mirror of
https://github.com/Z3Prover/z3
synced 2025-08-15 23:35:26 +00:00
add doc
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
e82c8e78ae
commit
e648e68d36
3 changed files with 63 additions and 18 deletions
|
@ -5,18 +5,37 @@ Module Name:
|
|||
|
||||
degree_shift_tactic.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Simple degree shift procedure.
|
||||
Basic idea: if goal G contains a real variable x, x occurs with degrees
|
||||
d_1, ..., d_k in G, and n = gcd(d_1, ..., d_k) > 1.
|
||||
Then, replace x^n with a new fresh variable y.
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2011-12-30.
|
||||
|
||||
Revision History:
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic degree-shift
|
||||
|
||||
### Short Description
|
||||
|
||||
The procedure reduces the degrees of variables.
|
||||
|
||||
### Long Description
|
||||
|
||||
Basic idea: if goal $G$ contains a real variable $x$, $x$ occurs with degrees
|
||||
$d_1, ..., d_k$ in $G$, and $n = \gcd(d_1, ..., d_k) > 1$.
|
||||
Then, replace $x^n$ with a new fresh variable $y$.
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Real)
|
||||
(declare-const y Real)
|
||||
(assert (> (+ (* x x x 4) (* x x 3) 0)))
|
||||
(assert (= (* x x) (* y y)))
|
||||
(apply degree-shift)
|
||||
```
|
||||
|
||||
### Notes
|
||||
|
||||
* supports proofs and cores
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue