mirror of
https://github.com/Z3Prover/z3
synced 2025-04-27 10:55:50 +00:00
Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
3f9edad676
commit
e9eab22e5c
1186 changed files with 381859 additions and 0 deletions
446
lib/rational.h
Normal file
446
lib/rational.h
Normal file
|
@ -0,0 +1,446 @@
|
|||
/*++
|
||||
Copyright (c) 2006 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
rational.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Rational numbers
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2006-09-18.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef _RATIONAL_H_
|
||||
#define _RATIONAL_H_
|
||||
|
||||
#include"mpq.h"
|
||||
|
||||
class rational {
|
||||
mpq m_val;
|
||||
static rational m_zero;
|
||||
static rational m_one;
|
||||
static rational m_minus_one;
|
||||
|
||||
static synch_mpq_manager * g_mpq_manager;
|
||||
|
||||
static synch_mpq_manager & m() { return *g_mpq_manager; }
|
||||
|
||||
public:
|
||||
static void initialize();
|
||||
|
||||
static void finalize();
|
||||
|
||||
rational() {}
|
||||
|
||||
rational(rational const & r) { m().set(m_val, r.m_val); }
|
||||
|
||||
explicit rational(int n) { m().set(m_val, n); }
|
||||
|
||||
explicit rational(unsigned n) { m().set(m_val, n); }
|
||||
|
||||
rational(int n, int d) { m().set(m_val, n, d); }
|
||||
|
||||
rational(mpq const & q) { m().set(m_val, q); }
|
||||
|
||||
rational(mpz const & z) { m().set(m_val, z); }
|
||||
|
||||
explicit rational(char const * v) { m().set(m_val, v); }
|
||||
|
||||
struct i64 {};
|
||||
rational(int64 i, i64) { m().set(m_val, i); }
|
||||
|
||||
struct ui64 {};
|
||||
rational(uint64 i, ui64) { m().set(m_val, i); }
|
||||
|
||||
~rational() { m().del(m_val); }
|
||||
|
||||
mpq const & to_mpq() const { return m_val; }
|
||||
|
||||
unsigned bitsize() const { return m().bitsize(m_val); }
|
||||
|
||||
void reset() { m().reset(m_val); }
|
||||
|
||||
bool is_int() const { return m().is_int(m_val); }
|
||||
|
||||
bool is_small() const { return m().is_small(m_val); }
|
||||
|
||||
bool is_big() const { return !is_small(); }
|
||||
|
||||
unsigned hash() const { return m().hash(m_val); }
|
||||
|
||||
struct hash_proc { unsigned operator()(rational const& r) const { return r.hash(); } };
|
||||
|
||||
struct eq_proc { bool operator()(rational const& r1, rational const& r2) const { return r1 == r2; } };
|
||||
|
||||
void swap(rational & n) { m().swap(m_val, n.m_val); }
|
||||
|
||||
std::string to_string() const { return m().to_string(m_val); }
|
||||
|
||||
void display(std::ostream & out) const { return m().display(out, m_val); }
|
||||
|
||||
void display_decimal(std::ostream & out, unsigned prec) const { return m().display_decimal(out, m_val, prec); }
|
||||
|
||||
bool is_uint64() const { return m().is_uint64(m_val); }
|
||||
|
||||
bool is_int64() const { return m().is_int64(m_val); }
|
||||
|
||||
uint64 get_uint64() const { return m().get_uint64(m_val); }
|
||||
|
||||
int64 get_int64() const { return m().get_int64(m_val); }
|
||||
|
||||
bool is_unsigned() const { return is_uint64() && (get_uint64() < (1ull << 32)); }
|
||||
|
||||
unsigned get_unsigned() const {
|
||||
SASSERT(is_unsigned());
|
||||
return static_cast<unsigned>(get_uint64());
|
||||
}
|
||||
|
||||
bool is_int32() const {
|
||||
if (is_small()) return true;
|
||||
// we don't assume that if it is small, then it is int32.
|
||||
if (!is_int64()) return false;
|
||||
int64 v = get_int64();
|
||||
return INT_MIN <= v && v <= INT_MAX;
|
||||
}
|
||||
|
||||
double get_double() const { return m().get_double(m_val); }
|
||||
|
||||
rational const & get_rational() const { return *this; }
|
||||
|
||||
rational const & get_infinitesimal() const { return m_zero; }
|
||||
|
||||
rational & operator=(rational const & r) {
|
||||
m().set(m_val, r.m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend inline rational numerator(rational const & r) { rational result; m().get_numerator(r.m_val, result.m_val); return result; }
|
||||
|
||||
friend inline rational denominator(rational const & r) { rational result; m().get_denominator(r.m_val, result.m_val); return result; }
|
||||
|
||||
rational & operator+=(rational const & r) {
|
||||
m().add(m_val, r.m_val, m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
rational & operator-=(rational const & r) {
|
||||
m().sub(m_val, r.m_val, m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
rational & operator*=(rational const & r) {
|
||||
m().mul(m_val, r.m_val, m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
rational & operator/=(rational const & r) {
|
||||
m().div(m_val, r.m_val, m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
rational & operator%=(rational const & r) {
|
||||
m().rem(m_val, r.m_val, m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend inline rational div(rational const & r1, rational const & r2) {
|
||||
rational r;
|
||||
rational::m().idiv(r1.m_val, r2.m_val, r.m_val);
|
||||
return r;
|
||||
}
|
||||
|
||||
friend inline void div(rational const & r1, rational const & r2, rational & r) {
|
||||
rational::m().idiv(r1.m_val, r2.m_val, r.m_val);
|
||||
}
|
||||
|
||||
friend inline rational machine_div(rational const & r1, rational const & r2) {
|
||||
rational r;
|
||||
rational::m().machine_idiv(r1.m_val, r2.m_val, r.m_val);
|
||||
return r;
|
||||
}
|
||||
|
||||
friend inline rational mod(rational const & r1, rational const & r2) {
|
||||
rational r;
|
||||
rational::m().mod(r1.m_val, r2.m_val, r.m_val);
|
||||
return r;
|
||||
}
|
||||
|
||||
friend inline void mod(rational const & r1, rational const & r2, rational & r) {
|
||||
rational::m().mod(r1.m_val, r2.m_val, r.m_val);
|
||||
}
|
||||
|
||||
friend inline rational operator%(rational const & r1, rational const & r2) {
|
||||
rational r;
|
||||
rational::m().rem(r1.m_val, r2.m_val, r.m_val);
|
||||
return r;
|
||||
}
|
||||
|
||||
friend inline rational mod_hat(rational const & a, rational const & b) {
|
||||
SASSERT(b.is_pos());
|
||||
rational r = mod(a,b);
|
||||
SASSERT(r.is_nonneg());
|
||||
rational r2 = r;
|
||||
r2 *= rational(2);
|
||||
if (operator<(b, r2)) {
|
||||
r -= b;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
rational & operator++() {
|
||||
m().add(m_val, m().mk_q(1), m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
const rational operator++(int) { rational tmp(*this); ++(*this); return tmp; }
|
||||
|
||||
rational & operator--() {
|
||||
m().sub(m_val, m().mk_q(1), m_val);
|
||||
return *this;
|
||||
}
|
||||
|
||||
const rational operator--(int) { rational tmp(*this); --(*this); return tmp; }
|
||||
|
||||
friend inline bool operator==(rational const & r1, rational const & r2) {
|
||||
return rational::m().eq(r1.m_val, r2.m_val);
|
||||
}
|
||||
|
||||
friend inline bool operator<(rational const & r1, rational const & r2) {
|
||||
return rational::m().lt(r1.m_val, r2.m_val);
|
||||
}
|
||||
|
||||
void neg() {
|
||||
m().neg(m_val);
|
||||
}
|
||||
|
||||
bool is_zero() const {
|
||||
return m().is_zero(m_val);
|
||||
}
|
||||
|
||||
bool is_one() const {
|
||||
return m().is_one(m_val);
|
||||
}
|
||||
|
||||
bool is_minus_one() const {
|
||||
return m().is_minus_one(m_val);
|
||||
}
|
||||
|
||||
bool is_neg() const {
|
||||
return m().is_neg(m_val);
|
||||
}
|
||||
|
||||
bool is_pos() const {
|
||||
return m().is_pos(m_val);
|
||||
}
|
||||
|
||||
bool is_nonneg() const {
|
||||
return m().is_nonneg(m_val);
|
||||
}
|
||||
|
||||
bool is_nonpos() const {
|
||||
return m().is_nonpos(m_val);
|
||||
}
|
||||
|
||||
bool is_even() const {
|
||||
return m().is_even(m_val);
|
||||
}
|
||||
|
||||
friend inline rational floor(rational const & r) {
|
||||
rational f;
|
||||
rational::m().floor(r.m_val, f.m_val);
|
||||
return f;
|
||||
}
|
||||
|
||||
friend inline rational ceil(rational const & r) {
|
||||
rational f;
|
||||
rational::m().ceil(r.m_val, f.m_val);
|
||||
return f;
|
||||
}
|
||||
|
||||
rational expt(int n) const {
|
||||
rational result;
|
||||
m().power(m_val, n, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
bool is_power_of_two(unsigned & shift) {
|
||||
return m().is_power_of_two(m_val, shift);
|
||||
}
|
||||
|
||||
static rational const & zero() {
|
||||
return m_zero;
|
||||
}
|
||||
|
||||
static rational const & one() {
|
||||
return m_one;
|
||||
}
|
||||
|
||||
static rational const & minus_one() {
|
||||
return m_minus_one;
|
||||
}
|
||||
|
||||
void addmul(rational const & c, rational const & k) {
|
||||
if (c.is_one())
|
||||
operator+=(k);
|
||||
else if (c.is_minus_one())
|
||||
operator-=(k);
|
||||
else {
|
||||
rational tmp(k);
|
||||
tmp *= c;
|
||||
operator+=(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
// Perform: this -= c * k
|
||||
void submul(const rational & c, const rational & k) {
|
||||
if (c.is_one())
|
||||
operator-=(k);
|
||||
else if (c.is_minus_one())
|
||||
operator+=(k);
|
||||
else {
|
||||
rational tmp(k);
|
||||
tmp *= c;
|
||||
operator-=(tmp);
|
||||
}
|
||||
}
|
||||
|
||||
bool is_int_perfect_square(rational & root) const {
|
||||
return m().is_int_perfect_square(m_val, root.m_val);
|
||||
}
|
||||
|
||||
bool is_perfect_square(rational & root) const {
|
||||
return m().is_perfect_square(m_val, root.m_val);
|
||||
}
|
||||
|
||||
bool root(unsigned n, rational & root) const {
|
||||
return m().root(m_val, n, root.m_val);
|
||||
}
|
||||
|
||||
friend inline std::ostream & operator<<(std::ostream & target, rational const & r) {
|
||||
target << m().to_string(r.m_val);
|
||||
return target;
|
||||
}
|
||||
|
||||
friend inline rational gcd(rational const & r1, rational const & r2) {
|
||||
rational result;
|
||||
m().gcd(r1.m_val, r2.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
//
|
||||
// extended Euclid:
|
||||
// r1*a + r2*b = gcd
|
||||
//
|
||||
friend inline rational gcd(rational const & r1, rational const & r2, rational & a, rational & b) {
|
||||
rational result;
|
||||
m().gcd(r1.m_val, r2.m_val, a.m_val, b.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
friend inline rational lcm(rational const & r1, rational const & r2) {
|
||||
rational result;
|
||||
m().lcm(r1.m_val, r2.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
friend inline rational bitwise_or(rational const & r1, rational const & r2) {
|
||||
rational result;
|
||||
m().bitwise_or(r1.m_val, r2.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
friend inline rational bitwise_and(rational const & r1, rational const & r2) {
|
||||
rational result;
|
||||
m().bitwise_and(r1.m_val, r2.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
friend inline rational bitwise_xor(rational const & r1, rational const & r2) {
|
||||
rational result;
|
||||
m().bitwise_xor(r1.m_val, r2.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
friend inline rational bitwise_not(unsigned sz, rational const & r1) {
|
||||
rational result;
|
||||
m().bitwise_not(sz, r1.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
friend inline rational abs(rational const & r) {
|
||||
rational result(r);
|
||||
m().abs(result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
rational to_rational() const { return *this; }
|
||||
|
||||
static bool is_rational() { return true; }
|
||||
|
||||
unsigned get_num_bits() const {
|
||||
rational two(2);
|
||||
SASSERT(is_int());
|
||||
SASSERT(!is_neg());
|
||||
rational n(*this);
|
||||
unsigned num_bits = 1;
|
||||
n = div(n, two);
|
||||
while (n.is_pos()) {
|
||||
++num_bits;
|
||||
n = div(n, two);
|
||||
}
|
||||
return num_bits;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
inline bool operator!=(rational const & r1, rational const & r2) {
|
||||
return !operator==(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator>(rational const & r1, rational const & r2) {
|
||||
return operator<(r2, r1);
|
||||
}
|
||||
|
||||
inline bool operator<=(rational const & r1, rational const & r2) {
|
||||
return !operator>(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator>=(rational const & r1, rational const & r2) {
|
||||
return !operator<(r1, r2);
|
||||
}
|
||||
|
||||
inline rational operator+(rational const & r1, rational const & r2) {
|
||||
return rational(r1) += r2;
|
||||
}
|
||||
|
||||
inline rational operator-(rational const & r1, rational const & r2) {
|
||||
return rational(r1) -= r2;
|
||||
}
|
||||
|
||||
inline rational operator-(rational const & r) {
|
||||
rational result(r);
|
||||
result.neg();
|
||||
return result;
|
||||
}
|
||||
|
||||
inline rational operator*(rational const & r1, rational const & r2) {
|
||||
return rational(r1) *= r2;
|
||||
}
|
||||
|
||||
inline rational operator/(rational const & r1, rational const & r2) {
|
||||
return rational(r1) /= r2;
|
||||
}
|
||||
|
||||
inline rational power(rational const & r, unsigned p) {
|
||||
return r.expt(p);
|
||||
}
|
||||
|
||||
#endif /* _RATIONAL_H_ */
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue