3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 09:35:32 +00:00

Dedup quot_rem and lshr too

This commit is contained in:
Jakob Rath 2022-11-07 15:25:05 +01:00
parent 2953b1c093
commit e7c77a22ab
4 changed files with 71 additions and 40 deletions

View file

@ -277,19 +277,71 @@ namespace polysat {
return ult(a + shift, b + shift);
}
std::pair<pdd, pdd> constraint_manager::quot_rem(pdd const& a, pdd const& b) {
auto& m = a.manager();
unsigned sz = m.power_of_2();
if (a.is_val() && b.is_val()) {
// TODO: just evaluate?
}
constraint_dedup::quot_rem_args args({a, b});
auto it = m_dedup.quot_rem_expr.find_iterator(args);
if (it != m_dedup.quot_rem_expr.end())
return { m.mk_var(it->m_value.first), m.mk_var(it->m_value.second) };
pdd q = m.mk_var(s.add_var(sz)); // quotient
pdd r = m.mk_var(s.add_var(sz)); // remainder
m_dedup.quot_rem_expr.insert(args, { q.var(), r.var() });
// Axioms for quotient/remainder:
// a = b*q + r
// multiplication does not overflow in b*q
// addition does not overflow in (b*q) + r; for now expressed as: r <= bq+r (TODO: maybe the version with disjunction is easier for the solver; should compare later)
// b ≠ 0 ==> r < b
// b = 0 ==> q = -1
s.add_eq(a, b * q + r);
s.add_umul_noovfl(b, q);
s.add_ule(r, b*q+r);
auto c_eq = eq(b);
s.add_clause(c_eq, ult(r, b), false);
s.add_clause(~c_eq, eq(q + 1), false);
return {q, r};
}
pdd constraint_manager::lshr(pdd const& p, pdd const& q) {
auto& m = p.manager();
unsigned sz = m.power_of_2();
op_constraint_args const args(op_constraint::code::lshr_op, p, q);
auto it = m_dedup.op_constraint_expr.find_iterator(args);
if (it != m_dedup.op_constraint_expr.end())
return m.mk_var(it->m_value);
pdd r = m.mk_var(s.add_var(sz));
m_dedup.op_constraint_expr.insert(args, r.var());
s.assign_eh(lshr(p, q, r), null_dependency);
return r;
}
pdd constraint_manager::bnot(pdd const& p) {
return -p - 1;
}
pdd constraint_manager::band(pdd const& p, pdd const& q) {
op_constraint_args const args(op_constraint::code::and_op, p, q);
auto& m = p.manager();
unsigned sz = m.power_of_2();
op_constraint_args const args(op_constraint::code::and_op, p, q);
auto it = m_dedup.op_constraint_expr.find_iterator(args);
if (it != m_dedup.op_constraint_expr.end())
return m.mk_var(it->m_value);
unsigned sz = m.power_of_2();
pdd r = m.mk_var(s.add_var(sz));
m_dedup.op_constraint_expr.insert(args, r.var());
s.assign_eh(band(p, q, r), null_dependency);
return r;
}

View file

@ -29,6 +29,16 @@ namespace polysat {
using op_constraint_args_hash = obj_hash<op_constraint_args>;
using op_constraint_expr_map = map<op_constraint_args, pvar, op_constraint_args_hash, op_constraint_args_eq>;
op_constraint_expr_map op_constraint_expr;
using quot_rem_args = std::optional<std::pair<pdd, pdd>>; // NOTE: this is only wrapped in optional because table2map requires a default constructor
using quot_rem_args_eq = default_eq<quot_rem_args>;
struct quot_rem_args_hash {
unsigned operator()(quot_rem_args const& args) const {
return args ? combine_hash(args->first.hash(), args->second.hash()) : 0;
}
};
using quot_rem_expr_map = map<quot_rem_args, std::pair<pvar, pvar>, quot_rem_args_hash, quot_rem_args_eq>;
quot_rem_expr_map quot_rem_expr;
};
// Manage constraint lifetime, deduplication, and connection to boolean variables/literals.
@ -100,6 +110,10 @@ namespace polysat {
signed_constraint lshr(pdd const& p, pdd const& q, pdd const& r);
signed_constraint band(pdd const& p, pdd const& q, pdd const& r);
std::pair<pdd, pdd> quot_rem(pdd const& a, pdd const& b);
pdd lshr(pdd const& p, pdd const& q);
pdd bnot(pdd const& p);
pdd band(pdd const& p, pdd const& q);
pdd bor(pdd const& p, pdd const& q);

View file

@ -133,39 +133,6 @@ namespace polysat {
m_free_pvars.del_var_eh(v);
}
std::tuple<pdd, pdd> solver::quot_rem(pdd const& a, pdd const& b) {
auto& m = a.manager();
unsigned sz = m.power_of_2();
if (a.is_val() && b.is_val()) {
// TODO: just evaluate?
}
pdd q = m.mk_var(add_var(sz)); // quotient
pdd r = m.mk_var(add_var(sz)); // remainder
// Axioms for quotient/remainder:
// a = b*q + r
// multiplication does not overflow in b*q
// addition does not overflow in (b*q) + r; for now expressed as: r <= bq+r (TODO: maybe the version with disjunction is easier for the solver; should compare later)
// b ≠ 0 ==> r < b
// b = 0 ==> q = -1
add_eq(a, b * q + r);
add_umul_noovfl(b, q);
add_ule(r, b*q+r);
auto c_eq = eq(b);
add_clause(c_eq, ult(r, b), false);
add_clause(~c_eq, eq(q + 1), false);
return std::tuple<pdd, pdd>(q, r);
}
pdd solver::lshr(pdd const& p, pdd const& q) {
auto& m = p.manager();
unsigned sz = m.power_of_2();
pdd r = m.mk_var(add_var(sz));
assign_eh(m_constraints.lshr(p, q, r), null_dependency);
return r;
}
void solver::assign_eh(signed_constraint c, dependency dep) {
backjump(base_level());
SASSERT(at_base_level());

View file

@ -305,12 +305,10 @@ namespace polysat {
* ~ovfl(b*quot)
* rem < b or b = 0
*/
std::tuple<pdd, pdd> quot_rem(pdd const& a, pdd const& b);
std::pair<pdd, pdd> quot_rem(pdd const& a, pdd const& b) { return m_constraints.quot_rem(a, b); }
/**
* Create expression for the logical right shift of p by q.
*/
pdd lshr(pdd const& p, pdd const& q);
/** Create expression for the logical right shift of p by q. */
pdd lshr(pdd const& p, pdd const& q) { return m_constraints.lshr(p, q); }
/** Create expression for the bit-wise negation of p. */
pdd bnot(pdd const& p) { return m_constraints.bnot(p); }