mirror of
https://github.com/Z3Prover/z3
synced 2025-05-09 00:35:47 +00:00
Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
3f9edad676
commit
e9eab22e5c
1186 changed files with 381859 additions and 0 deletions
372
lib/inf_int_rational.h
Normal file
372
lib/inf_int_rational.h
Normal file
|
@ -0,0 +1,372 @@
|
|||
/*++
|
||||
Copyright (c) 2006 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
inf_int_rational.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Rational numbers with infenitesimals
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2006-09-18.
|
||||
Nikolaj Bjorner (nbjorner) 2006-10-24.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef _INF_INT_RATIONAL_H_
|
||||
#define _INF_INT_RATIONAL_H_
|
||||
#include<stdlib.h>
|
||||
#include<string>
|
||||
#include"debug.h"
|
||||
#include"vector.h"
|
||||
#include"rational.h"
|
||||
|
||||
|
||||
class inf_int_rational {
|
||||
static inf_int_rational m_zero;
|
||||
static inf_int_rational m_one;
|
||||
static inf_int_rational m_minus_one;
|
||||
rational m_first;
|
||||
int m_second;
|
||||
public:
|
||||
|
||||
unsigned hash() const {
|
||||
return m_first.hash() ^ (static_cast<unsigned>(m_second) + 1);
|
||||
}
|
||||
|
||||
struct hash_proc { unsigned operator()(inf_int_rational const& r) const { return r.hash(); } };
|
||||
|
||||
struct eq_proc { bool operator()(inf_int_rational const& r1, inf_int_rational const& r2) const { return r1 == r2; } };
|
||||
|
||||
void swap(inf_int_rational & n) {
|
||||
m_first.swap(n.m_first);
|
||||
std::swap(m_second, n.m_second);
|
||||
}
|
||||
|
||||
std::string to_string() const;
|
||||
|
||||
inf_int_rational():
|
||||
m_first(rational()),
|
||||
m_second(0)
|
||||
{}
|
||||
|
||||
inf_int_rational(const inf_int_rational & r):
|
||||
m_first(r.m_first),
|
||||
m_second(r.m_second)
|
||||
{}
|
||||
|
||||
explicit inf_int_rational(int n):
|
||||
m_first(rational(n)),
|
||||
m_second(0)
|
||||
{}
|
||||
|
||||
explicit inf_int_rational(int n, int d):
|
||||
m_first(rational(n,d)),
|
||||
m_second(0)
|
||||
{}
|
||||
|
||||
explicit inf_int_rational(rational const& r, bool pos_inf):
|
||||
m_first(r),
|
||||
m_second(pos_inf?1:-1)
|
||||
{}
|
||||
|
||||
explicit inf_int_rational(rational const& r):
|
||||
m_first(r),
|
||||
m_second(0) {}
|
||||
|
||||
inf_int_rational(rational const& r, int i):
|
||||
m_first(r),
|
||||
m_second(i) {
|
||||
}
|
||||
|
||||
~inf_int_rational() {}
|
||||
|
||||
/**
|
||||
\brief Set inf_int_rational to 0.
|
||||
*/
|
||||
void reset() {
|
||||
m_first.reset();
|
||||
m_second = 0;
|
||||
}
|
||||
|
||||
bool is_int() const {
|
||||
return m_first.is_int() && m_second == 0;
|
||||
}
|
||||
|
||||
bool is_int64() const {
|
||||
return m_first.is_int64() && m_second == 0;
|
||||
}
|
||||
|
||||
bool is_uint64() const {
|
||||
return m_first.is_uint64() && m_second == 0;
|
||||
}
|
||||
|
||||
bool is_rational() const { return m_second == 0; }
|
||||
|
||||
int64 get_int64() const {
|
||||
SASSERT(is_int64());
|
||||
return m_first.get_int64();
|
||||
}
|
||||
|
||||
uint64 get_uint64() const {
|
||||
SASSERT(is_uint64());
|
||||
return m_first.get_uint64();
|
||||
}
|
||||
|
||||
rational const& get_rational() const {
|
||||
return m_first;
|
||||
}
|
||||
|
||||
rational get_infinitesimal() const {
|
||||
return rational(m_second);
|
||||
}
|
||||
|
||||
rational const & get_first() const { return m_first; }
|
||||
|
||||
inf_int_rational & operator=(const inf_int_rational & r) {
|
||||
m_first = r.m_first;
|
||||
m_second = r.m_second;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_int_rational & operator=(const rational & r) {
|
||||
m_first = r;
|
||||
m_second = 0;
|
||||
return *this;
|
||||
}
|
||||
|
||||
friend inline inf_int_rational numerator(const inf_int_rational & r) {
|
||||
SASSERT(r.m_second == 0);
|
||||
return inf_int_rational(numerator(r.m_first));
|
||||
}
|
||||
|
||||
friend inline inf_int_rational denominator(const inf_int_rational & r) {
|
||||
SASSERT(r.m_second == 0);
|
||||
return inf_int_rational(denominator(r.m_first));
|
||||
}
|
||||
|
||||
inf_int_rational & operator+=(const inf_int_rational & r) {
|
||||
m_first += r.m_first;
|
||||
m_second += r.m_second;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_int_rational & operator-=(const inf_int_rational & r) {
|
||||
m_first -= r.m_first;
|
||||
m_second -= r.m_second;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_int_rational & operator+=(const rational & r) {
|
||||
m_first += r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_int_rational & operator-=(const rational & r) {
|
||||
m_first -= r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_int_rational & operator++() {
|
||||
++m_first;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const inf_int_rational operator++(int) { inf_int_rational tmp(*this); ++(*this); return tmp; }
|
||||
|
||||
inf_int_rational & operator--() {
|
||||
--m_first;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const inf_int_rational operator--(int) { inf_int_rational tmp(*this); --(*this); return tmp; }
|
||||
|
||||
friend inline bool operator==(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return r1.m_first == r2.m_first && r1.m_second == r2.m_second;
|
||||
}
|
||||
|
||||
friend inline bool operator==(const rational & r1, const inf_int_rational & r2) {
|
||||
return r1 == r2.m_first && r2.m_second == 0;
|
||||
}
|
||||
|
||||
friend inline bool operator==(const inf_int_rational & r1, const rational & r2) {
|
||||
return r1.m_first == r2 && r1.m_second == 0;
|
||||
}
|
||||
|
||||
friend inline bool operator<(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return
|
||||
(r1.m_first < r2.m_first) ||
|
||||
(r1.m_first == r2.m_first && r1.m_second < r2.m_second);
|
||||
}
|
||||
|
||||
friend inline bool operator<(const rational & r1, const inf_int_rational & r2) {
|
||||
return
|
||||
(r1 < r2.m_first) ||
|
||||
(r1 == r2.m_first && r2.m_second > 0);
|
||||
}
|
||||
|
||||
friend inline bool operator<(const inf_int_rational & r1, const rational & r2) {
|
||||
return
|
||||
(r1.m_first < r2) ||
|
||||
(r1.m_first == r2 && r1.m_second < 0);
|
||||
}
|
||||
|
||||
void neg() {
|
||||
m_first.neg();
|
||||
m_second = -m_second;
|
||||
}
|
||||
|
||||
bool is_zero() const {
|
||||
return m_first.is_zero() && m_second == 0;
|
||||
}
|
||||
|
||||
bool is_one() const {
|
||||
return m_first.is_one() && m_second == 0;
|
||||
}
|
||||
|
||||
bool is_minus_one() const {
|
||||
return m_first.is_minus_one() && m_second == 0;
|
||||
}
|
||||
|
||||
bool is_neg() const {
|
||||
return
|
||||
m_first.is_neg() ||
|
||||
(m_first.is_zero() && m_second < 0);
|
||||
}
|
||||
|
||||
bool is_pos() const {
|
||||
return
|
||||
m_first.is_pos() ||
|
||||
(m_first.is_zero() && m_second > 0);
|
||||
}
|
||||
|
||||
bool is_nonneg() const {
|
||||
return
|
||||
m_first.is_pos() ||
|
||||
(m_first.is_zero() && m_second >= 0);
|
||||
}
|
||||
|
||||
bool is_nonpos() const {
|
||||
return
|
||||
m_first.is_neg() ||
|
||||
(m_first.is_zero() && m_second <= 0);
|
||||
}
|
||||
|
||||
friend inline rational floor(const inf_int_rational & r) {
|
||||
if (r.m_first.is_int()) {
|
||||
if (r.m_second >= 0) {
|
||||
return r.m_first;
|
||||
}
|
||||
return r.m_first - rational(1);
|
||||
}
|
||||
|
||||
return floor(r.m_first);
|
||||
}
|
||||
|
||||
friend inline rational ceil(const inf_int_rational & r) {
|
||||
if (r.m_first.is_int()) {
|
||||
if (r.m_second <= 0) {
|
||||
return r.m_first;
|
||||
}
|
||||
return r.m_first + rational(1);
|
||||
}
|
||||
|
||||
return ceil(r.m_first);
|
||||
}
|
||||
|
||||
static const inf_int_rational & zero() {
|
||||
return m_zero;
|
||||
}
|
||||
|
||||
static const inf_int_rational & one() {
|
||||
return m_one;
|
||||
}
|
||||
|
||||
static const inf_int_rational & minus_one() {
|
||||
return m_minus_one;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
inline bool operator!=(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return !operator==(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator!=(const rational & r1, const inf_int_rational & r2) {
|
||||
return !operator==(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator!=(const inf_int_rational & r1, const rational & r2) {
|
||||
return !operator==(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator>(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return operator<(r2, r1);
|
||||
}
|
||||
|
||||
inline bool operator>(const inf_int_rational & r1, const rational & r2) {
|
||||
return operator<(r2, r1);
|
||||
}
|
||||
|
||||
inline bool operator>(const rational & r1, const inf_int_rational & r2) {
|
||||
return operator<(r2, r1);
|
||||
}
|
||||
|
||||
inline bool operator<=(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return !operator>(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator<=(const rational & r1, const inf_int_rational & r2) {
|
||||
return !operator>(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator<=(const inf_int_rational & r1, const rational & r2) {
|
||||
return !operator>(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator>=(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return !operator<(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator>=(const rational & r1, const inf_int_rational & r2) {
|
||||
return !operator<(r1, r2);
|
||||
}
|
||||
|
||||
inline bool operator>=(const inf_int_rational & r1, const rational & r2) {
|
||||
return !operator<(r1, r2);
|
||||
}
|
||||
|
||||
inline inf_int_rational operator+(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return inf_int_rational(r1) += r2;
|
||||
}
|
||||
|
||||
inline inf_int_rational operator-(const inf_int_rational & r1, const inf_int_rational & r2) {
|
||||
return inf_int_rational(r1) -= r2;
|
||||
}
|
||||
|
||||
inline inf_int_rational operator-(const inf_int_rational & r) {
|
||||
inf_int_rational result(r);
|
||||
result.neg();
|
||||
return result;
|
||||
}
|
||||
|
||||
inline std::ostream & operator<<(std::ostream & target, const inf_int_rational & r)
|
||||
{
|
||||
target << r.to_string();
|
||||
return target;
|
||||
}
|
||||
|
||||
|
||||
inline inf_int_rational abs(const inf_int_rational & r) {
|
||||
inf_int_rational result(r);
|
||||
if (result.is_neg()) {
|
||||
result.neg();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif /* _INF_INT_RATIONAL_H_ */
|
Loading…
Add table
Add a link
Reference in a new issue