3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-04 14:25:46 +00:00

add module for handling axioms for powers

This commit is contained in:
Nikolaj Bjorner 2023-01-25 13:34:13 -08:00
parent 9e2ec9d018
commit e41dd91893
7 changed files with 343 additions and 201 deletions

View file

@ -77,104 +77,7 @@ namespace nla {
// ensure r = x^y, add abstraction/refinement lemmas
lbool solver::check_power(lpvar r, lpvar x, lpvar y, vector<lemma>& lemmas) {
if (x == null_lpvar || y == null_lpvar || r == null_lpvar)
return l_undef;
if (use_nra_model())
return l_undef;
auto xval = m_core->val(x);
auto yval = m_core->val(y);
auto rval = m_core->val(r);
core& c = get_core();
c.set_lemma_vec(lemmas);
lemmas.reset();
// x >= x0 > 0, y >= y0 > 0 => r >= x0^y0
// x >= x0 > 0, y <= y0 => r <= x0^y0
// x != 0, y = 0 => r = 1
// x = 0, y != 0 => r = 0
//
// for x fixed, it is exponentiation
// => use tangent lemmas and error tolerance.
if (xval > 0 && yval.is_unsigned()) {
auto r2val = power(xval, yval.get_unsigned());
if (rval == r2val)
return l_true;
if (xval != 0 && yval == 0) {
new_lemma lemma(c, "x != 0 => x^0 = 1");
lemma |= ineq(x, llc::EQ, rational::zero());
lemma |= ineq(y, llc::NE, rational::zero());
lemma |= ineq(r, llc::EQ, rational::one());
return l_false;
}
if (xval == 0 && yval > 0) {
new_lemma lemma(c, "y != 0 => 0^y = 0");
lemma |= ineq(x, llc::NE, rational::zero());
lemma |= ineq(y, llc::EQ, rational::zero());
lemma |= ineq(r, llc::EQ, rational::zero());
return l_false;
}
if (xval > 0 && r2val < rval) {
SASSERT(yval > 0);
new_lemma lemma(c, "x >= x0 > 0, y >= y0 > 0 => r >= x0^y0");
lemma |= ineq(x, llc::LT, xval);
lemma |= ineq(y, llc::LT, yval);
lemma |= ineq(r, llc::GE, r2val);
return l_false;
}
if (xval > 0 && r2val < rval) {
new_lemma lemma(c, "x >= x0 > 0, y <= y0 => r <= x0^y0");
lemma |= ineq(x, llc::LT, xval);
lemma |= ineq(y, llc::GT, yval);
lemma |= ineq(r, llc::LE, r2val);
return l_false;
}
}
if (xval > 0 && yval > 0 && !yval.is_int()) {
auto ynum = numerator(yval);
auto yden = denominator(yval);
if (!ynum.is_unsigned())
return l_undef;
if (!yden.is_unsigned())
return l_undef;
// r = x^{yn/yd}
// <=>
// r^yd = x^yn
auto ryd = power(rval, yden.get_unsigned());
auto xyn = power(xval, ynum.get_unsigned());
if (ryd == xyn)
return l_true;
#if 0
// try some root approximation instead?
if (ryd > xyn) {
// todo
}
if (ryd < xyn) {
// todo
}
#endif
}
return l_undef;
// anum isn't initialized unless nra_solver is invoked.
// there is no proviso for using algebraic numbers outside of the nra solver.
// so either we have a rational refinement version _and_ an algebraic numeral refinement
// loop or we introduce algebraic numerals outside of the nra_solver
#if 0
scoped_anum xval(am()), yval(am()), rval(am());
am().set(xval, am_value(x));
am().set(yval, am_value(y));
am().set(rval, am_value(r));
#endif
return m_core->check_power(r, x, y, lemmas);
}
}