mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
import updates to rational from polysat
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
575538d325
commit
e580c384b8
|
@ -316,6 +316,12 @@ unsigned mpq_manager<SYNCH>::prev_power_of_two(mpq const & a) {
|
|||
return prev_power_of_two(_tmp);
|
||||
}
|
||||
|
||||
template<bool SYNCH>
|
||||
unsigned mpq_manager<SYNCH>::next_power_of_two(mpq const & a) {
|
||||
_scoped_numeral<mpz_manager<SYNCH> > _tmp(*this);
|
||||
ceil(a, _tmp);
|
||||
return next_power_of_two(_tmp);
|
||||
}
|
||||
|
||||
template<bool SYNCH>
|
||||
template<bool SUB>
|
||||
|
|
|
@ -848,6 +848,14 @@ public:
|
|||
unsigned prev_power_of_two(mpz const & a) { return mpz_manager<SYNCH>::prev_power_of_two(a); }
|
||||
unsigned prev_power_of_two(mpq const & a);
|
||||
|
||||
/**
|
||||
\brief Return the smallest k s.t. a <= 2^k.
|
||||
|
||||
\remark Return 0 if a is not positive.
|
||||
*/
|
||||
unsigned next_power_of_two(mpz const & a) { return mpz_manager<SYNCH>::next_power_of_two(a); }
|
||||
unsigned next_power_of_two(mpq const & a);
|
||||
|
||||
bool is_int_perfect_square(mpq const & a, mpq & r) {
|
||||
SASSERT(is_int(a));
|
||||
reset_denominator(r);
|
||||
|
|
|
@ -2288,6 +2288,19 @@ unsigned mpz_manager<SYNCH>::bitsize(mpz const & a) {
|
|||
return mlog2(a) + 1;
|
||||
}
|
||||
|
||||
template<bool SYNCH>
|
||||
unsigned mpz_manager<SYNCH>::next_power_of_two(mpz const & a) {
|
||||
if (is_nonpos(a))
|
||||
return 0;
|
||||
if (is_one(a))
|
||||
return 0;
|
||||
unsigned shift;
|
||||
if (is_power_of_two(a, shift))
|
||||
return shift;
|
||||
else
|
||||
return log2(a) + 1;
|
||||
}
|
||||
|
||||
template<bool SYNCH>
|
||||
bool mpz_manager<SYNCH>::is_perfect_square(mpz const & a, mpz & root) {
|
||||
if (is_neg(a))
|
||||
|
|
|
@ -692,6 +692,13 @@ public:
|
|||
\remark Return 0 if a is not positive.
|
||||
*/
|
||||
unsigned prev_power_of_two(mpz const & a) { return log2(a); }
|
||||
|
||||
/**
|
||||
\brief Return the smallest k s.t. a <= 2^k.
|
||||
|
||||
\remark Return 0 if a is not positive.
|
||||
*/
|
||||
unsigned next_power_of_two(mpz const & a);
|
||||
|
||||
/**
|
||||
\brief Return true if a^{1/n} is an integer, and store the result in a.
|
||||
|
|
|
@ -55,7 +55,7 @@ public:
|
|||
explicit rational(double z) { UNREACHABLE(); }
|
||||
|
||||
explicit rational(char const * v) { m().set(m_val, v); }
|
||||
|
||||
|
||||
explicit rational(unsigned const * v, unsigned sz) { m().set(m_val, sz, v); }
|
||||
|
||||
struct i64 {};
|
||||
|
@ -489,6 +489,18 @@ public:
|
|||
return get_num_digits(rational(10));
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Return the biggest k s.t. 2^k <= a.
|
||||
* \remark Return 0 if a is not positive.
|
||||
*/
|
||||
unsigned prev_power_of_two() const { return m().prev_power_of_two(m_val); }
|
||||
|
||||
/**
|
||||
* \brief Return the smallest k s.t. a <= 2^k.
|
||||
* \remark Return 0 if a is not positive.
|
||||
*/
|
||||
unsigned next_power_of_two() const { return m().next_power_of_two(m_val); }
|
||||
|
||||
bool get_bit(unsigned index) const {
|
||||
return m().get_bit(m_val, index);
|
||||
}
|
||||
|
@ -501,6 +513,15 @@ public:
|
|||
return k;
|
||||
}
|
||||
|
||||
/** Number of trailing zeros in an N-bit representation */
|
||||
unsigned parity(unsigned num_bits) const {
|
||||
SASSERT(!is_neg());
|
||||
SASSERT(*this < rational::power_of_two(num_bits));
|
||||
if (is_zero())
|
||||
return num_bits;
|
||||
return trailing_zeros();
|
||||
}
|
||||
|
||||
static bool limit_denominator(rational &num, rational const& limit);
|
||||
};
|
||||
|
||||
|
@ -649,3 +670,7 @@ inline rational gcd(rational const & r1, rational const & r2, rational & a, rati
|
|||
rational::m().gcd(r1.m_val, r2.m_val, a.m_val, b.m_val, result.m_val);
|
||||
return result;
|
||||
}
|
||||
|
||||
inline void swap(rational& r1, rational& r2) {
|
||||
r1.swap(r2);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue