mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 17:45:32 +00:00
Multiply by inverse to detect more parity constraints
This commit is contained in:
parent
ae70a8e9f0
commit
e8b4875a17
3 changed files with 21 additions and 9 deletions
|
@ -349,7 +349,7 @@ namespace polysat {
|
|||
}
|
||||
|
||||
// decomposes into a plain constant and a part containing variables. e.g., 2*x*y + 3*z - 2 gets { 2*x*y + 3*z, -2 }
|
||||
static std::pair<pdd, pdd> decompose_constant(const pdd& p) {
|
||||
static std::pair<pdd, pdd> decouple_constant(const pdd& p) {
|
||||
for (const auto& m : p) {
|
||||
if (m.vars.empty())
|
||||
return { p - m.coeff, p.manager().mk_val(m.coeff) };
|
||||
|
@ -358,10 +358,9 @@ namespace polysat {
|
|||
}
|
||||
|
||||
// 2^(k - d) * x = m * 2^(k - d)
|
||||
// TODO: Factor out constant factors from x and put them to the rhs
|
||||
bool simplify_clause::get_trailing_mask(pdd lhs, pdd rhs, pdd& p, trailing_bits& mask, bool pos) {
|
||||
auto lhs_decomp = decompose_constant(lhs);
|
||||
auto rhs_decomp = decompose_constant(rhs);
|
||||
auto lhs_decomp = decouple_constant(lhs);
|
||||
auto rhs_decomp = decouple_constant(rhs);
|
||||
|
||||
lhs = lhs_decomp.first - rhs_decomp.first;
|
||||
rhs = rhs_decomp.second - lhs_decomp.second;
|
||||
|
@ -371,7 +370,7 @@ namespace polysat {
|
|||
unsigned k = lhs.manager().power_of_2();
|
||||
unsigned d = lhs.max_pow2_divisor();
|
||||
unsigned span = k - d;
|
||||
if (span == 0)
|
||||
if (span == 0 || lhs.is_val())
|
||||
return false;
|
||||
|
||||
p = lhs.div(rational::power_of_two(d));
|
||||
|
@ -379,6 +378,19 @@ namespace polysat {
|
|||
mask.bits = rhs_val / rational::power_of_two(d);
|
||||
if (!mask.bits.is_int())
|
||||
return false;
|
||||
|
||||
auto it = p.begin();
|
||||
auto first = *it;
|
||||
it++;
|
||||
if (it == p.end()) {
|
||||
// if the lhs contains only one monomial it is of the form: odd * x = mask. We can multiply by the inverse to get the mask for x
|
||||
SASSERT(first.coeff.is_odd());
|
||||
rational inv;
|
||||
VERIFY(first.coeff.mult_inverse(lhs.power_of_2(), inv));
|
||||
p *= inv;
|
||||
mask.bits *= inv;
|
||||
}
|
||||
|
||||
mask.length = span;
|
||||
mask.positive = pos;
|
||||
return true;
|
||||
|
|
|
@ -764,9 +764,9 @@ namespace polysat {
|
|||
|
||||
if (a_parity > 0) {
|
||||
shift = s.lshr(a1, a1.manager().mk_val(a_parity));
|
||||
signed_constraint least_parity = s.parity_at_least(a1, a_parity);
|
||||
signed_constraint shift_right_left = s.eq(rational::power_of_two(a_parity) * shift, a1);
|
||||
s.add_clause(~least_parity, shift_right_left, true);
|
||||
//signed_constraint least_parity = s.parity_at_least(a1, a_parity);
|
||||
//signed_constraint shift_right_left = s.eq(rational::power_of_two(a_parity) * shift, a1);
|
||||
//s.add_clause(~least_parity, shift_right_left, true);
|
||||
// s.add_clause(~shift_right_left, least_parity, true); Might be interesting as well [although not needed]; needs to consider special case 0
|
||||
// [nsb cr: this pre-condition is already implied from the parity explanations]
|
||||
// precondition.insert_eval(~shift_right_left);
|
||||
|
@ -778,7 +778,6 @@ namespace polysat {
|
|||
LOG("pseudo inverse: " << a_pi);
|
||||
LOG("-b: " << (-b));
|
||||
LOG("shifted a" << shift);
|
||||
LOG("Forced elimination: " << a_pi * (-b) * shift + b1);
|
||||
return { a_pi * (-b) * shift + b1, true };
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -913,6 +913,7 @@ namespace {
|
|||
|
||||
do {
|
||||
if (e->src.size() != 1) {
|
||||
// We just consider the ordinary constraints and not already contracted ones
|
||||
e = e->next();
|
||||
continue;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue