mirror of
https://github.com/Z3Prover/z3
synced 2025-05-09 08:45:47 +00:00
Z3 sources
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
3f9edad676
commit
e9eab22e5c
1186 changed files with 381859 additions and 0 deletions
106
lib/euclidean_solver.h
Normal file
106
lib/euclidean_solver.h
Normal file
|
@ -0,0 +1,106 @@
|
|||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
euclidean_solver.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Euclidean Solver with support for explanations.
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2011-07-08.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef _EUCLIDEAN_SOLVER_H_
|
||||
#define _EUCLIDEAN_SOLVER_H_
|
||||
|
||||
#include"mpq.h"
|
||||
#include"vector.h"
|
||||
|
||||
class euclidean_solver {
|
||||
struct imp;
|
||||
imp * m_imp;
|
||||
public:
|
||||
typedef unsigned var;
|
||||
typedef unsigned justification;
|
||||
typedef unsynch_mpq_manager numeral_manager;
|
||||
typedef svector<justification> justification_vector;
|
||||
static const justification null_justification = UINT_MAX;
|
||||
|
||||
/**
|
||||
\brief If m == 0, then the solver will create its own numeral manager.
|
||||
*/
|
||||
euclidean_solver(numeral_manager * m);
|
||||
|
||||
~euclidean_solver();
|
||||
|
||||
numeral_manager & m() const;
|
||||
|
||||
/**
|
||||
\brief Reset the state of the euclidean solver.
|
||||
*/
|
||||
void reset();
|
||||
|
||||
/**
|
||||
\brief Creates a integer variable.
|
||||
*/
|
||||
var mk_var();
|
||||
|
||||
/**
|
||||
\brief Creates a fresh justification id.
|
||||
*/
|
||||
justification mk_justification();
|
||||
|
||||
/**
|
||||
\brief Asserts an equation of the form as[0]*xs[0] + ... + as[num-1]*xs[num-1] + c = 0 with justification j.
|
||||
|
||||
The numerals must be created using the numeral_manager m().
|
||||
*/
|
||||
void assert_eq(unsigned num, mpz const * as, var const * xs, mpz const & c, justification j = null_justification);
|
||||
|
||||
/**
|
||||
\brief Solve the current set of equations. Return false if it is inconsistent.
|
||||
*/
|
||||
bool solve();
|
||||
|
||||
/**
|
||||
\brief Return a set of justifications (proof) for the inconsitency.
|
||||
|
||||
\pre inconsistent()
|
||||
*/
|
||||
justification_vector const & get_justification() const;
|
||||
|
||||
bool inconsistent() const;
|
||||
|
||||
/**
|
||||
\brief Return true if the variable is a "parameter" created by the Euclidean solver.
|
||||
*/
|
||||
bool is_parameter(var x) const;
|
||||
|
||||
/**
|
||||
Given a linear polynomial as[0]*xs[0] + ... + as[num-1]*xs[num-1] + c and the current solution set,
|
||||
It applies the solution set to produce a polynomial of the for a_prime * p + c_prime, where
|
||||
a_prime * p represents a linear polynomial where the coefficient of every monomial is a multiple of
|
||||
a_prime.
|
||||
|
||||
The justification is stored in js.
|
||||
Note that, this function does not return the actual p.
|
||||
|
||||
The numerals must be created using the numeral_manager m().
|
||||
*/
|
||||
void normalize(unsigned num, mpz const * as, var const * xs, mpz const & c, mpz & a_prime, mpz & c_prime, justification_vector & js);
|
||||
|
||||
/**
|
||||
\brief Set/Reset the cancel flag.
|
||||
*/
|
||||
void set_cancel(bool f);
|
||||
|
||||
void display(std::ostream & out) const;
|
||||
};
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue