3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 17:44:08 +00:00

import updates to rational from polysat

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2023-12-09 12:46:06 -08:00
parent 575538d325
commit e580c384b8
5 changed files with 60 additions and 1 deletions

View file

@ -316,6 +316,12 @@ unsigned mpq_manager<SYNCH>::prev_power_of_two(mpq const & a) {
return prev_power_of_two(_tmp);
}
template<bool SYNCH>
unsigned mpq_manager<SYNCH>::next_power_of_two(mpq const & a) {
_scoped_numeral<mpz_manager<SYNCH> > _tmp(*this);
ceil(a, _tmp);
return next_power_of_two(_tmp);
}
template<bool SYNCH>
template<bool SUB>

View file

@ -848,6 +848,14 @@ public:
unsigned prev_power_of_two(mpz const & a) { return mpz_manager<SYNCH>::prev_power_of_two(a); }
unsigned prev_power_of_two(mpq const & a);
/**
\brief Return the smallest k s.t. a <= 2^k.
\remark Return 0 if a is not positive.
*/
unsigned next_power_of_two(mpz const & a) { return mpz_manager<SYNCH>::next_power_of_two(a); }
unsigned next_power_of_two(mpq const & a);
bool is_int_perfect_square(mpq const & a, mpq & r) {
SASSERT(is_int(a));
reset_denominator(r);

View file

@ -2288,6 +2288,19 @@ unsigned mpz_manager<SYNCH>::bitsize(mpz const & a) {
return mlog2(a) + 1;
}
template<bool SYNCH>
unsigned mpz_manager<SYNCH>::next_power_of_two(mpz const & a) {
if (is_nonpos(a))
return 0;
if (is_one(a))
return 0;
unsigned shift;
if (is_power_of_two(a, shift))
return shift;
else
return log2(a) + 1;
}
template<bool SYNCH>
bool mpz_manager<SYNCH>::is_perfect_square(mpz const & a, mpz & root) {
if (is_neg(a))

View file

@ -692,6 +692,13 @@ public:
\remark Return 0 if a is not positive.
*/
unsigned prev_power_of_two(mpz const & a) { return log2(a); }
/**
\brief Return the smallest k s.t. a <= 2^k.
\remark Return 0 if a is not positive.
*/
unsigned next_power_of_two(mpz const & a);
/**
\brief Return true if a^{1/n} is an integer, and store the result in a.

View file

@ -55,7 +55,7 @@ public:
explicit rational(double z) { UNREACHABLE(); }
explicit rational(char const * v) { m().set(m_val, v); }
explicit rational(unsigned const * v, unsigned sz) { m().set(m_val, sz, v); }
struct i64 {};
@ -489,6 +489,18 @@ public:
return get_num_digits(rational(10));
}
/**
* \brief Return the biggest k s.t. 2^k <= a.
* \remark Return 0 if a is not positive.
*/
unsigned prev_power_of_two() const { return m().prev_power_of_two(m_val); }
/**
* \brief Return the smallest k s.t. a <= 2^k.
* \remark Return 0 if a is not positive.
*/
unsigned next_power_of_two() const { return m().next_power_of_two(m_val); }
bool get_bit(unsigned index) const {
return m().get_bit(m_val, index);
}
@ -501,6 +513,15 @@ public:
return k;
}
/** Number of trailing zeros in an N-bit representation */
unsigned parity(unsigned num_bits) const {
SASSERT(!is_neg());
SASSERT(*this < rational::power_of_two(num_bits));
if (is_zero())
return num_bits;
return trailing_zeros();
}
static bool limit_denominator(rational &num, rational const& limit);
};
@ -649,3 +670,7 @@ inline rational gcd(rational const & r1, rational const & r2, rational & a, rati
rational::m().gcd(r1.m_val, r2.m_val, a.m_val, b.m_val, result.m_val);
return result;
}
inline void swap(rational& r1, rational& r2) {
r1.swap(r2);
}