
}
};
using tbv_to_justification_map = map<tbv_to_justification_key, bit_justication, tbv_to_justification_hash, tbv_to_justification_eq>;
vector<optional<tbv_ref>> m_var_to_tbv;
tbv_to_justification_map m_tbv_to_justification;
tbv_manager& get_manager(const pdd& v);
tbv_manager& get_manager(unsigned sz);
void add(tbv_ref& in_out, const tbv_ref& in2);
void multiply(tbv_ref& in_out, const tbv_ref& in2);
tbv_ref& get_tbv(pvar v, unsigned sz);
tbv_ref& get_tbv(const pdd& p);
public:
fixed_bits(solver& s) : m_solver(s) {}
// #count [min; max]
static std::pair<unsigned, unsigned> leading_zeros(const tbv_ref& ref);
static std::pair<unsigned, unsigned> trailing_zeros(const tbv_ref& ref);
static std::pair<unsigned, unsigned> leading_ones(const tbv_ref& ref);
static std::pair<unsigned, unsigned> trailing_ones(const tbv_ref& ref);
static std::pair<rational, rational> min_max(const tbv_ref& ref);
tbit get_value(const pdd& p, unsigned idx); // More efficient than calling "eval" and accessing the returned tbv elements
bool fix_value(solver& s, const pdd& p, unsigned idx, tbit val, constraint* c, bit_dependency& dep);
bool fix_value(solver& s, const pdd& p, unsigned idx, tbit val, constraint* c, std::pair<pdd, unsigned> v1, std::pair<pdd, unsigned> v2) {
bit_dependency dep(2);
dep.push_back(v1);
dep.push_back(v2);
return fix_value(s, p, idx, val, c, dep);
}
void clear_value(const pdd& p, unsigned idx);
tbv_ref eval(const pdd& p);
};
}

View file

@ -113,6 +113,9 @@ namespace polysat {
if (first)
activate(s);
if (!propagate_bits(s, is_positive))
return; // conflict
if (clause_ref lemma = produce_lemma(s, s.assignment()))
s.add_clause(*lemma);
@ -120,6 +123,20 @@ namespace polysat {
s.set_conflict(signed_constraint(this, is_positive));
}
bool op_constraint::propagate_bits(solver& s, bool is_positive) {
switch (m_op) {
case code::lshr_op:
return propagate_bits_lshr(s, is_positive);
case code::shl_op:
return propagate_bits_shl(s, is_positive);
case code::and_op:
return propagate_bits_and(s, is_positive);
default:
NOT_IMPLEMENTED_YET();
return false;
}
}
/**
* Produce lemmas that contradict the given assignment.
*
@ -335,6 +352,39 @@ namespace polysat {
return l_undef;
}
bool op_constraint::propagate_bits_shl(solver& s, bool is_positive) {
tbv_ref p_val = s.m_fixed_bits.eval(m_p);
tbv_ref q_val = s.m_fixed_bits.eval(m_q);
tbv_ref r_val = s.m_fixed_bits.eval(m_r);
unsigned sz = m_p.power_of_2();
auto [shift_min, shift_max] = s.m_fixed_bits.min_max(q_val);
unsigned shift_min_u, shift_max_u;
if (!shift_min.is_unsigned() || shift_min.get_unsigned() > sz)
shift_min_u = sz;
else
shift_min_u = shift_min.get_unsigned();
if (!shift_max.is_unsigned() || shift_max.get_unsigned() > sz)
shift_max_u = sz;
else
shift_max_u = shift_max.get_unsigned();
SASSERT(shift_max_u <= sz);
SASSERT(shift_min_u <= shift_max_u);
for (unsigned i = 0; i < shift_min_u; i++) {
if (!s.m_fixed_bits.fix_value(s, m_r, i, BIT_0, this, s.))
return false;
}
for (unsigned i = shift_min_u; i < sz; i++) {
propagate_bit(s, m_r.var(), i, p_val[i - shift_min_u]);
}
}
void op_constraint::activate_and(solver& s) {
auto x = p(), y = q();
if (x.is_val())
@ -448,6 +498,31 @@ namespace polysat {
return l_undef;
}
bool op_constraint::propagate_bits_and(solver& s, bool is_positive){
tbv_ref p_val = s.m_fixed_bits.eval(m_p);
tbv_ref q_val = s.m_fixed_bits.eval(m_q);
tbv_ref r_val = s.m_fixed_bits.eval(m_r);
unsigned sz = m_p.power_of_2();
for (int i = 0; i < sz; i++) {
tbit bp = p_val[i];
tbit bq = q_val[i];
tbit br = r_val[i];
// TODO: Propagate from the result to the operands. e.g., 110... = xx1... & yyy...
// TODO: ==> x = 111..., y = 110...
if (bp == BIT_0 || bq == BIT_0) {
if (!s.m_fixed_bits.fix_value(s, m_r, i, BIT_0, this, std::pair(m_p, i), std::pair(m_q, i)))
return false;
}
else if (bp == BIT_1 && bq == BIT_1) {
if (!s.m_fixed_bits.fix_value(s, m_r, i, BIT_1, this, std::pair(m_p, i), std::pair(m_q, i)))
return false;
}
}
return true;
}
void op_constraint::add_to_univariate_solver(solver& s, univariate_solver& us, unsigned dep, bool is_positive) const {
auto p_coeff = s.subst(p()).get_univariate_coefficients();
auto q_coeff = s.subst(q()).get_univariate_coefficients();

View file

@ -31,9 +31,9 @@ namespace polysat {
friend class constraint_manager;
code m_op;
pdd m_p;
pdd m_q;
pdd m_r;
pdd m_p; // operand1
pdd m_q; // operand2
pdd m_r; // result
op_constraint(constraint_manager& m, code c, pdd const& p, pdd const& q, pdd const& r);
lbool eval(pdd const& p, pdd const& q, pdd const& r) const;
@ -41,12 +41,15 @@ namespace polysat {
clause_ref lemma_lshr(solver& s, assignment const& a);
static lbool eval_lshr(pdd const& p, pdd const& q, pdd const& r);
bool propagate_bits_lshr(solver& s, bool is_positive);
clause_ref lemma_shl(solver& s, assignment const& a);
static lbool eval_shl(pdd const& p, pdd const& q, pdd const& r);
bool propagate_bits_shl(solver& s, bool is_positive);
clause_ref lemma_and(solver& s, assignment const& a);
static lbool eval_and(pdd const& p, pdd const& q, pdd const& r);
bool propagate_bits_and(solver& s, bool is_positive);
std::ostream& display(std::ostream& out, char const* eq) const;
@ -64,6 +67,7 @@ namespace polysat {
lbool eval() const override;
lbool eval(assignment const& a) const override;
void narrow(solver& s, bool is_positive, bool first) override;
bool propagate_bits(solver& s, bool is_positive) override;
virtual clause_ref produce_lemma(solver& s, assignment const& a, bool is_positive) override;
unsigned hash() const override;
bool operator==(constraint const& other) const override;

View file

@ -24,6 +24,7 @@ Author:
#include "math/polysat/constraint.h"
#include "math/polysat/constraint_manager.h"
#include "math/polysat/clause_builder.h"
#include "math/polysat/fixed_bits.h"
#include "math/polysat/simplify_clause.h"
#include "math/polysat/simplify.h"
#include "math/polysat/restart.h"
@ -146,6 +147,7 @@ namespace polysat {
viable m_viable; // viable sets per variable
viable_fallback m_viable_fallback; // fallback for viable, using bitblasting over univariate constraints
linear_solver m_linear_solver;
fixed_bits m_fixed_bits;
conflict m_conflict;
simplify_clause m_simplify_clause;
simplify m_simplify;