mirror of
				https://github.com/Z3Prover/z3
				synced 2025-10-31 19:52:29 +00:00 
			
		
		
		
	add option to propagation quotients
for equations x*y + z = 0, with x, y, z integer, enforce that x divides z It is (currently) enabled within Grobner completion and applied partially to x a variable, z linear, and only when |z| < |x|.
This commit is contained in:
		
							parent
							
								
									91b4873b79
								
							
						
					
					
						commit
						e91e432496
					
				
					 10 changed files with 516 additions and 258 deletions
				
			
		|  | @ -269,6 +269,7 @@ class theory_lra::imp { | |||
|                 return ctx().is_relevant(th.get_enode(u)); | ||||
|             }; | ||||
|             m_nla->set_relevant(is_relevant); | ||||
|             m_nla->updt_params(ctx().get_params()); | ||||
| 
 | ||||
|         } | ||||
|     } | ||||
|  | @ -1286,23 +1287,24 @@ public: | |||
|         } | ||||
|         else { | ||||
| 
 | ||||
|             expr_ref abs_q(m.mk_ite(a.mk_ge(q, zero), q, a.mk_uminus(q)), m); | ||||
|             expr_ref mone(a.mk_int(-1), m); | ||||
|             expr_ref modmq(a.mk_sub(mod, abs_q), m); | ||||
|             literal eqz = mk_literal(m.mk_eq(q, zero)); | ||||
|             literal mod_ge_0 = mk_literal(a.mk_ge(mod, zero)); | ||||
|             literal mod_lt_q = mk_literal(a.mk_le(modmq, mone)); | ||||
| 
 | ||||
|              | ||||
|             // q = 0 or p = (p mod q) + q * (p div q)
 | ||||
|             // q = 0 or (p mod q) >= 0
 | ||||
|             // q = 0 or (p mod q) < abs(q)
 | ||||
|             // q >= 0 or (p mod q) = (p mod -q)
 | ||||
|              | ||||
|             // q >= 0 or (p mod q) + q <= -1
 | ||||
|             // q <= 0 or (p mod q) - q <= -1            
 | ||||
|             // (p mod q) = (p mod -q)
 | ||||
| 
 | ||||
|             mk_axiom(eqz, eq); | ||||
|             mk_axiom(eqz, mod_ge_0); | ||||
|             mk_axiom(eqz, mod_lt_q); | ||||
|             if (!a.is_uminus(q))  | ||||
|                 mk_axiom(mk_literal(m.mk_eq(mod, a.mk_mod(p, a.mk_uminus(q))))); | ||||
|             mk_axiom(mk_literal(a.mk_le(q, zero)), mk_literal(a.mk_le(a.mk_add(mod, a.mk_mul(mone, q)), mone))); | ||||
|             mk_axiom(mk_literal(a.mk_ge(q, zero)), mk_literal(a.mk_le(a.mk_add(mod, q), mone))); | ||||
|             expr* x = nullptr, * y = nullptr; | ||||
|             if (false && !(a.is_mul(q, x, y) && mone == x)) | ||||
|                 mk_axiom(mk_literal(m.mk_eq(mod, a.mk_mod(p, a.mk_mul(mone, q))))); | ||||
|              | ||||
|             m_arith_eq_adapter.mk_axioms(th.ensure_enode(mod_r), th.ensure_enode(p)); | ||||
| 
 | ||||
|  | @ -1658,6 +1660,9 @@ public: | |||
|                 return FC_CONTINUE; | ||||
|             } | ||||
| 
 | ||||
|             if (st == FC_GIVEUP) | ||||
|                 IF_VERBOSE(0, display(verbose_stream())); | ||||
| 
 | ||||
|             if (!int_undef && !check_bv_terms()) | ||||
|                 return FC_CONTINUE; | ||||
|              | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue