3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

add built-in support for bvor: the rewriter converts bitwise and to bit-wise or so using bvor as a basis makes better sense

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2024-01-10 10:16:31 -08:00
parent e2c5d7d358
commit e7c9c5f7a2
10 changed files with 279 additions and 137 deletions

View file

@ -63,6 +63,12 @@ namespace polysat {
return signed_constraint(ckind_t::op_t, cnstr);
}
signed_constraint constraints::bor(pdd const& a, pdd const& b, pdd const& r) {
auto* cnstr = alloc(op_constraint, op_constraint::code::or_op, a, b, r);
c.trail().push(new_obj_trail(cnstr));
return signed_constraint(ckind_t::op_t, cnstr);
}
// parity p >= k if low order k bits of p are 0
signed_constraint constraints::parity_at_least(pdd const& p, unsigned k) {
if (k == 0)
@ -82,6 +88,12 @@ namespace polysat {
return eq(p * rational::power_of_two(N - k));
}
// 2^{N-i-1}* p >= 2^{N-1}
signed_constraint constraints::bit(pdd const& p, unsigned i) {
unsigned N = p.manager().power_of_2();
return uge(p * rational::power_of_two(N - i - 1), rational::power_of_two(N - 1));
}
bool signed_constraint::is_eq(pvar& v, rational& val) {
if (m_sign)
return false;

View file

@ -22,6 +22,8 @@ namespace polysat {
class core;
class ule_constraint;
class umul_ovfl_constraint;
class op_constraint;
class assignment;
using pdd = dd::pdd;
@ -84,8 +86,10 @@ namespace polysat {
bool is_ule() const { return m_op == ule_t; }
bool is_umul_ovfl() const { return m_op == umul_ovfl_t; }
bool is_smul_fl() const { return m_op == smul_fl_t; }
bool is_op() const { return m_op == op_t; }
ule_constraint const& to_ule() const { SASSERT(is_ule()); return *reinterpret_cast<ule_constraint*>(m_constraint); }
umul_ovfl_constraint const& to_umul_ovfl() const { SASSERT(is_umul_ovfl()); return *reinterpret_cast<umul_ovfl_constraint*>(m_constraint); }
op_constraint const& to_op() const { SASSERT(is_op()); return *reinterpret_cast<op_constraint*>(m_constraint); }
bool is_eq(pvar& v, rational& val);
std::ostream& display(std::ostream& out) const;
};
@ -108,7 +112,7 @@ namespace polysat {
signed_constraint umul_ovfl(pdd const& p, pdd const& q);
signed_constraint smul_ovfl(pdd const& p, pdd const& q) { throw default_exception("smul ovfl nyi"); }
signed_constraint smul_udfl(pdd const& p, pdd const& q) { throw default_exception("smult-udfl nyi"); }
signed_constraint bit(pdd const& p, unsigned i) { throw default_exception("bit nyi"); }
signed_constraint bit(pdd const& p, unsigned i);
signed_constraint diseq(pdd const& p) { return ~eq(p); }
signed_constraint diseq(pdd const& p, pdd const& q) { return diseq(p - q); }
@ -172,6 +176,7 @@ namespace polysat {
signed_constraint ashr(pdd const& a, pdd const& b, pdd const& r);
signed_constraint shl(pdd const& a, pdd const& b, pdd const& r);
signed_constraint band(pdd const& a, pdd const& b, pdd const& r);
signed_constraint bor(pdd const& a, pdd const& b, pdd const& r);
//signed_constraint even(pdd const& p) { return parity_at_least(p, 1); }
//signed_constraint odd(pdd const& p) { return ~even(p); }

View file

@ -206,6 +206,7 @@ namespace polysat {
case l_false:
return sat::check_result::CR_CONTINUE;
case l_undef:
verbose_stream() << "giveup assign\n";
return sat::check_result::CR_GIVEUP;
// or:
// r = l_undef;
@ -220,6 +221,7 @@ namespace polysat {
TRACE("bv", tout << "saturate\n");
return sat::check_result::CR_CONTINUE;
case l_undef:
verbose_stream() << "giveup saturate\n";
r = l_undef;
break;
}
@ -231,6 +233,7 @@ namespace polysat {
TRACE("bv", tout << "refine\n");
return sat::check_result::CR_CONTINUE;
case l_undef:
verbose_stream() << "giveup refine\n";
r = l_undef;
break;
}
@ -242,6 +245,7 @@ namespace polysat {
TRACE("bv", tout << "blast\n");
return sat::check_result::CR_CONTINUE;
case l_undef:
verbose_stream() << "giveup blast\n";
r = l_undef;
break;
}

View file

@ -129,6 +129,7 @@ namespace polysat {
void ashr(pdd const& a, pdd const& b, pdd const& r) { add_opdef(m_constraints.ashr(a, b, r)); }
void shl(pdd const& a, pdd const& b, pdd const& r) { add_opdef(m_constraints.shl(a, b, r)); }
void band(pdd const& a, pdd const& b, pdd const& r) { add_opdef(m_constraints.band(a, b, r)); }
void bor(pdd const& a, pdd const& b, pdd const& r) { add_opdef(m_constraints.bor(a, b, r)); }
pdd bnot(pdd p) { return -p - 1; }
pvar mul(unsigned n, pdd const* args) { return m_monomials.mk(n, args); }

View file

@ -86,10 +86,10 @@ namespace polysat {
// bit blast a monomial definition
lbool monomials::bit_blast() {
// disable for now
return l_undef;
init_to_refine();
if (m_to_refine.empty())
return l_true;
return l_undef;
shuffle(m_to_refine.size(), m_to_refine.data(), c.rand());
if (any_of(m_to_refine, [&](auto i) { return bit_blast(m_monomials[i]); }))
return l_false;

View file

@ -61,6 +61,8 @@ namespace polysat {
return eval_shl(p, q, r);
case code::and_op:
return eval_and(p, q, r);
case code::or_op:
return eval_or(p, q, r);
case code::inv_op:
return eval_inv(p, r);
case code::ashr_op:
@ -96,7 +98,7 @@ namespace polysat {
if (r.is_val() && p.is_val() && q.is_val()) {
auto M = m.max_value();
auto N = M + 1;
if (p.val() >= N/2) {
if (p.val() >= N / 2) {
if (q.val() >= m.power_of_2())
return to_lbool(r.val() == M);
unsigned k = q.val().get_unsigned();
@ -144,6 +146,19 @@ namespace polysat {
return l_undef;
}
/** Evaluate constraint: r == p | q */
lbool op_constraint::eval_or(pdd const& p, pdd const& q, pdd const& r) {
if (p.is_zero() && q == r)
return l_true;
if (q.is_zero() && p == r)
return l_true;
if (p.is_val() && q.is_val() && r.is_val())
return r.val() == bitwise_or(p.val(), q.val()) ? l_true : l_false;
return l_undef;
}
/** Evaluate constraint: r == inv p */
lbool op_constraint::eval_inv(pdd const& p, pdd const& r) {
if (!p.is_val() || !r.is_val())
@ -173,6 +188,8 @@ namespace polysat {
return out << "<<";
case op_constraint::code::and_op:
return out << "&";
case op_constraint::code::or_op:
return out << "|";
case op_constraint::code::inv_op:
return out << "inv";
default:
@ -202,15 +219,22 @@ namespace polysat {
case code::and_op:
activate_and(c, dep);
break;
case code::or_op:
c.add_axiom("p | q >= p", { C.ule(p, r) }, false);
c.add_axiom("p | q >= q", { C.ule(q, r) }, false);
c.add_axiom("p = q -> p | q = p", { ~C.eq(p, q), C.eq(r, p) }, false);
c.add_axiom("p | 0 = p", { ~C.eq(q), C.eq(r, p) }, false);
c.add_axiom("0 | q = q", { ~C.eq(p), C.eq(r, q) }, false);
break;
case code::ashr_op:
c.add_axiom("q >= N & p < 0 -> p <<a q = -1", { ~C.uge(q, N), ~C.slt(p, 0), C.eq(r, m.max_value()) }, false);
c.add_axiom("q >= N & p >= 0 -> p <<a q = 0", { ~C.uge(q, N), ~C.sge(p, 0), C.eq(r) }, false);
c.add_axiom("q = 0 -> p <<a q = p", { ~C.eq(q), C.eq(r, p) }, false);
break;
case code::lshr_op:
case code::lshr_op:
c.add_axiom("q >= N -> p <<l q = 0", { ~C.uge(q, N), C.eq(r) }, false);
c.add_axiom("q = 0 -> p <<l q = p", { ~C.eq(q), C.eq(r, p) }, false);
break;
break;
case code::shl_op:
c.add_axiom("q >= N -> p >> q = 0", { ~C.uge(q, N), C.eq(r) }, false);
c.add_axiom("q = 0 -> p >> q = p", { ~C.eq(q), C.eq(r, p) }, false);
@ -226,19 +250,22 @@ namespace polysat {
SASSERT(value == l_true);
switch (m_op) {
case code::lshr_op:
propagate_lshr(c, dep);
propagate_lshr(c);
break;
case code::ashr_op:
propagate_ashr(c, dep);
propagate_ashr(c);
break;
case code::shl_op:
propagate_shl(c, dep);
propagate_shl(c);
break;
case code::and_op:
propagate_and(c, dep);
propagate_and(c);
break;
case code::or_op:
propagate_or(c);
break;
case code::inv_op:
propagate_inv(c, dep);
propagate_inv(c);
break;
default:
verbose_stream() << "not implemented yet: " << *this << "\n";
@ -247,10 +274,20 @@ namespace polysat {
}
}
void op_constraint::propagate_inv(core& s, dependency const& dep) {
void op_constraint::propagate_inv(core& s) {
}
void op_constraint::propagate(core& c, signed_constraint const& sc) {
c.propagate(sc, c.explain_weak_eval(sc));
}
void op_constraint::add_conflict(core& c, char const* ax, constraint_or_dependency_list const& cs) {
for (auto sc : cs)
if (std::holds_alternative<signed_constraint>(sc))
propagate(c, ~*std::get_if<signed_constraint>(&sc));
c.add_axiom(ax, cs, true);
}
/**
* Enforce basic axioms for r == p >> q:
*
@ -270,10 +307,10 @@ namespace polysat {
*
* TODO: use also
* s.m_viable.min_viable();
* s.m_viable.max_viable()
* s.m_viable.max_viable(
* when r, q are variables.
*/
void op_constraint::propagate_lshr(core& c, dependency const& d) {
void op_constraint::propagate_lshr(core& c) {
auto& m = p.manager();
auto const pv = c.subst(p);
auto const qv = c.subst(q);
@ -283,25 +320,25 @@ namespace polysat {
auto& C = c.cs();
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
c.add_axiom("lshr 1", { C.ule(r, p) }, false);
return add_conflict(c, "lshr 1", { C.ule(r, p) });
else if (qv.is_val() && qv.val() >= N && rv.is_val() && !rv.is_zero())
// TODO: instead of rv.is_val() && !rv.is_zero(), we should use !is_forced_zero(r) which checks whether eval(r) = 0 or bvalue(r=0) = true; see saturation.cpp
c.add_axiom("q >= N -> r = 0", { ~C.ule(N, q), C.eq(r) }, true);
else if (qv.is_zero() && pv.is_val() && rv.is_val() && pv != rv)
c.add_axiom("q = 0 -> p = r", { ~C.eq(q), C.eq(p, r) } , true);
c.add_axiom("q = 0 -> p = r", { ~C.eq(q), C.eq(p, r) }, true);
else if (qv.is_val() && !qv.is_zero() && pv.is_val() && rv.is_val() && !pv.is_zero() && rv.val() >= pv.val())
c.add_axiom("q != 0 & p > 0 -> r < p", { C.eq(q), C.ule(p, 0), C.ult(r, p) }, true);
else if (qv.is_val() && !qv.is_zero() && qv.val() < N && rv.is_val() && rv.val() > rational::power_of_two(N - qv.val().get_unsigned()) - 1)
c.add_axiom("q >= k -> r <= 2^{N-k} - 1", { ~C.ule(qv.val(), q), C.ule(r, rational::power_of_two(N - qv.val().get_unsigned()) - 1)}, true);
c.add_axiom("q >= k -> r <= 2^{N-k} - 1", { ~C.ule(qv.val(), q), C.ule(r, rational::power_of_two(N - qv.val().get_unsigned()) - 1) }, true);
else if (pv.is_val() && rv.is_val() && qv.is_val() && !qv.is_zero()) {
unsigned k = qv.val().get_unsigned();
for (unsigned i = 0; i < N - k; ++i) {
if (rv.val().get_bit(i) && !pv.val().get_bit(i + k))
if (rv.val().get_bit(i) && !pv.val().get_bit(i + k))
c.add_axiom("q = k -> r[i] = p[i+k] for 0 <= i < N - k", { ~C.eq(q, k), ~C.bit(r, i), C.bit(p, i + k) }, true);
if (!rv.val().get_bit(i) && pv.val().get_bit(i + k))
c.add_axiom("q = k -> r[i] = p[i+k] for 0 <= i < N - k", { ~C.eq(q, k), C.bit(r, i), ~C.bit(p, i + k) }, true);
if (!rv.val().get_bit(i) && pv.val().get_bit(i + k))
c.add_axiom("q = k -> r[i] = p[i+k] for 0 <= i < N - k", { ~C.eq(q, k), C.bit(r, i), ~C.bit(p, i + k) }, true);
}
}
else {
@ -350,9 +387,9 @@ namespace polysat {
rational exp = rational::power_of_two(N - k);
c.add_axiom("(p & 0011)*2^k = p*2^k", { C.eq(x * exp, r * exp) }, false);
}
}
}
void op_constraint::propagate_ashr(core& c, dependency const& dep) {
void op_constraint::propagate_ashr(core& c) {
//
// Suppose q = k, p >= 0:
// p = ab, where b has length k, a has length N - k
@ -387,7 +424,7 @@ namespace polysat {
rational twoNk = rational::power_of_two(N - k);
auto eqK = C.eq(q, k);
c.add_axiom("q = k -> r*2^k + p < 2^k", { ~eqK, C.ult(p - r * twoK, twoK) }, true);
c.add_axiom("q = k & p >= 0 -> r < 2^{N-k}", { ~eqK, ~C.ule(0, p), C.ult(r, twoNk) }, true);
c.add_axiom("q = k & p >= 0 -> r < 2^{N-k}", { ~eqK, ~C.ule(0, p), C.ult(r, twoNk) }, true);
c.add_axiom("q = k & p < 0 -> r >= 2^N - 2^{N-k}", { ~eqK, ~C.slt(p, 0), C.uge(r, twoN - twoNk) }, true);
}
}
@ -402,7 +439,7 @@ namespace polysat {
* q = k -> r[i+k] = p[i] for 0 <= i < N - k
* q = 0 -> r = p
*/
void op_constraint::propagate_shl(core& c, dependency const& d) {
void op_constraint::propagate_shl(core& c) {
auto& m = p.manager();
auto const pv = c.subst(p);
auto const qv = c.subst(q);
@ -410,7 +447,7 @@ namespace polysat {
unsigned const N = m.power_of_2();
auto& C = c.cs();
if (qv.is_val() && qv.val() >= N && rv.is_val() && !rv.is_zero())
if (qv.is_val() && qv.val() >= N && rv.is_val() && !rv.is_zero())
c.add_axiom("q >= N -> p >> q = 0", { ~C.ule(N, q), C.eq(r) }, true);
else if (qv.is_zero() && pv.is_val() && rv.is_val() && rv != pv)
//
@ -424,10 +461,10 @@ namespace polysat {
unsigned k = qv.val().get_unsigned();
// q = k -> r[i+k] = p[i] for 0 <= i < N - k
for (unsigned i = 0; i < N - k; ++i) {
if (rv.val().get_bit(i + k) && !pv.val().get_bit(i))
c.add_axiom("q = k -> p>>q[i+k] = p[i] for 0 <= i < N - k", { ~C.eq(q, k), ~C.bit(r, i + k), C.bit(p, i) }, true);
else if (!rv.val().get_bit(i + k) && pv.val().get_bit(i))
c.add_axiom("q = k -> p>>q[i+k] = p[i] for 0 <= i < N - k", { ~C.eq(q, k), C.bit(r, i + k), ~C.bit(p, i) }, true);
if (rv.val().get_bit(i + k) && !pv.val().get_bit(i))
c.add_axiom("q = k -> p>>q[i+k] = p[i] for 0 <= i < N - k", { ~C.eq(q, k), ~C.bit(r, i + k), C.bit(p, i) }, true);
else if (!rv.val().get_bit(i + k) && pv.val().get_bit(i))
c.add_axiom("q = k -> p>>q[i+k] = p[i] for 0 <= i < N - k", { ~C.eq(q, k), C.bit(r, i + k), ~C.bit(p, i) }, true);
}
}
else {
@ -435,13 +472,13 @@ namespace polysat {
SASSERT(!(pv.is_val() && qv.is_val() && rv.is_val()));
if (qv.is_val() && !rv.is_val()) {
rational const& q_val = qv.val();
if (q_val >= N)
c.add_axiom("q >= N ==> p << q = 0", {~C.ule(N, q), C.eq(r)}, true);
if (q_val >= N)
c.add_axiom("q >= N ==> p << q = 0", { ~C.ule(N, q), C.eq(r) }, true);
if (pv.is_val()) {
SASSERT(q_val.is_unsigned());
// p = p_val & q = q_val ==> r = p_val * 2^q_val
rational const r_val = pv.val() * rational::power_of_two(q_val.get_unsigned());
c.add_axiom("p = v1, q = v2, p << q -> v1 << v2", {~C.eq(p, pv), ~C.eq(q, qv), C.eq(r, r_val)}, true);
c.add_axiom("p = v1, q = v2, p << q -> v1 << v2", { ~C.eq(p, pv), ~C.eq(q, qv), C.eq(r, r_val) }, true);
}
}
}
@ -460,62 +497,109 @@ namespace polysat {
* p = 2^k - 1 && r = 0 && q != 0 => q >= 2^k
* q = 2^k - 1 && r = 0 && p != 0 => p >= 2^k
*/
void op_constraint::propagate_and(core& c, dependency const& d) {
void op_constraint::propagate_and(core& c) {
auto& m = p.manager();
auto pv = c.subst(p);
auto qv = c.subst(q);
auto rv = c.subst(r);
auto& C = c.cs();
if (pv.is_val() && rv.is_val() && rv.val() > pv.val())
c.add_axiom("p & q <= p", { C.ule(r, p) }, true);
else if (qv.is_val() && rv.is_val() && rv.val() > qv.val())
c.add_axiom("p & q <= q", { C.ule(r, q) }, true);
else if (pv.is_val() && qv.is_val() && rv.is_val() && pv == qv && rv != pv)
c.add_axiom("p = q => p & q = p", { ~C.eq(p, q), C.eq(r, p) }, true);
// p = a && q = b ==> r = a & b
else if (pv.is_val() && qv.is_val() && !rv.is_val())
// Just assign by this very weak justification. It will be strengthened in saturation in case of a conflict
c.add_axiom("p = a & q = b => r = a&b", { ~C.eq(p, pv), ~C.eq(q, qv), C.eq(r, bitwise_and(pv.val(), qv.val())) }, true);
else if (pv.is_val() && qv.is_val() && rv.is_val()) {
if (pv.is_max() && qv != rv)
c.add_axiom("p = -1 => p & q = q", { ~C.eq(p, m.max_value()), C.eq(q, r) }, true);
else if (qv.is_max() && pv != rv)
c.add_axiom("q = -1 => p & q = p", { ~C.eq(q, m.max_value()), C.eq(p, r) }, true);
else {
unsigned const N = m.power_of_2();
unsigned pow;
if ((pv.val() + 1).is_power_of_two(pow)) {
if (rv.is_zero() && !qv.is_zero() && qv.val() <= pv.val())
c.add_axiom("p = 2^k - 1 && p & q = 0 && q != 0 => q >= 2^k", { ~C.eq(p, pv), ~C.eq(r), C.eq(q), C.ule(pv + 1, q) }, true);
else if (rv != qv)
c.add_axiom("p = 2^k - 1 ==> (p&q)*2^{N - k} = q*2^{N - k}", { ~C.eq(p, pv), C.eq(r * rational::power_of_two(N - pow), q * rational::power_of_two(N - pow)) }, true);
}
if ((qv.val() + 1).is_power_of_two(pow)) {
if (rv.is_zero() && !pv.is_zero() && pv.val() <= qv.val())
c.add_axiom("q = 2^k - 1 && p & q = 0 && p != 0 ==> p >= 2^k", { ~C.eq(q, qv), ~C.eq(r), C.eq(p), C.ule(qv + 1, p) }, true);
else if (rv != pv)
c.add_axiom("q = 2^k - 1 ==> (p&q)*2^{N - k} = p*2^{N - k}", { ~C.eq(q, qv), C.eq(r * rational::power_of_two(N - pow), p * rational::power_of_two(N - pow)) }, true);
}
if (!pv.is_val() || !qv.is_val() || !rv.is_val())
return;
for (unsigned i = 0; i < N; ++i) {
bool pb = pv.val().get_bit(i);
bool qb = qv.val().get_bit(i);
bool rb = rv.val().get_bit(i);
if (rb == (pb && qb))
continue;
if (pb && qb && !rb)
c.add_axiom("p&q[i] = p[i]&q[i]", { ~C.bit(p, i), ~C.bit(q, i), C.bit(r, i) }, true);
else if (!pb && rb)
c.add_axiom("p&q[i] = p[i]&q[i]", { C.bit(p, i), ~C.bit(r, i) }, true);
else if (!qb && rb)
c.add_axiom("p&q[i] = p[i]&q[i]", { C.bit(q, i), ~C.bit(r, i) }, true);
else
UNREACHABLE();
return;
}
}
if (pv.is_max() && qv != rv)
return add_conflict(c, "p = -1 => p & q = q", { ~C.eq(p, m.max_value()), C.eq(q, r) });
if (qv.is_max() && pv != rv)
return add_conflict(c, "q = -1 => p & q = p", { ~C.eq(q, m.max_value()), C.eq(p, r) });
if (pv.is_zero() && !rv.is_zero())
return add_conflict(c, "p = 0 => p & q = 0", { ~C.eq(p), C.eq(r) });
if (qv.is_zero() && !rv.is_zero())
return add_conflict(c, "q = 0 => p & q = 0", { ~C.eq(q), C.eq(r) });
if (propagate_mask(c, p, q, r, pv.val(), qv.val(), rv.val()))
return;
if (propagate_mask(c, q, p, r, qv.val(), pv.val(), rv.val()))
return;
unsigned const N = m.power_of_2();
for (unsigned i = 0; i < N; ++i) {
bool pb = pv.val().get_bit(i);
bool qb = qv.val().get_bit(i);
bool rb = rv.val().get_bit(i);
if (rb == (pb && qb))
continue;
if (pb && qb && !rb)
add_conflict(c, "p&q[i] = p[i]&q[i]", { ~C.bit(p, i), ~C.bit(q, i), C.bit(r, i) });
else if (!pb && rb)
add_conflict(c, "p&q[i] = p[i]&q[i]", { C.bit(p, i), ~C.bit(r, i) });
else if (!qb && rb)
add_conflict(c, "p&q[i] = p[i]&q[i]", { C.bit(q, i), ~C.bit(r, i) });
else
UNREACHABLE();
return;
}
}
void op_constraint::propagate_or(core& c) {
auto& m = p.manager();
auto pv = c.subst(p);
auto qv = c.subst(q);
auto rv = c.subst(r);
auto& C = c.cs();
verbose_stream() << "propagate or " << p << " | " << q << " = " << r << "\n";
if (!pv.is_val() || !qv.is_val() || !rv.is_val())
return;
if (pv.is_max() && pv != rv)
return add_conflict(c, "p = -1 => p & q = p", { ~C.eq(p, m.max_value()), C.eq(p, r)});
if (qv.is_max() && qv != rv)
return add_conflict(c, "q = -1 => p & q = q", { ~C.eq(q, m.max_value()), C.eq(q, r) });
unsigned const N = m.power_of_2();
for (unsigned i = 0; i < N; ++i) {
bool pb = pv.val().get_bit(i);
bool qb = qv.val().get_bit(i);
bool rb = rv.val().get_bit(i);
if (rb == (pb || qb))
continue;
if (pb && !qb && rb)
add_conflict(c, "p[i] => (p|q)[i]", { ~C.bit(p, i), C.bit(r, i) });
else if (!pb && qb && rb)
add_conflict(c, "q[i] => (p|q)[i]", { ~C.bit(q, i), C.bit(r, i) });
else if (!pb && !qb && rb)
add_conflict(c, "(p|q)[i] => p[i] or q[i]", { C.bit(p, i), C.bit(q, i), ~C.bit(r, i) });
else
UNREACHABLE();
return;
}
}
bool op_constraint::propagate_mask(core& c, pdd const& p, pdd const& q, pdd const& r, rational const& pv, rational const& qv, rational const& rv) {
auto& m = p.manager();
auto& C = c.cs();
unsigned const N = m.power_of_2();
unsigned pow;
if (!(pv + 1).is_power_of_two(pow))
return false;
if (rv.is_zero() && !qv.is_zero() && qv <= pv) {
add_conflict(c, "p = 2^k - 1 && p & q = 0 && q != 0 => q >= 2^k", { ~C.eq(p, pv), ~C.eq(r), C.eq(q), C.ule(pv + 1, q) });
return true;
}
if (rv != qv) {
add_conflict(c, "p = 2^k - 1 ==> (p&q)*2^{N - k} = q*2^{N - k}", { ~C.eq(p, pv), C.eq(r * rational::power_of_two(N - pow), q * rational::power_of_two(N - pow)) });
return true;
}
return false;
}
}

View file

@ -35,6 +35,8 @@ namespace polysat {
shl_op,
/// r is the bit-wise 'and' of p and q.
and_op,
/// r is the bit-wise 'or' of p and q.
or_op,
/// r is the smallest multiplicative pseudo-inverse of p;
/// by definition we set r == 0 when p == 0.
/// Note that in general, there are 2^parity(p) many pseudo-inverses of p.
@ -56,12 +58,18 @@ namespace polysat {
static lbool eval_shl(pdd const& p, pdd const& q, pdd const& r);
static lbool eval_and(pdd const& p, pdd const& q, pdd const& r);
static lbool eval_inv(pdd const& p, pdd const& r);
static lbool eval_or(pdd const& p, pdd const& q, pdd const& r);
void propagate_lshr(core& s, dependency const& dep);
void propagate_ashr(core& s, dependency const& dep);
void propagate_shl(core& s, dependency const& dep);
void propagate_and(core& s, dependency const& dep);
void propagate_inv(core& s, dependency const& dep);
void propagate_lshr(core& c);
void propagate_ashr(core& c);
void propagate_shl(core& c);
void propagate_and(core& c);
void propagate_or(core& c);
void propagate_inv(core& c);
bool propagate_mask(core& c, pdd const& p, pdd const& q, pdd const& r, rational const& pv, rational const& qv, rational const& rv);
void propagate(core& c, signed_constraint const& sc);
void add_conflict(core& c, char const* ax, constraint_or_dependency_list const& cs);

View file

@ -51,6 +51,8 @@ namespace polysat {
resolve(v, inequality::from_ule(c, id));
else if (sc.is_umul_ovfl())
try_umul_ovfl(v, umul_ovfl(id, sc));
else if (sc.is_op())
try_op(v, sc, c.get_dependency(id));
return c.inconsistent();
}
@ -238,4 +240,16 @@ namespace polysat {
add_clause("ax + b = 0 & cx + d = 0 ==> cb - da = 0", { i.dep(), j.dep(), C.eq(r) }, true);
}
void saturation::try_op(pvar v, signed_constraint& sc, dependency const& d) {
verbose_stream() << "try op " << sc << "\n";
SASSERT(sc.is_op());
sc.propagate(c, l_true, d);
}
// possible algebraic rule:
// From "Hacker's Delight", section 2-2. Addition Combined with Logical Operations;
// found via Int-Blasting paper; see https://doi.org/10.1007/978-3-030-94583-1_24
// bor(p,q) = (p + q) - band(p, q);
}

View file

@ -65,6 +65,7 @@ namespace polysat {
void try_ugt_y(pvar v, inequality const& i);
void try_ugt_z(pvar z, inequality const& i);
void try_umul_ovfl(pvar v, umul_ovfl const& sc);
void try_op(pvar v, signed_constraint& sc, dependency const& d);
signed_constraint ineq(bool is_strict, pdd const& x, pdd const& y);

View file

@ -8,7 +8,7 @@ Module Name:
Abstract:
PolySAT internalize
Author:
Nikolaj Bjorner (nbjorner) 2022-01-26
@ -43,7 +43,7 @@ namespace polysat {
visit_rec(m, e, false, false);
}
bool solver::visit(expr* e) {
bool solver::visit(expr* e) {
force_push();
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
ctx.internalize(e);
@ -55,7 +55,7 @@ namespace polysat {
bool solver::visited(expr* e) {
euf::enode* n = expr2enode(e);
return n && n->is_attached_to(get_id());
return n && n->is_attached_to(get_id());
}
bool solver::post_visit(expr* e, bool sign, bool root) {
@ -75,7 +75,7 @@ namespace polysat {
internalize_polysat(a);
return true;
}
void solver::internalize_polysat(app* a) {
#define if_unary(F) if (a->get_num_args() == 1) { internalize_unary(a, [&](pdd const& p) { return F(p); }); break; }
@ -98,13 +98,13 @@ namespace polysat {
case OP_MKBV: internalize_mkbv(a); break;
case OP_BV_NUM: internalize_num(a); break;
case OP_ULEQ: internalize_le<false, false, false>(a); break;
case OP_SLEQ: internalize_le<true, false, false>(a); break;
case OP_UGEQ: internalize_le<false, true, false>(a); break;
case OP_SGEQ: internalize_le<true, true, false>(a); break;
case OP_ULT: internalize_le<false, true, true>(a); break;
case OP_SLT: internalize_le<true, true, true>(a); break;
case OP_SLEQ: internalize_le<true, false, false>(a); break;
case OP_UGEQ: internalize_le<false, true, false>(a); break;
case OP_SGEQ: internalize_le<true, true, false>(a); break;
case OP_ULT: internalize_le<false, true, true>(a); break;
case OP_SLT: internalize_le<true, true, true>(a); break;
case OP_UGT: internalize_le<false, false, true>(a); break;
case OP_SGT: internalize_le<true, false, true>(a); break;
case OP_SGT: internalize_le<true, false, true>(a); break;
case OP_BUMUL_NO_OVFL: internalize_binary_predicate(a, [&](pdd const& p, pdd const& q) { return ~m_core.umul_ovfl(p, q); }); break;
case OP_BSMUL_NO_OVFL: internalize_binary_predicate(a, [&](pdd const& p, pdd const& q) { return ~m_core.smul_ovfl(p, q); }); break;
@ -137,13 +137,13 @@ namespace polysat {
case OP_EXTRACT: internalize_extract(a); break;
case OP_CONCAT: internalize_concat(a); break;
case OP_ZERO_EXT: internalize_zero_extend(a); break;
case OP_SIGN_EXT: internalize_sign_extend(a); break;
case OP_SIGN_EXT: internalize_sign_extend(a); break;
case OP_BSREM:
case OP_BSREM_I:
case OP_BSMOD:
case OP_BSMOD_I:
case OP_BSDIV:
case OP_BSREM:
case OP_BSREM_I:
case OP_BSMOD:
case OP_BSMOD_I:
case OP_BSDIV:
case OP_BSDIV_I:
case OP_BREDOR: // x > 0 unary, return single bit, 1 if at least one input bit is set.
case OP_BREDAND: // x == 2^K - 1 unary, return single bit, 1 if all input bits are set.
@ -153,10 +153,10 @@ namespace polysat {
case OP_EXT_ROTATE_LEFT:
case OP_EXT_ROTATE_RIGHT:
case OP_INT2BV:
case OP_BV2INT:
case OP_BV2INT:
if (bv.is_bv(a))
expr2pdd(a);
m_delayed_axioms.push_back(a);
m_delayed_axioms.push_back(a);
ctx.push(push_back_vector(m_delayed_axioms));
break;
@ -181,7 +181,7 @@ namespace polysat {
solver::atom* solver::mk_atom(sat::bool_var bv, signed_constraint& sc) {
auto a = get_bv2a(bv);
if (a)
return a;
return a;
auto index = m_core.register_constraint(sc, dependency(bv));
a = new (get_region()) atom(bv, index);
insert_bv2a(bv, a);
@ -200,7 +200,7 @@ namespace polysat {
}
void solver::internalize_udiv_i(app* e) {
expr* x, *y;
expr* x, * y;
expr_ref rm(m);
if (bv.is_bv_udivi(e, x, y))
rm = bv.mk_bv_urem_i(x, y);
@ -214,16 +214,29 @@ namespace polysat {
// From "Hacker's Delight", section 2-2. Addition Combined with Logical Operations;
// found via Int-Blasting paper; see https://doi.org/10.1007/978-3-030-94583-1_24
// (p + q) - band(p, q);
void solver::internalize_bor(app* n) {
internalize_binary(n, [&](expr* const& x, expr* const& y) { return bv.mk_bv_sub(bv.mk_bv_add(x, y), bv.mk_bv_and(x, y)); });
void solver::internalize_bor(app* n) {
if (n->get_num_args() == 2) {
expr* x, * y;
VERIFY(bv.is_bv_or(n, x, y));
m_core.bor(expr2pdd(x), expr2pdd(y), expr2pdd(n));
}
else {
expr_ref z(n->get_arg(0), m);
for (unsigned i = 1; i < n->get_num_args(); ++i) {
z = bv.mk_bv_or(z, n->get_arg(i));
ctx.internalize(z);
}
internalize_set(n, expr2pdd(z));
}
}
// From "Hacker's Delight", section 2-2. Addition Combined with Logical Operations;
// found via Int-Blasting paper; see https://doi.org/10.1007/978-3-030-94583-1_24
// (p + q) - 2*band(p, q);
void solver::internalize_bxor(app* n) {
internalize_binary(n, [&](expr* const& x, expr* const& y) {
return bv.mk_bv_sub(bv.mk_bv_add(x, y), bv.mk_bv_add(bv.mk_bv_and(x, y), bv.mk_bv_and(x, y)));
internalize_binary(n, [&](expr* const& x, expr* const& y) {
return bv.mk_bv_sub(bv.mk_bv_add(x, y), bv.mk_bv_add(bv.mk_bv_and(x, y), bv.mk_bv_and(x, y)));
});
}
@ -279,7 +292,7 @@ namespace polysat {
ctx.push(value_trail(m_delayed_axioms_qhead));
for (; m_delayed_axioms_qhead < m_delayed_axioms.size() && !inconsistent(); ++m_delayed_axioms_qhead) {
app* e = m_delayed_axioms[m_delayed_axioms_qhead];
expr* x, *y;
expr* x, * y;
unsigned n = 0;
if (bv.is_bv_sdiv(e, x, y))
axiomatize_sdiv(e, x, y);
@ -327,7 +340,7 @@ namespace polysat {
rational N = rational::power_of_two(sz);
add_axiom("int2bv", { eq_internalize(bv.mk_bv2int(e), m_autil.mk_mod(x, m_autil.mk_int(N))) });
}
void solver::axiomatize_bv2int(app* e, expr* x) {
// e := bv2int(x)
// e = sum_bits(x)
@ -349,7 +362,7 @@ namespace polysat {
return x;
else
return bv.mk_concat(bv.mk_extract(n, 0, x), bv.mk_extract(sz - 1, sz - n - 1, x));
}
}
void solver::axiomatize_rotate_left(app* e, unsigned n, expr* x) {
// e = x[n : 0] ++ x[sz - 1, sz - n - 1]
@ -398,9 +411,9 @@ namespace polysat {
// else x - sdiv(x, y) * y
void solver::axiomatize_srem(app* e, expr* x, expr* y) {
unsigned sz = bv.get_bv_size(x);
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
add_axiom("srem", { ~y_eq0, eq_internalize(e, x) });
add_axiom("srem", { y_eq0, eq_internalize(e, bv.mk_bv_mul(bv.mk_bv_sdiv(x, y), y)) });
add_axiom("srem", { y_eq0, eq_internalize(e, bv.mk_bv_mul(bv.mk_bv_sdiv(x, y), y)) });
}
// u := umod(x, y)
@ -442,10 +455,10 @@ namespace polysat {
void solver::axiomatize_sdiv(app* e, expr* x, expr* y) {
unsigned sz = bv.get_bv_size(x);
rational N = rational::power_of_two(bv.get_bv_size(x));
expr* signx = bv.mk_ule(bv.mk_numeral(N/2, sz), x);
expr* signy = bv.mk_ule(bv.mk_numeral(N/2, sz), y);
expr* absx = m.mk_ite(signx, bv.mk_bv_sub(bv.mk_numeral(N-1, sz), x), x);
expr* absy = m.mk_ite(signy, bv.mk_bv_sub(bv.mk_numeral(N-1, sz), y), y);
expr* signx = bv.mk_ule(bv.mk_numeral(N / 2, sz), x);
expr* signy = bv.mk_ule(bv.mk_numeral(N / 2, sz), y);
expr* absx = m.mk_ite(signx, bv.mk_bv_sub(bv.mk_numeral(N - 1, sz), x), x);
expr* absy = m.mk_ite(signy, bv.mk_bv_sub(bv.mk_numeral(N - 1, sz), y), y);
expr* d = bv.mk_bv_udiv(absx, absy);
sat::literal lsignx = mk_literal(signx);
sat::literal lsigny = mk_literal(signy);
@ -457,10 +470,10 @@ namespace polysat {
add_axiom(name, { y_eq0, ~lsignx, lsigny, eq_internalize(e, bv.mk_bv_neg(d)) });
add_axiom(name, { y_eq0, lsignx, lsigny, eq_internalize(e, d) });
add_axiom(name, { y_eq0, ~lsignx, ~lsigny, eq_internalize(e, d) });
}
}
void solver::internalize_urem_i(app* rem) {
expr* x, *y;
expr* x, * y;
euf::enode* n = expr2enode(rem);
SASSERT(n && n->is_attached_to(get_id()));
theory_var v = n->get_th_var(get_id());
@ -478,7 +491,7 @@ namespace polysat {
m_var2pdd_valid.setx(v, false, false);
quot_rem(quot, rem, x, y);
}
void solver::quot_rem(expr* quot, expr* rem, expr* x, expr* y) {
pdd a = expr2pdd(x);
pdd b = expr2pdd(y);
@ -513,8 +526,8 @@ namespace polysat {
internalize_set(quot, q);
internalize_set(rem, r);
return;
}
}
pdd r = var2pdd(rn->get_th_var(get_id()));
pdd q = var2pdd(qn->get_th_var(get_id()));
@ -542,13 +555,13 @@ namespace polysat {
}
void solver::internalize_sign_extend(app* e) {
expr* arg = e->get_arg(0);
expr* arg = e->get_arg(0);
unsigned sz = bv.get_bv_size(e);
unsigned arg_sz = bv.get_bv_size(arg);
unsigned sz2 = sz - arg_sz;
var2pdd(expr2enode(e)->get_th_var(get_id()));
auto name = "sign extend";
if (arg_sz == sz)
if (arg_sz == sz)
add_axiom(name, { eq_internalize(e, arg) });
else {
sat::literal lt0 = ctx.mk_literal(bv.mk_slt(arg, bv.mk_numeral(0, arg_sz)));
@ -568,7 +581,7 @@ namespace polysat {
auto name = "zero extend";
if (arg_sz == sz)
add_axiom(name, { eq_internalize(e, arg) });
else
else
// e = concat(0...0, arg)
add_axiom(name, { eq_internalize(e, bv.mk_concat(bv.mk_numeral(0, sz2), arg)) });
}
@ -593,13 +606,13 @@ namespace polysat {
add_axiom(name, { ~eqZ, eqU });
add_axiom(name, { eqZ, eqI });
ctx.add_aux(~eqZ, eqU);
ctx.add_aux(eqZ, eqI);
ctx.add_aux(eqZ, eqI);
}
void solver::internalize_num(app* a) {
rational val;
unsigned sz = 0;
VERIFY(bv.is_numeral(a, val, sz));
VERIFY(bv.is_numeral(a, val, sz));
auto p = m_core.value(val, sz);
internalize_set(a, p);
}
@ -630,7 +643,7 @@ namespace polysat {
unsigned i = 0;
for (expr* arg : *a) {
expr_ref b2b(m);
b2b = bv.mk_bit2bool(a, i);
b2b = bv.mk_bit2bool(a, i);
sat::literal bit_i = ctx.internalize(b2b, false, false);
sat::literal lit = expr2literal(arg);
equiv_axiom("mkbv", lit, bit_i);
@ -656,10 +669,10 @@ namespace polysat {
auto sz_e = hi - lo + 1;
auto sz_x = bv.get_bv_size(x);
auto eq0 = eq_internalize(e, bv.mk_numeral(0, sz_e));
auto gelo = mk_literal(bv.mk_ule(bv.mk_numeral(rational::power_of_two(lo), sz_x), x));
auto gelo = mk_literal(bv.mk_ule(bv.mk_numeral(rational::power_of_two(lo), sz_x), x));
auto name = "extract";
add_axiom(name, { eq0, gelo });
if (hi + 1 == sz_e)
if (hi + 1 == sz_e)
add_axiom(name, { ~eq0, ~gelo });
}
@ -681,7 +694,7 @@ namespace polysat {
add_axiom("hi = 0 => concat(hi, lo) < 2^|lo|", neqs, false);
neqs.pop_back();
for (auto neq : neqs)
add_axiom("concat(hi,lo) < 2^|lo| => hi = 0", {~neq, ~gtlo}); // hi = 0 or e >= 2^|lo|
add_axiom("concat(hi,lo) < 2^|lo| => hi = 0", { ~neq, ~gtlo }); // hi = 0 or e >= 2^|lo|
expr* lo = e->get_arg(i);
auto sz_l = bv.get_bv_size(lo);
neqs.push_back(~eq_internalize(lo, bv.mk_numeral(0, sz_l)));
@ -696,7 +709,7 @@ namespace polysat {
var2pdd(expr2enode(e)->get_th_var(get_id()));
}
void solver::internalize_par_unary(app* e, std::function<pdd(pdd,unsigned)> const& fn) {
void solver::internalize_par_unary(app* e, std::function<pdd(pdd, unsigned)> const& fn) {
pdd const p = expr2pdd(e->get_arg(0));
unsigned const par = e->get_parameter(0).get_int();
internalize_set(e, fn(p, par));
@ -705,7 +718,7 @@ namespace polysat {
void solver::internalize_binary(app* e, std::function<pdd(pdd, pdd)> const& fn) {
SASSERT(e->get_num_args() >= 1);
auto p = expr2pdd(e->get_arg(0));
for (unsigned i = 1; i < e->get_num_args(); ++i)
for (unsigned i = 1; i < e->get_num_args(); ++i)
p = fn(p, expr2pdd(e->get_arg(i)));
internalize_set(e, p);
}
@ -735,7 +748,7 @@ namespace polysat {
auto sc = Signed ? m_core.sle(p, q) : m_core.ule(p, q);
if (Negated)
sc = ~sc;
sat::literal lit = expr2literal(e);
if (lit.sign())
sc = ~sc;
@ -777,7 +790,7 @@ namespace polysat {
if (!bv.is_bv(n->get_expr()))
return;
theory_var v = n->get_th_var(get_id());
if (v == euf::null_theory_var)
if (v == euf::null_theory_var)
v = mk_var(n);
var2pdd(v);
}
@ -824,7 +837,7 @@ namespace polysat {
return elem.first;
is_new = false;
}
auto sc = m_core.eq(p, q);
auto sc = m_core.eq(p, q);
idx = m_core.register_constraint(sc, d);
if (is_new) {
m_eq2constraint[sz].insert(r.index(), { idx, sign });