mirror of
https://github.com/Z3Prover/z3
synced 2025-09-09 19:21:24 +00:00
add option to propagation quotients
for equations x*y + z = 0, with x, y, z integer, enforce that x divides z It is (currently) enabled within Grobner completion and applied partially to x a variable, z linear, and only when |z| < |x|.
This commit is contained in:
parent
91b4873b79
commit
e91e432496
10 changed files with 516 additions and 258 deletions
|
@ -32,6 +32,7 @@ z3_add_component(lp
|
|||
nla_monotone_lemmas.cpp
|
||||
nla_order_lemmas.cpp
|
||||
nla_powers.cpp
|
||||
nla_pp.cpp
|
||||
nla_solver.cpp
|
||||
nla_tangent_lemmas.cpp
|
||||
nla_throttle.cpp
|
||||
|
|
|
@ -51,6 +51,10 @@ core::core(lp::lar_solver& s, params_ref const& p, reslimit & lim) :
|
|||
}
|
||||
};
|
||||
}
|
||||
|
||||
void core::updt_params(params_ref const& p) {
|
||||
m_grobner.updt_params(p);
|
||||
}
|
||||
|
||||
bool core::compare_holds(const rational& ls, llc cmp, const rational& rs) const {
|
||||
switch(cmp) {
|
||||
|
@ -172,108 +176,6 @@ bool core::check_monic(const monic& m) const {
|
|||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
std::ostream& core::print_product(const T & m, std::ostream& out) const {
|
||||
bool first = true;
|
||||
for (lpvar v : m) {
|
||||
if (!first) out << "*"; else first = false;
|
||||
if (lp_settings().print_external_var_name())
|
||||
out << "(" << lra.get_variable_name(v) << "=" << val(v) << ")";
|
||||
else
|
||||
out << "(j" << v << " = " << val(v) << ")";
|
||||
|
||||
}
|
||||
return out;
|
||||
}
|
||||
template <typename T>
|
||||
std::string core::product_indices_str(const T & m) const {
|
||||
std::stringstream out;
|
||||
bool first = true;
|
||||
for (lpvar v : m) {
|
||||
if (!first)
|
||||
out << "*";
|
||||
else
|
||||
first = false;
|
||||
out << "j" << v;;
|
||||
}
|
||||
return out.str();
|
||||
}
|
||||
|
||||
std::ostream & core::print_factor(const factor& f, std::ostream& out) const {
|
||||
if (f.sign())
|
||||
out << "- ";
|
||||
if (f.is_var()) {
|
||||
out << "VAR, " << pp(f.var());
|
||||
} else {
|
||||
out << "MON, v" << m_emons[f.var()] << " = ";
|
||||
print_product(m_emons[f.var()].rvars(), out);
|
||||
}
|
||||
out << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream & core::print_factor_with_vars(const factor& f, std::ostream& out) const {
|
||||
if (f.is_var()) {
|
||||
out << pp(f.var());
|
||||
}
|
||||
else {
|
||||
out << " MON = " << pp_mon_with_vars(*this, m_emons[f.var()]);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monic(const monic& m, std::ostream& out) const {
|
||||
if (lp_settings().print_external_var_name())
|
||||
out << "([" << m.var() << "] = " << lra.get_variable_name(m.var()) << " = " << val(m.var()) << " = ";
|
||||
else
|
||||
out << "(j" << m.var() << " = " << val(m.var()) << " = ";
|
||||
print_product(m.vars(), out) << ")\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
std::ostream& core::print_bfc(const factorization& m, std::ostream& out) const {
|
||||
SASSERT(m.size() == 2);
|
||||
out << "( x = " << pp(m[0]) << "* y = " << pp(m[1]) << ")";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monic_with_vars(lpvar v, std::ostream& out) const {
|
||||
return print_monic_with_vars(m_emons[v], out);
|
||||
}
|
||||
template <typename T>
|
||||
std::ostream& core::print_product_with_vars(const T& m, std::ostream& out) const {
|
||||
print_product(m, out) << "\n";
|
||||
for (unsigned k = 0; k < m.size(); k++) {
|
||||
print_var(m[k], out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monic_with_vars(const monic& m, std::ostream& out) const {
|
||||
out << "[" << pp(m.var()) << "]\n";
|
||||
out << "vars:"; print_product_with_vars(m.vars(), out) << "\n";
|
||||
if (m.vars() == m.rvars())
|
||||
out << "same rvars, and m.rsign = " << m.rsign() << " of course\n";
|
||||
else {
|
||||
out << "rvars:"; print_product_with_vars(m.rvars(), out) << "\n";
|
||||
out << "rsign:" << m.rsign() << "\n";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_explanation(const lp::explanation& exp, std::ostream& out) const {
|
||||
out << "expl: ";
|
||||
unsigned i = 0;
|
||||
for (auto p : exp) {
|
||||
out << "(" << p.ci() << ")";
|
||||
lra.constraints().display(out, [this](lpvar j) { return var_str(j);}, p.ci());
|
||||
if (++i < exp.size())
|
||||
out << " ";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
bool core::explain_upper_bound(const lp::lar_term& t, const rational& rs, lp::explanation& e) const {
|
||||
rational b(0); // the bound
|
||||
for (lp::lar_term::ival p : t) {
|
||||
|
@ -551,69 +453,6 @@ bool core::var_is_free(lpvar j) const {
|
|||
return lra.column_is_free(j);
|
||||
}
|
||||
|
||||
std::ostream & core::print_ineq(const ineq & in, std::ostream & out) const {
|
||||
lra.print_term_as_indices(in.term(), out);
|
||||
return out << " " << lconstraint_kind_string(in.cmp()) << " " << in.rs();
|
||||
}
|
||||
|
||||
std::ostream & core::print_var(lpvar j, std::ostream & out) const {
|
||||
if (is_monic_var(j))
|
||||
print_monic(m_emons[j], out);
|
||||
|
||||
lra.print_column_info(j, out);
|
||||
signed_var jr = m_evars.find(j);
|
||||
out << "root=";
|
||||
if (jr.sign()) {
|
||||
out << "-";
|
||||
}
|
||||
|
||||
out << lra.get_variable_name(jr.var()) << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream & core::print_monics(std::ostream & out) const {
|
||||
for (auto &m : m_emons) {
|
||||
print_monic_with_vars(m, out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream & core::print_ineqs(const lemma& l, std::ostream & out) const {
|
||||
std::unordered_set<lpvar> vars;
|
||||
out << "ineqs: ";
|
||||
if (l.ineqs().size() == 0) {
|
||||
out << "conflict\n";
|
||||
} else {
|
||||
for (unsigned i = 0; i < l.ineqs().size(); i++) {
|
||||
auto & in = l.ineqs()[i];
|
||||
print_ineq(in, out);
|
||||
if (i + 1 < l.ineqs().size()) out << " or ";
|
||||
for (lp::lar_term::ival p: in.term())
|
||||
vars.insert(p.j());
|
||||
}
|
||||
out << std::endl;
|
||||
for (lpvar j : vars) {
|
||||
print_var(j, out);
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream & core::print_factorization(const factorization& f, std::ostream& out) const {
|
||||
if (f.is_mon()){
|
||||
out << "is_mon " << pp_mon(*this, f.mon());
|
||||
}
|
||||
else {
|
||||
for (unsigned k = 0; k < f.size(); k++ ) {
|
||||
out << "(" << pp(f[k]) << ")";
|
||||
if (k < f.size() - 1)
|
||||
out << "*";
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
bool core::find_canonical_monic_of_vars(const svector<lpvar>& vars, lpvar & i) const {
|
||||
monic const* sv = m_emons.find_canonical(vars);
|
||||
return sv && (i = sv->var(), true);
|
||||
|
@ -623,16 +462,6 @@ bool core::is_canonical_monic(lpvar j) const {
|
|||
return m_emons.is_canonical_monic(j);
|
||||
}
|
||||
|
||||
|
||||
void core::trace_print_monic_and_factorization(const monic& rm, const factorization& f, std::ostream& out) const {
|
||||
out << "rooted vars: ";
|
||||
print_product(rm.rvars(), out) << "\n";
|
||||
out << "mon: " << pp_mon(*this, rm.var()) << "\n";
|
||||
out << "value: " << var_val(rm) << "\n";
|
||||
print_factorization(f, out << "fact: ") << "\n";
|
||||
}
|
||||
|
||||
|
||||
bool core::var_has_positive_lower_bound(lpvar j) const {
|
||||
return lra.column_has_lower_bound(j) && lra.get_lower_bound(j) > lp::zero_of_type<lp::impq>();
|
||||
}
|
||||
|
@ -771,35 +600,6 @@ bool core::vars_are_roots(const T& v) const {
|
|||
}
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
void core::trace_print_rms(const T& p, std::ostream& out) {
|
||||
out << "p = {\n";
|
||||
for (auto j : p) {
|
||||
out << "j = " << j << ", rm = " << m_emons[j] << "\n";
|
||||
}
|
||||
out << "}";
|
||||
}
|
||||
|
||||
void core::print_monic_stats(const monic& m, std::ostream& out) {
|
||||
if (m.size() == 2) return;
|
||||
monic_coeff mc = canonize_monic(m);
|
||||
for(unsigned i = 0; i < mc.vars().size(); i++){
|
||||
if (abs(val(mc.vars()[i])) == rational(1)) {
|
||||
auto vv = mc.vars();
|
||||
vv.erase(vv.begin()+i);
|
||||
monic const* sv = m_emons.find_canonical(vv);
|
||||
if (!sv) {
|
||||
out << "nf length" << vv.size() << "\n"; ;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void core::print_stats(std::ostream& out) {
|
||||
}
|
||||
|
||||
|
||||
void core::clear() {
|
||||
m_lemmas.clear();
|
||||
m_literals.clear();
|
||||
|
@ -1620,40 +1420,11 @@ bool core::no_lemmas_hold() const {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
lbool core::test_check() {
|
||||
lra.set_status(lp::lp_status::OPTIMAL);
|
||||
return check();
|
||||
}
|
||||
|
||||
std::ostream& core::print_terms(std::ostream& out) const {
|
||||
for (const auto * t: lra.terms()) {
|
||||
out << "term:"; print_term(*t, out) << std::endl;
|
||||
print_var(t->j(), out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::string core::var_str(lpvar j) const {
|
||||
std::string result;
|
||||
if (is_monic_var(j))
|
||||
result += product_indices_str(m_emons[j].vars()) + (check_monic(m_emons[j])? "": "_");
|
||||
else
|
||||
result += std::string("j") + lp::T_to_string(j);
|
||||
// result += ":w" + lp::T_to_string(get_var_weight(j));
|
||||
return result;
|
||||
}
|
||||
|
||||
std::ostream& core::print_term( const lp::lar_term& t, std::ostream& out) const {
|
||||
return lp::print_linear_combination_customized(
|
||||
t.coeffs_as_vector(),
|
||||
[this](lpvar j) { return var_str(j); },
|
||||
out);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
std::unordered_set<lpvar> core::get_vars_of_expr_with_opening_terms(const nex *e ) {
|
||||
auto ret = get_vars_of_expr(e);
|
||||
auto & ls = lra;
|
||||
|
@ -1676,12 +1447,10 @@ std::unordered_set<lpvar> core::get_vars_of_expr_with_opening_terms(const nex *e
|
|||
return ret;
|
||||
}
|
||||
|
||||
|
||||
bool core::is_nl_var(lpvar j) const {
|
||||
return is_monic_var(j) || m_emons.is_used_in_monic(j);
|
||||
}
|
||||
|
||||
|
||||
unsigned core::get_var_weight(lpvar j) const {
|
||||
unsigned k = 0;
|
||||
switch (lra.get_column_type(j)) {
|
||||
|
|
|
@ -119,6 +119,8 @@ public:
|
|||
const auto& monics_with_changed_bounds() const { return m_monics_with_changed_bounds; }
|
||||
void insert_to_refine(lpvar j);
|
||||
void erase_from_to_refine(lpvar j);
|
||||
|
||||
void updt_params(params_ref const& p);
|
||||
|
||||
const indexed_uint_set& active_var_set () const { return m_active_var_set;}
|
||||
bool active_var_set_contains(unsigned j) const { return m_active_var_set.contains(j); }
|
||||
|
@ -224,6 +226,8 @@ public:
|
|||
bool check_monic(const monic& m) const;
|
||||
|
||||
|
||||
std::ostream & display_row(std::ostream& out, lp::row_strip<lp::mpq> const& row) const;
|
||||
std::ostream & display(std::ostream& out);
|
||||
std::ostream & print_ineq(const ineq & in, std::ostream & out) const;
|
||||
std::ostream & print_var(lpvar j, std::ostream & out) const;
|
||||
std::ostream & print_monics(std::ostream & out) const;
|
||||
|
|
|
@ -11,6 +11,7 @@ Author:
|
|||
|
||||
--*/
|
||||
#include "util/uint_set.h"
|
||||
#include "params/smt_params_helper.hpp"
|
||||
#include "math/lp/nla_core.h"
|
||||
#include "math/lp/factorization_factory_imp.h"
|
||||
#include "math/grobner/pdd_solver.h"
|
||||
|
@ -27,6 +28,11 @@ namespace nla {
|
|||
m_quota(m_core.params().arith_nl_gr_q())
|
||||
{}
|
||||
|
||||
void grobner::updt_params(params_ref const& p) {
|
||||
smt_params_helper ph(p);
|
||||
m_config.m_propagate_quotients = ph.arith_nl_grobner_propagate_quotients();
|
||||
}
|
||||
|
||||
lp::lp_settings& grobner::lp_settings() {
|
||||
return c().lp_settings();
|
||||
}
|
||||
|
@ -72,6 +78,10 @@ namespace nla {
|
|||
|
||||
if (propagate_linear_equations())
|
||||
return;
|
||||
|
||||
if (propagate_quotients())
|
||||
return;
|
||||
IF_VERBOSE(0, m_solver.display(verbose_stream() << "grobner\n"));
|
||||
|
||||
}
|
||||
catch (...) {
|
||||
|
@ -181,23 +191,12 @@ namespace nla {
|
|||
|
||||
// IF_VERBOSE(0, verbose_stream() << "factored " << q << " : " << vars << "\n");
|
||||
|
||||
term t;
|
||||
rational lc(1);
|
||||
auto ql = q;
|
||||
while (!ql.is_val()) {
|
||||
lc = lcm(lc, denominator(ql.hi().val()));
|
||||
ql = ql.lo();
|
||||
}
|
||||
lc = lcm(denominator(ql.val()), lc);
|
||||
auto [t, offset] = linear_to_term(q);
|
||||
|
||||
while (!q.is_val()) {
|
||||
t.add_monomial(lc*q.hi().val(), q.var());
|
||||
q = q.lo();
|
||||
}
|
||||
vector<ineq> ineqs;
|
||||
for (auto v : vars)
|
||||
ineqs.push_back(ineq(v, llc::EQ, rational::zero()));
|
||||
ineqs.push_back(ineq(t, llc::EQ, -lc*q.val()));
|
||||
ineqs.push_back(ineq(t, llc::EQ, -offset));
|
||||
for (auto const& i : ineqs)
|
||||
if (c().ineq_holds(i))
|
||||
return false;
|
||||
|
@ -210,6 +209,151 @@ namespace nla {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
std::pair<lp::lar_term, rational> grobner::linear_to_term(dd::pdd q) {
|
||||
SASSERT(q.is_linear());
|
||||
rational lc(1);
|
||||
auto ql = q;
|
||||
lp::lar_term t;
|
||||
while (!ql.is_val()) {
|
||||
lc = lcm(lc, denominator(ql.hi().val()));
|
||||
ql = ql.lo();
|
||||
}
|
||||
lc = lcm(denominator(ql.val()), lc);
|
||||
|
||||
while (!q.is_val()) {
|
||||
t.add_monomial(lc * q.hi().val(), q.var());
|
||||
q = q.lo();
|
||||
}
|
||||
rational offset = lc * q.val();
|
||||
return {t, offset};
|
||||
}
|
||||
|
||||
bool grobner::propagate_quotients() {
|
||||
if (!m_config.m_propagate_quotients)
|
||||
return false;
|
||||
unsigned changed = 0;
|
||||
for (auto eq : m_solver.equations())
|
||||
if (propagate_quotients(*eq) && ++changed >= m_solver.number_of_conflicts_to_report())
|
||||
return true;
|
||||
return changed > 0;
|
||||
}
|
||||
|
||||
// factor each nl var at a time.
|
||||
// x*y + z = 0
|
||||
// x = 0 => z = 0
|
||||
// y = 0 => z = 0
|
||||
// z = 0 => x = 0 or y = 0
|
||||
// z > 0 & x > 0 => x <= z
|
||||
// z < 0 & x > 0 => x <= -z
|
||||
// z > 0 & x < 0 => -x <= z
|
||||
// z < 0 & x < 0 => -x <= -z
|
||||
bool grobner::propagate_quotients(dd::solver::equation const& eq) {
|
||||
dd::pdd const& p = eq.poly();
|
||||
if (p.is_linear())
|
||||
return false;
|
||||
if (p.is_val())
|
||||
return false;
|
||||
auto v = p.var();
|
||||
if (!c().var_is_int(v))
|
||||
return false;
|
||||
for (auto v : p.free_vars())
|
||||
if (!c().var_is_int(v))
|
||||
return false;
|
||||
tracked_uint_set nl_vars;
|
||||
for (auto const& m : p) {
|
||||
if (m.vars.size() == 1)
|
||||
continue;
|
||||
for (auto j : m.vars)
|
||||
nl_vars.insert(j);
|
||||
}
|
||||
dd::pdd_eval eval;
|
||||
eval.var2val() = [&](unsigned j) { return val(j); };
|
||||
|
||||
for (auto v : nl_vars) {
|
||||
auto& m = p.manager();
|
||||
dd::pdd lc(m), r(m);
|
||||
p.factor(v, 1, lc, r);
|
||||
if (!r.is_linear())
|
||||
continue;
|
||||
auto v_value = val(v);
|
||||
auto r_value = eval(r);
|
||||
auto lc_value = eval(lc);
|
||||
if (r_value == 0) {
|
||||
if (v_value == 0)
|
||||
continue;
|
||||
if (lc_value == 0)
|
||||
continue;
|
||||
if (!lc.is_linear())
|
||||
continue;
|
||||
auto [t, offset] = linear_to_term(lc);
|
||||
auto [t2, offset2] = linear_to_term(r);
|
||||
lemma_builder lemma(c(), "pdd-quotient");
|
||||
add_dependencies(lemma, eq);
|
||||
// v = 0 or lc = 0 or r != 0
|
||||
lemma |= ineq(v, llc::EQ, rational::zero());
|
||||
lemma |= ineq(t, llc::EQ, -offset);
|
||||
lemma |= ineq(t2, llc::NE, -offset2);
|
||||
return true;
|
||||
}
|
||||
// r_value != 0
|
||||
if (v_value == 0) {
|
||||
// v = 0 => r = 0
|
||||
lemma_builder lemma(c(), "pdd-quotient");
|
||||
add_dependencies(lemma, eq);
|
||||
auto [t, offset] = linear_to_term(r);
|
||||
lemma |= ineq(v, llc::NE, rational::zero());
|
||||
lemma |= ineq(t, llc::EQ, -offset);
|
||||
return true;
|
||||
}
|
||||
if (lc_value == 0) {
|
||||
if (!lc.is_linear())
|
||||
continue;
|
||||
// lc = 0 => r = 0
|
||||
lemma_builder lemma(c(), "pdd-quotient");
|
||||
add_dependencies(lemma, eq);
|
||||
auto [t, offset] = linear_to_term(lc);
|
||||
auto [t2, offset2] = linear_to_term(r);
|
||||
lemma |= ineq(t, llc::NE, -offset);
|
||||
lemma |= ineq(t2, llc::EQ, -offset2);
|
||||
return true;
|
||||
}
|
||||
if (divides(v_value, r_value))
|
||||
continue;
|
||||
|
||||
if (abs(v_value) > abs(r_value)) {
|
||||
// v*c + r = 0 & v > 0 => r >= v or -r >= v or r = 0
|
||||
lemma_builder lemma(c(), "pdd-quotient");
|
||||
auto [t, offset] = linear_to_term(r);
|
||||
add_dependencies(lemma, eq);
|
||||
if (v_value > 0) {
|
||||
lemma |= ineq(v, llc::LE, rational::zero());
|
||||
lemma |= ineq(t, llc::EQ, -offset);
|
||||
t.add_monomial(rational(-1), v);
|
||||
lemma |= ineq(t, llc::GE, -offset);
|
||||
auto [t2, offset2] = linear_to_term(-r);
|
||||
t2.add_monomial(rational(-1), v);
|
||||
lemma |= ineq(t2, llc::GE, -offset2);
|
||||
}
|
||||
else {
|
||||
// v*lc + r = 0 & v < 0 => r <= v or -r <= v or r = 0
|
||||
lemma |= ineq(v, llc::GE, rational::zero());
|
||||
lemma |= ineq(t, llc::EQ, -offset);
|
||||
t.add_monomial(rational(-1), v);
|
||||
lemma |= ineq(t, llc::LE, -offset);
|
||||
auto [t2, offset2] = linear_to_term(-r);
|
||||
t2.add_monomial(rational(-1), v);
|
||||
lemma |= ineq(t2, llc::LE, -offset2);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
// other division lemmas are possible.
|
||||
// also extend to non-linear r, non-linear lc
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void grobner::explain(dd::solver::equation const& eq, lp::explanation& exp) {
|
||||
u_dependency_manager dm;
|
||||
vector<unsigned, false> lv;
|
||||
|
|
|
@ -19,6 +19,9 @@ namespace nla {
|
|||
class core;
|
||||
|
||||
class grobner : common {
|
||||
struct config {
|
||||
bool m_propagate_quotients = false;
|
||||
};
|
||||
dd::pdd_manager m_pdd_manager;
|
||||
dd::solver m_solver;
|
||||
lp::lar_solver& lra;
|
||||
|
@ -27,6 +30,7 @@ namespace nla {
|
|||
unsigned m_delay_base = 0;
|
||||
unsigned m_delay = 0;
|
||||
bool m_add_all_eqs = false;
|
||||
config m_config;
|
||||
std::unordered_map<unsigned_vector, lpvar, hash_svector> m_mon2var;
|
||||
|
||||
lp::lp_settings& lp_settings();
|
||||
|
@ -43,6 +47,11 @@ namespace nla {
|
|||
|
||||
bool propagate_linear_equations();
|
||||
bool propagate_linear_equations(dd::solver::equation const& eq);
|
||||
|
||||
bool propagate_quotients();
|
||||
bool propagate_quotients(dd::solver::equation const& eq);
|
||||
|
||||
std::pair<lp::lar_term, rational> linear_to_term(dd::pdd q);
|
||||
|
||||
void add_dependencies(lemma_builder& lemma, dd::solver::equation const& eq);
|
||||
void explain(dd::solver::equation const& eq, lp::explanation& exp);
|
||||
|
@ -73,6 +82,7 @@ namespace nla {
|
|||
public:
|
||||
grobner(core *core);
|
||||
void operator()();
|
||||
void updt_params(params_ref const& p);
|
||||
dd::solver::equation_vector const& core_equations(bool all_eqs);
|
||||
};
|
||||
}
|
||||
|
|
319
src/math/lp/nla_pp.cpp
Normal file
319
src/math/lp/nla_pp.cpp
Normal file
|
@ -0,0 +1,319 @@
|
|||
/*++
|
||||
Copyright (c) 2017 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
nla_core.cpp
|
||||
|
||||
Author:
|
||||
Lev Nachmanson (levnach)
|
||||
Nikolaj Bjorner (nbjorner)
|
||||
|
||||
--*/
|
||||
|
||||
#include "math/lp/nla_core.h"
|
||||
using namespace nla;
|
||||
|
||||
template <typename T>
|
||||
std::ostream& core::print_product(const T& m, std::ostream& out) const {
|
||||
bool first = true;
|
||||
for (lpvar v : m) {
|
||||
if (!first)
|
||||
out << "*";
|
||||
else
|
||||
first = false;
|
||||
if (lp_settings().print_external_var_name())
|
||||
out << "(" << lra.get_variable_name(v) << "=" << val(v) << ")";
|
||||
else
|
||||
out << "(j" << v << " = " << val(v) << ")";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
std::string core::product_indices_str(const T& m) const {
|
||||
std::stringstream out;
|
||||
bool first = true;
|
||||
for (lpvar v : m) {
|
||||
if (!first)
|
||||
out << "*";
|
||||
else
|
||||
first = false;
|
||||
out << "j" << v;
|
||||
;
|
||||
}
|
||||
return out.str();
|
||||
}
|
||||
|
||||
std::ostream& core::print_factor(const factor& f, std::ostream& out) const {
|
||||
if (f.sign())
|
||||
out << "- ";
|
||||
if (f.is_var()) {
|
||||
out << "VAR, " << pp(f.var());
|
||||
} else {
|
||||
out << "MON, v" << m_emons[f.var()] << " = ";
|
||||
print_product(m_emons[f.var()].rvars(), out);
|
||||
}
|
||||
out << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_factor_with_vars(const factor& f, std::ostream& out) const {
|
||||
if (f.is_var()) {
|
||||
out << pp(f.var());
|
||||
} else {
|
||||
out << " MON = " << pp_mon_with_vars(*this, m_emons[f.var()]);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monic(const monic& m, std::ostream& out) const {
|
||||
if (lp_settings().print_external_var_name())
|
||||
out << "([" << m.var() << "] = " << lra.get_variable_name(m.var()) << " = " << val(m.var()) << " = ";
|
||||
else
|
||||
out << "(j" << m.var() << " = " << val(m.var()) << " = ";
|
||||
print_product(m.vars(), out) << ")\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_bfc(const factorization& m, std::ostream& out) const {
|
||||
SASSERT(m.size() == 2);
|
||||
out << "( x = " << pp(m[0]) << "* y = " << pp(m[1]) << ")";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monic_with_vars(lpvar v, std::ostream& out) const {
|
||||
return print_monic_with_vars(m_emons[v], out);
|
||||
}
|
||||
template <typename T>
|
||||
std::ostream& core::print_product_with_vars(const T& m, std::ostream& out) const {
|
||||
print_product(m, out) << "\n";
|
||||
for (unsigned k = 0; k < m.size(); k++) {
|
||||
print_var(m[k], out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monic_with_vars(const monic& m, std::ostream& out) const {
|
||||
out << "[" << pp(m.var()) << "]\n";
|
||||
out << "vars:";
|
||||
print_product_with_vars(m.vars(), out) << "\n";
|
||||
if (m.vars() == m.rvars())
|
||||
out << "same rvars, and m.rsign = " << m.rsign() << " of course\n";
|
||||
else {
|
||||
out << "rvars:";
|
||||
print_product_with_vars(m.rvars(), out) << "\n";
|
||||
out << "rsign:" << m.rsign() << "\n";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_explanation(const lp::explanation& exp, std::ostream& out) const {
|
||||
out << "expl: ";
|
||||
unsigned i = 0;
|
||||
for (auto p : exp) {
|
||||
out << "(" << p.ci() << ")";
|
||||
lra.constraints().display(out, [this](lpvar j) { return var_str(j); }, p.ci());
|
||||
if (++i < exp.size())
|
||||
out << " ";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_ineq(const ineq& in, std::ostream& out) const {
|
||||
lra.print_term_as_indices(in.term(), out);
|
||||
return out << " " << lconstraint_kind_string(in.cmp()) << " " << in.rs();
|
||||
}
|
||||
|
||||
std::ostream& core::print_var(lpvar j, std::ostream& out) const {
|
||||
if (is_monic_var(j))
|
||||
print_monic(m_emons[j], out);
|
||||
|
||||
lra.print_column_info(j, out);
|
||||
signed_var jr = m_evars.find(j);
|
||||
out << "root=";
|
||||
if (jr.sign()) {
|
||||
out << "-";
|
||||
}
|
||||
|
||||
out << lra.get_variable_name(jr.var()) << "\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_monics(std::ostream& out) const {
|
||||
for (auto& m : m_emons) {
|
||||
print_monic_with_vars(m, out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_ineqs(const lemma& l, std::ostream& out) const {
|
||||
std::unordered_set<lpvar> vars;
|
||||
out << "ineqs: ";
|
||||
if (l.ineqs().size() == 0) {
|
||||
out << "conflict\n";
|
||||
} else {
|
||||
for (unsigned i = 0; i < l.ineqs().size(); i++) {
|
||||
auto& in = l.ineqs()[i];
|
||||
print_ineq(in, out);
|
||||
if (i + 1 < l.ineqs().size()) out << " or ";
|
||||
for (lp::lar_term::ival p : in.term())
|
||||
vars.insert(p.j());
|
||||
}
|
||||
out << std::endl;
|
||||
for (lpvar j : vars) {
|
||||
print_var(j, out);
|
||||
}
|
||||
out << "\n";
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_factorization(const factorization& f, std::ostream& out) const {
|
||||
if (f.is_mon()) {
|
||||
out << "is_mon " << pp_mon(*this, f.mon());
|
||||
} else {
|
||||
for (unsigned k = 0; k < f.size(); k++) {
|
||||
out << "(" << pp(f[k]) << ")";
|
||||
if (k < f.size() - 1)
|
||||
out << "*";
|
||||
}
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
void core::trace_print_monic_and_factorization(const monic& rm, const factorization& f, std::ostream& out) const {
|
||||
out << "rooted vars: ";
|
||||
print_product(rm.rvars(), out) << "\n";
|
||||
out << "mon: " << pp_mon(*this, rm.var()) << "\n";
|
||||
out << "value: " << var_val(rm) << "\n";
|
||||
print_factorization(f, out << "fact: ") << "\n";
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void core::trace_print_rms(const T& p, std::ostream& out) {
|
||||
out << "p = {\n";
|
||||
for (auto j : p) {
|
||||
out << "j = " << j << ", rm = " << m_emons[j] << "\n";
|
||||
}
|
||||
out << "}";
|
||||
}
|
||||
|
||||
void core::print_monic_stats(const monic& m, std::ostream& out) {
|
||||
if (m.size() == 2) return;
|
||||
monic_coeff mc = canonize_monic(m);
|
||||
for (unsigned i = 0; i < mc.vars().size(); i++) {
|
||||
if (abs(val(mc.vars()[i])) == rational(1)) {
|
||||
auto vv = mc.vars();
|
||||
vv.erase(vv.begin() + i);
|
||||
monic const* sv = m_emons.find_canonical(vv);
|
||||
if (!sv) {
|
||||
out << "nf length" << vv.size() << "\n";
|
||||
;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void core::print_stats(std::ostream& out) {
|
||||
}
|
||||
|
||||
|
||||
std::ostream& core::print_terms(std::ostream& out) const {
|
||||
for (const auto* t : lra.terms()) {
|
||||
out << "term:";
|
||||
print_term(*t, out) << std::endl;
|
||||
print_var(t->j(), out);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::print_term(const lp::lar_term& t, std::ostream& out) const {
|
||||
return lp::print_linear_combination_customized(
|
||||
t.coeffs_as_vector(),
|
||||
[this](lpvar j) { return var_str(j); },
|
||||
out);
|
||||
}
|
||||
|
||||
std::string core::var_str(lpvar j) const {
|
||||
std::string result;
|
||||
if (is_monic_var(j))
|
||||
result += product_indices_str(m_emons[j].vars()) + (check_monic(m_emons[j]) ? "" : "_");
|
||||
else
|
||||
result += std::string("j") + lp::T_to_string(j);
|
||||
// result += ":w" + lp::T_to_string(get_var_weight(j));
|
||||
return result;
|
||||
}
|
||||
|
||||
std::ostream& core::display_row(std::ostream& out, lp::row_strip<lp::mpq> const& row) const {
|
||||
auto display_coeff = [&](bool first, lp::mpq const& p) {
|
||||
if (first && p == 1)
|
||||
return;
|
||||
if (first && p > 0)
|
||||
out << p;
|
||||
else if (p == 1)
|
||||
out << " + ";
|
||||
else if (p > 0)
|
||||
out << " + " << p << " * ";
|
||||
else if (p == -1)
|
||||
out << " - ";
|
||||
else if (first)
|
||||
out << p << " * ";
|
||||
else
|
||||
out << " - " << -p << " * ";
|
||||
};
|
||||
auto display_var = [&](bool first, lp::mpq p, lp::lpvar v) {
|
||||
if (is_monic_var(v)) {
|
||||
for (auto w : m_emons[v].vars())
|
||||
p *= m_evars.find(w).rsign();
|
||||
}
|
||||
else
|
||||
p *= m_evars.find(v).rsign();
|
||||
|
||||
display_coeff(first, p);
|
||||
if (is_monic_var(v)) {
|
||||
bool first = true;
|
||||
for (auto w : m_emons[v].vars())
|
||||
out << (first ? (first = false, "") : " * ") << "j" << m_evars.find(w).var();
|
||||
}
|
||||
else
|
||||
out << "j" << m_evars.find(v).var();
|
||||
};
|
||||
|
||||
bool first = true;
|
||||
for (auto const& ri : row) {
|
||||
auto v = ri.var();
|
||||
if (lra.column_is_fixed(v)) {
|
||||
auto q = lra.get_column_value(v).x;
|
||||
if (q == 0)
|
||||
continue;
|
||||
q = q * ri.coeff();
|
||||
if (first)
|
||||
out << q;
|
||||
else if (q > 0)
|
||||
out << " + " << q;
|
||||
else if (q < 0)
|
||||
out << " - " << -q;
|
||||
}
|
||||
else if (lra.column_has_term(v)) {
|
||||
auto const& t = lra.get_term(v);
|
||||
for (lp::lar_term::ival p : t) {
|
||||
display_var(first, p.coeff() * ri.coeff(), p.j());
|
||||
first = false;
|
||||
}
|
||||
}
|
||||
else {
|
||||
display_var(first, ri.coeff(), ri.var());
|
||||
}
|
||||
first = false;
|
||||
}
|
||||
out << " = 0\n";
|
||||
return out;
|
||||
}
|
||||
|
||||
std::ostream& core::display(std::ostream& out) {
|
||||
print_monics(out);
|
||||
for (unsigned i = 0; i < lra.row_count(); ++i)
|
||||
display_row(out, lra.get_row(i));
|
||||
return out;
|
||||
}
|
|
@ -35,6 +35,10 @@ namespace nla {
|
|||
void solver::set_relevant(std::function<bool(lpvar)>& is_relevant) {
|
||||
m_core->set_relevant(is_relevant);
|
||||
}
|
||||
|
||||
void solver::updt_params(params_ref const& p) {
|
||||
m_core->updt_params(p);
|
||||
}
|
||||
|
||||
bool solver::is_monic_var(lpvar v) const {
|
||||
return m_core->is_monic_var(v);
|
||||
|
@ -71,7 +75,7 @@ namespace nla {
|
|||
}
|
||||
|
||||
std::ostream& solver::display(std::ostream& out) const {
|
||||
m_core->print_monics(out);
|
||||
m_core->display(out);
|
||||
if (use_nra_model())
|
||||
m_core->m_nra.display(out);
|
||||
return out;
|
||||
|
|
|
@ -33,6 +33,7 @@ namespace nla {
|
|||
void add_bounded_division(lpvar q, lpvar x, lpvar y);
|
||||
void check_bounded_divisions();
|
||||
void set_relevant(std::function<bool(lpvar)>& is_relevant);
|
||||
void updt_params(params_ref const& p);
|
||||
void push();
|
||||
void pop(unsigned scopes);
|
||||
bool need_check();
|
||||
|
|
|
@ -78,6 +78,7 @@ def_module_params(module_name='smt',
|
|||
('arith.nl.grobner_expr_degree_growth', UINT, 2, 'grobner\'s maximum expr degree growth'),
|
||||
('arith.nl.grobner_max_simplified', UINT, 10000, 'grobner\'s maximum number of simplifications'),
|
||||
('arith.nl.grobner_cnfl_to_report', UINT, 1, 'grobner\'s maximum number of conflicts to report'),
|
||||
('arith.nl.grobner_propagate_quotients', BOOL, False, 'detect conflicts x*y + z = 0 where x doesn\'t divide z'),
|
||||
('arith.nl.gr_q', UINT, 10, 'grobner\'s quota'),
|
||||
('arith.nl.grobner_subs_fixed', UINT, 1, '0 - no subs, 1 - substitute, 2 - substitute fixed zeros only'),
|
||||
('arith.nl.delay', UINT, 10, 'number of calls to final check before invoking bounded nlsat check'),
|
||||
|
|
|
@ -269,6 +269,7 @@ class theory_lra::imp {
|
|||
return ctx().is_relevant(th.get_enode(u));
|
||||
};
|
||||
m_nla->set_relevant(is_relevant);
|
||||
m_nla->updt_params(ctx().get_params());
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -1286,23 +1287,24 @@ public:
|
|||
}
|
||||
else {
|
||||
|
||||
expr_ref abs_q(m.mk_ite(a.mk_ge(q, zero), q, a.mk_uminus(q)), m);
|
||||
expr_ref mone(a.mk_int(-1), m);
|
||||
expr_ref modmq(a.mk_sub(mod, abs_q), m);
|
||||
literal eqz = mk_literal(m.mk_eq(q, zero));
|
||||
literal mod_ge_0 = mk_literal(a.mk_ge(mod, zero));
|
||||
literal mod_lt_q = mk_literal(a.mk_le(modmq, mone));
|
||||
|
||||
|
||||
// q = 0 or p = (p mod q) + q * (p div q)
|
||||
// q = 0 or (p mod q) >= 0
|
||||
// q = 0 or (p mod q) < abs(q)
|
||||
// q >= 0 or (p mod q) = (p mod -q)
|
||||
|
||||
// q >= 0 or (p mod q) + q <= -1
|
||||
// q <= 0 or (p mod q) - q <= -1
|
||||
// (p mod q) = (p mod -q)
|
||||
|
||||
mk_axiom(eqz, eq);
|
||||
mk_axiom(eqz, mod_ge_0);
|
||||
mk_axiom(eqz, mod_lt_q);
|
||||
if (!a.is_uminus(q))
|
||||
mk_axiom(mk_literal(m.mk_eq(mod, a.mk_mod(p, a.mk_uminus(q)))));
|
||||
mk_axiom(mk_literal(a.mk_le(q, zero)), mk_literal(a.mk_le(a.mk_add(mod, a.mk_mul(mone, q)), mone)));
|
||||
mk_axiom(mk_literal(a.mk_ge(q, zero)), mk_literal(a.mk_le(a.mk_add(mod, q), mone)));
|
||||
expr* x = nullptr, * y = nullptr;
|
||||
if (false && !(a.is_mul(q, x, y) && mone == x))
|
||||
mk_axiom(mk_literal(m.mk_eq(mod, a.mk_mod(p, a.mk_mul(mone, q)))));
|
||||
|
||||
m_arith_eq_adapter.mk_axioms(th.ensure_enode(mod_r), th.ensure_enode(p));
|
||||
|
||||
|
@ -1658,6 +1660,9 @@ public:
|
|||
return FC_CONTINUE;
|
||||
}
|
||||
|
||||
if (st == FC_GIVEUP)
|
||||
IF_VERBOSE(0, display(verbose_stream()));
|
||||
|
||||
if (!int_undef && !check_bv_terms())
|
||||
return FC_CONTINUE;
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue