mirror of
https://github.com/Z3Prover/z3
synced 2025-04-08 18:31:49 +00:00
fixing bugs exposed by msf unit tests
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
a737639790
commit
eacb48268c
|
@ -28,6 +28,7 @@ Notes:
|
|||
#include "lia2card_tactic.h"
|
||||
#include "elim01_tactic.h"
|
||||
#include "tactical.h"
|
||||
#include "th_rewriter.h"
|
||||
|
||||
namespace opt {
|
||||
|
||||
|
@ -64,9 +65,14 @@ namespace opt {
|
|||
}
|
||||
|
||||
unsigned context::add_objective(app* t, bool is_max) {
|
||||
app_ref tr(t, m);
|
||||
expr_ref tr(t, m);
|
||||
app_ref ar(m);
|
||||
th_rewriter rewrite(m);
|
||||
rewrite(tr);
|
||||
SASSERT(is_app(tr));
|
||||
ar = to_app(tr);
|
||||
unsigned index = m_objectives.size();
|
||||
m_objectives.push_back(objective(is_max, tr, index));
|
||||
m_objectives.push_back(objective(is_max, ar, index));
|
||||
return index;
|
||||
}
|
||||
|
||||
|
|
|
@ -230,8 +230,10 @@ namespace opt {
|
|||
solver.reset_objectives();
|
||||
m_vars.reset();
|
||||
|
||||
// First check_sat call to initialize theories
|
||||
solver::scoped_push _push(solver);
|
||||
{
|
||||
// force base level
|
||||
solver::scoped_push _push(solver);
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < m_objs.size(); ++i) {
|
||||
m_vars.push_back(solver.add_objective(m_objs[i].get()));
|
||||
|
|
|
@ -1045,25 +1045,44 @@ namespace smt {
|
|||
}
|
||||
|
||||
/**
|
||||
\brief: assert val < v
|
||||
\brief: Create an atom that enforces the inequality v > val
|
||||
The arithmetical expression encoding the inequality suffices
|
||||
for the theory of aritmetic.
|
||||
*/
|
||||
template<typename Ext>
|
||||
expr* theory_arith<Ext>::mk_gt(theory_var v, inf_rational const& val) {
|
||||
ast_manager& m = get_manager();
|
||||
expr* obj = get_enode(v)->get_owner();
|
||||
expr_ref e(m);
|
||||
e = m_util.mk_numeral(val.get_rational(), m.get_sort(obj));
|
||||
|
||||
if (val.get_infinitesimal().is_neg()) {
|
||||
rational r = val.get_rational();
|
||||
if (m_util.is_int(m.get_sort(obj))) {
|
||||
if (r.is_int()) {
|
||||
r += rational::one();
|
||||
}
|
||||
else {
|
||||
r = ceil(r);
|
||||
}
|
||||
e = m_util.mk_numeral(r, m.get_sort(obj));
|
||||
return m_util.mk_ge(obj, e);
|
||||
}
|
||||
else {
|
||||
return m_util.mk_gt(obj, e);
|
||||
// obj is over the reals.
|
||||
e = m_util.mk_numeral(r, m.get_sort(obj));
|
||||
|
||||
if (val.get_infinitesimal().is_neg()) {
|
||||
return m_util.mk_ge(obj, e);
|
||||
}
|
||||
else {
|
||||
return m_util.mk_gt(obj, e);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
\brief assert val <= v
|
||||
\brief create atom that enforces: val <= v
|
||||
The atom that enforces the inequality is created directly
|
||||
as opposed to using arithmetical terms.
|
||||
This allows to handle inequalities with non-standard numbers.
|
||||
*/
|
||||
template<typename Ext>
|
||||
expr* theory_arith<Ext>::mk_ge(theory_var v, inf_numeral const& val) {
|
||||
|
@ -1071,11 +1090,11 @@ namespace smt {
|
|||
ast_manager& m = get_manager();
|
||||
context& ctx = get_context();
|
||||
std::ostringstream strm;
|
||||
expr_ref b(m);
|
||||
strm << val << " <= v" << v;
|
||||
expr* b = m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort());
|
||||
// NB: For some reason, v has been internalized however it has no entry in m_unassigned_atoms
|
||||
b = m.mk_const(symbol(strm.str().c_str()), m.mk_bool_sort());
|
||||
SASSERT(m_unassigned_atoms.size() == m_var_occs.size());
|
||||
if (!ctx.b_internalized(b) && ((unsigned)v < m_unassigned_atoms.size())) {
|
||||
if (!ctx.b_internalized(b)) {
|
||||
bool_var bv = ctx.mk_bool_var(b);
|
||||
ctx.set_var_theory(bv, get_id());
|
||||
// ctx.set_enode_flag(bv, true);
|
||||
|
|
Loading…
Reference in a new issue