mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 01:24:08 +00:00
add doc
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
e82c8e78ae
commit
e648e68d36
|
@ -5,18 +5,37 @@ Module Name:
|
|||
|
||||
degree_shift_tactic.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Simple degree shift procedure.
|
||||
Basic idea: if goal G contains a real variable x, x occurs with degrees
|
||||
d_1, ..., d_k in G, and n = gcd(d_1, ..., d_k) > 1.
|
||||
Then, replace x^n with a new fresh variable y.
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2011-12-30.
|
||||
|
||||
Revision History:
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic degree-shift
|
||||
|
||||
### Short Description
|
||||
|
||||
The procedure reduces the degrees of variables.
|
||||
|
||||
### Long Description
|
||||
|
||||
Basic idea: if goal $G$ contains a real variable $x$, $x$ occurs with degrees
|
||||
$d_1, ..., d_k$ in $G$, and $n = \gcd(d_1, ..., d_k) > 1$.
|
||||
Then, replace $x^n$ with a new fresh variable $y$.
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Real)
|
||||
(declare-const y Real)
|
||||
(assert (> (+ (* x x x 4) (* x x 3) 0)))
|
||||
(assert (= (* x x) (* y y)))
|
||||
(apply degree-shift)
|
||||
```
|
||||
|
||||
### Notes
|
||||
|
||||
* supports proofs and cores
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
|
@ -365,7 +365,7 @@ public:
|
|||
}
|
||||
|
||||
void collect_param_descrs(param_descrs & r) override {
|
||||
r.insert("diff_neq_max_k", CPK_UINT, "(default: 1024) maximum variable upper bound for diff neq solver.");
|
||||
r.insert("diff_neq_max_k", CPK_UINT, "maximum variable upper bound for diff neq solver.", "1024");
|
||||
}
|
||||
|
||||
void collect_statistics(statistics & st) const override {
|
||||
|
|
|
@ -5,19 +5,45 @@ Module Name:
|
|||
|
||||
diff_neq_tactic.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Solver for integer problems that contains literals of the form
|
||||
k <= x
|
||||
x <= k
|
||||
x - y != k
|
||||
And all variables are bounded.
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo de Moura (leonardo) 2012-02-07.
|
||||
|
||||
Revision History:
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic diff-neq
|
||||
|
||||
### Short Description
|
||||
|
||||
A specialized solver for integer problems using only constant bounds and differences to constants.
|
||||
|
||||
### Long Description
|
||||
|
||||
Solver for integer problems that contains literals of the form
|
||||
```
|
||||
k <= x
|
||||
x <= k
|
||||
x - y != k
|
||||
```
|
||||
|
||||
### Example
|
||||
|
||||
```z3
|
||||
(declare-const x Int)
|
||||
(declare-const y Int)
|
||||
(assert (<= 0 x))
|
||||
(assert (<= x 1))
|
||||
(assert (<= 0 y))
|
||||
(assert (<= y 1))
|
||||
(assert (not (= (+ x (* -1 y)) -1)))
|
||||
(assert (not (= (+ x (* -1 y)) 1)))
|
||||
(assert (not (= (+ x (* -1 y)) 0)))
|
||||
(apply diff-neq)
|
||||
```
|
||||
|
||||
### Notes
|
||||
|
||||
* The tactic works only when the lower bounds are 0 and disequalities use multiplication with -1. Use normalize-bounds to ensure all lower bounds are 0.
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
|
Loading…
Reference in a new issue