diff --git a/src/api/ml/z3_rich.ml b/src/api/ml/z3_rich.ml deleted file mode 100644 index 0c2f95b6b..000000000 --- a/src/api/ml/z3_rich.ml +++ /dev/null @@ -1,3399 +0,0 @@ -\(** - The Z3 ML/Ocaml Interface. - - Copyright (C) 2012 Microsoft Corporation - @author CM Wintersteiger (cwinter) 2012-12-17 -*) - -open Z3enums - -(* Some helpers. *) -let null = Z3native.mk_null() -let is_null o = (Z3native.is_null o) - -(* Internal types *) -type z3_native_context = { m_n_ctx : Z3native.z3_context; m_n_obj_cnt: int; } -type context = z3_native_context - -type z3_native_object = { - m_ctx : context ; - mutable m_n_obj : Z3native.ptr ; - inc_ref : Z3native.z3_context -> Z3native.ptr -> unit; - dec_ref : Z3native.z3_context -> Z3native.ptr -> unit } - - -(** Internal stuff *) -module Internal = -struct - let dispose_context ctx = - if ctx.m_n_obj_cnt == 0 then ( - (Z3native.del_context ctx.m_n_ctx) - ) else ( - Printf.printf "ERROR: NOT DISPOSING CONTEXT (because it still has %d objects alive)\n" ctx.m_n_obj_cnt; - ) - - let create_context settings = - let cfg = Z3native.mk_config in - let f e = (Z3native.set_param_value cfg (fst e) (snd e)) in - (List.iter f settings) ; - let v = Z3native.mk_context_rc cfg in - Z3native.del_config(cfg) ; - Z3native.set_ast_print_mode v (int_of_ast_print_mode PRINT_SMTLIB2_COMPLIANT) ; - Z3native.set_internal_error_handler v ; - let res = { m_n_ctx = v; m_n_obj_cnt = 0 } in - let f = fun o -> dispose_context o in - Gc.finalise f res; - res - - let context_add1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt + 1) - let context_sub1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt - 1) - let context_gno ctx = ctx.m_n_ctx - - - let z3obj_gc o = o.m_ctx - let z3obj_gnc o = (context_gno o.m_ctx) - - let z3obj_gno o = o.m_n_obj - let z3obj_sno o ctx no = - (context_add1 ctx) ; - o.inc_ref (context_gno ctx) no ; - ( - if not (is_null o.m_n_obj) then - o.dec_ref (context_gno ctx) o.m_n_obj ; - (context_sub1 ctx) - ) ; - o.m_n_obj <- no - - let z3obj_dispose o = - if not (is_null o.m_n_obj) then - ( - o.dec_ref (z3obj_gnc o) o.m_n_obj ; - (context_sub1 (z3obj_gc o)) - ) ; - o.m_n_obj <- null - - let z3obj_create o = - let f = fun o -> (z3obj_dispose o) in - Gc.finalise f o - - let z3obj_nil_ref x y = () - - let z3_native_object_of_ast_ptr : context -> Z3native.ptr -> z3_native_object = fun ctx no -> - let res : z3_native_object = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.inc_ref ; - dec_ref = Z3native.dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res -end - -open Internal - -module Log = -struct - let open_ filename = ((lbool_of_int (Z3native.open_log filename)) == L_TRUE) - let close = Z3native.close_log - let append s = Z3native.append_log s -end - - -module Version = -struct - let major = let (x, _, _, _) = Z3native.get_version in x - let minor = let (_, x, _, _) = Z3native.get_version in x - let build = let (_, _, x, _) = Z3native.get_version in x - let revision = let (_, _, _, x) = Z3native.get_version in x - let to_string = - let (mj, mn, bld, rev) = Z3native.get_version in - string_of_int mj ^ "." ^ - string_of_int mn ^ "." ^ - string_of_int bld ^ "." ^ - string_of_int rev ^ "." -end - - -let mk_list ( f : int -> 'a ) ( n : int ) = - let rec mk_list' ( f : int -> 'a ) ( i : int ) ( n : int ) ( tail : 'a list ) : 'a list = - if (i >= n) then - tail - else - (mk_list' f (i+1) n ((f i) :: tail)) - in - mk_list' f 0 n [] - -let list_of_array ( x : _ array ) = - let f i = (Array.get x i) in - mk_list f (Array.length x) - -let mk_context ( cfg : ( string * string ) list ) = - create_context cfg - - -module Symbol = -struct - (* Symbol types *) - type int_symbol = z3_native_object - type string_symbol = z3_native_object - - type symbol = - | S_Int of int_symbol - | S_Str of string_symbol - - - let create_i ( ctx : context ) ( no : Z3native.ptr ) = - let res : int_symbol = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = z3obj_nil_ref ; - dec_ref = z3obj_nil_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let create_s ( ctx : context ) ( no : Z3native.ptr ) = - let res : string_symbol = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = z3obj_nil_ref ; - dec_ref = z3obj_nil_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let create ( ctx : context ) ( no : Z3native.ptr ) = - match (symbol_kind_of_int (Z3native.get_symbol_kind (context_gno ctx) no)) with - | INT_SYMBOL -> S_Int (create_i ctx no) - | STRING_SYMBOL -> S_Str (create_s ctx no) - - let gc ( x : symbol ) = - match x with - | S_Int(n) -> (z3obj_gc n) - | S_Str(n) -> (z3obj_gc n) - - let gnc ( x : symbol ) = - match x with - | S_Int(n) -> (z3obj_gnc n) - | S_Str(n) -> (z3obj_gnc n) - - let gno ( x : symbol ) = - match x with - | S_Int(n) -> (z3obj_gno n) - | S_Str(n) -> (z3obj_gno n) - - let symbol_lton ( a : symbol list ) = - let f ( e : symbol ) = (gno e) in - Array.of_list (List.map f a) - - let kind ( o : symbol ) = (symbol_kind_of_int (Z3native.get_symbol_kind (gnc o) (gno o))) - let is_int_symbol ( o : symbol ) = (kind o) == INT_SYMBOL - let is_string_symbol ( o : symbol ) = (kind o) == STRING_SYMBOL - let get_int (o : int_symbol) = Z3native.get_symbol_int (z3obj_gnc o) (z3obj_gno o) - let get_string (o : string_symbol) = Z3native.get_symbol_string (z3obj_gnc o) (z3obj_gno o) - let to_string ( o : symbol ) = - match (kind o) with - | INT_SYMBOL -> (string_of_int (Z3native.get_symbol_int (gnc o) (gno o))) - | STRING_SYMBOL -> (Z3native.get_symbol_string (gnc o) (gno o)) - - let mk_int ( ctx : context ) ( i : int ) = - S_Int (create_i ctx (Z3native.mk_int_symbol (context_gno ctx) i)) - - let mk_string ( ctx : context ) ( s : string ) = - S_Str (create_s ctx (Z3native.mk_string_symbol (context_gno ctx) s)) - - let mk_ints ( ctx : context ) ( names : int list ) = - let f elem = mk_int ( ctx : context ) elem in - (List.map f names) - - let mk_strings ( ctx : context ) ( names : string list ) = - let f elem = mk_string ( ctx : context ) elem in - (List.map f names) -end - - -module AST = -struct - type ast = z3_native_object - - let context_of_ast ( x : ast ) = (z3obj_gc x) - let nc_of_ast ( x : ast ) = (z3obj_gnc x) - let ptr_of_ast ( x : ast ) = (z3obj_gno x) - - let rec ast_of_ptr : context -> Z3native.ptr -> ast = fun ctx no -> - match (ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) with - | FUNC_DECL_AST - | SORT_AST - | QUANTIFIER_AST - | APP_AST - | NUMERAL_AST - | VAR_AST -> z3_native_object_of_ast_ptr ctx no - | UNKNOWN_AST -> raise (Z3native.Exception "Cannot create asts of type unknown") - - module ASTVector = - struct - type ast_vector = z3_native_object - - let ast_vector_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let res : ast_vector = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.ast_vector_inc_ref ; - dec_ref = Z3native.ast_vector_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let get_size ( x : ast_vector ) = - Z3native.ast_vector_size (z3obj_gnc x) (z3obj_gno x) - - let get ( x : ast_vector ) ( i : int ) = - ast_of_ptr (z3obj_gc x) (Z3native.ast_vector_get (z3obj_gnc x) (z3obj_gno x) i) - - let set ( x : ast_vector ) ( i : int ) ( value : ast ) = - Z3native.ast_vector_set (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno value) - - let resize ( x : ast_vector ) ( new_size : int ) = - Z3native.ast_vector_resize (z3obj_gnc x) (z3obj_gno x) new_size - - let push ( x : ast_vector ) ( a : ast ) = - Z3native.ast_vector_push (z3obj_gnc x) (z3obj_gno x) (z3obj_gno a) - - let translate ( x : ast_vector ) ( to_ctx : context ) = - ast_vector_of_ptr to_ctx (Z3native.ast_vector_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx)) - - let to_string ( x : ast_vector ) = - Z3native.ast_vector_to_string (z3obj_gnc x) (z3obj_gno x) - end - - module ASTMap = - struct - type ast_map = z3_native_object - - let astmap_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let res : ast_map = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.ast_map_inc_ref ; - dec_ref = Z3native.ast_map_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let contains ( x : ast_map ) ( key : ast ) = - Z3native.ast_map_contains (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key) - - let find ( x : ast_map ) ( key : ast ) = - ast_of_ptr (z3obj_gc x) (Z3native.ast_map_find (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key)) - - let insert ( x : ast_map ) ( key : ast ) ( value : ast) = - Z3native.ast_map_insert (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key) (z3obj_gno value) - - let erase ( x : ast_map ) ( key : ast ) = - Z3native.ast_map_erase (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key) - - let reset ( x : ast_map ) = - Z3native.ast_map_reset (z3obj_gnc x) (z3obj_gno x) - - let get_size ( x : ast_map ) = - Z3native.ast_map_size (z3obj_gnc x) (z3obj_gno x) - - let get_keys ( x : ast_map ) = - let av = ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.ast_map_keys (z3obj_gnc x) (z3obj_gno x)) in - let f i = (ASTVector.get av i) in - mk_list f (ASTVector.get_size av) - - let to_string ( x : ast_map ) = - Z3native.ast_map_to_string (z3obj_gnc x) (z3obj_gno x) - end - - let get_hash_code ( x : ast ) = Z3native.get_ast_hash (z3obj_gnc x) (z3obj_gno x) - let get_id ( x : ast ) = Z3native.get_ast_id (z3obj_gnc x) (z3obj_gno x) - let get_ast_kind ( x : ast ) = (ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc x) (z3obj_gno x))) - - let is_expr ( x : ast ) = - match get_ast_kind ( x : ast ) with - | APP_AST - | NUMERAL_AST - | QUANTIFIER_AST - | VAR_AST -> true - | _ -> false - - let is_var ( x : ast ) = (get_ast_kind x) == VAR_AST - let is_quantifier ( x : ast ) = (get_ast_kind x) == QUANTIFIER_AST - let is_sort ( x : ast ) = (get_ast_kind x) == SORT_AST - let is_func_decl ( x : ast ) = (get_ast_kind x) == FUNC_DECL_AST - - let to_string ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x) - let to_sexpr ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x) - - - let ( = ) ( a : ast ) ( b : ast ) = (a == b) || - if (z3obj_gnc a) != (z3obj_gnc b) then - false - else - Z3native.is_eq_ast (z3obj_gnc a) (z3obj_gno a) (z3obj_gno b) - - let compare a b = - if (get_id a) < (get_id b) then -1 else - if (get_id a) > (get_id b) then 1 else - 0 - - let ( < ) (a : ast) (b : ast) = (compare a b) - - let translate ( x : ast ) ( to_ctx : context ) = - if (z3obj_gnc x) == (context_gno to_ctx) then - x - else - ast_of_ptr to_ctx (Z3native.translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx)) - - let wrap_ast ( ctx : context ) ( ptr : Z3native.ptr ) = ast_of_ptr ctx ptr - let unwrap_ast ( x : ast ) = (z3obj_gno x) -end - -open AST - - -module Sort = -struct - type sort = Sort of AST.ast - type uninterpreted_sort = UninterpretedSort of sort - - let sort_of_ptr : context -> Z3native.ptr -> sort = fun ctx no -> - let q = (z3_native_object_of_ast_ptr ctx no) in - if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.SORT_AST) then - raise (Z3native.Exception "Invalid coercion") - else - match (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) no)) with - | ARRAY_SORT - | BOOL_SORT - | BV_SORT - | DATATYPE_SORT - | INT_SORT - | REAL_SORT - | UNINTERPRETED_SORT - | FINITE_DOMAIN_SORT - | RELATION_SORT -> Sort(q) - | UNKNOWN_SORT -> raise (Z3native.Exception "Unknown sort kind encountered") - - let ast_of_sort s = match s with Sort(x) -> x - let sort_of_uninterpreted_sort s = match s with UninterpretedSort(x) -> x - - let uninterpreted_sort_of_sort s = match s with Sort(a) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.UNINTERPRETED_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - UninterpretedSort(s) - - let gc ( x : sort ) = (match x with Sort(a) -> (z3obj_gc a)) - let gnc ( x : sort ) = (match x with Sort(a) -> (z3obj_gnc a)) - let gno ( x : sort ) = (match x with Sort(a) -> (z3obj_gno a)) - - let sort_lton ( a : sort list ) = - let f ( e : sort ) = match e with Sort(a) -> (AST.ptr_of_ast a) in - Array.of_list (List.map f a) - - let ( = ) : sort -> sort -> bool = fun a b -> - (a == b) || - if (gnc a) != (gnc b) then - false - else - (Z3native.is_eq_sort (gnc a) (gno a) (gno b)) - - - let get_id ( x : sort ) = Z3native.get_sort_id (gnc x) (gno x) - let get_sort_kind ( x : sort ) = (sort_kind_of_int (Z3native.get_sort_kind (gnc x) (gno x))) - let get_name ( x : sort ) = (Symbol.create (gc x) (Z3native.get_sort_name (gnc x) (gno x))) - let to_string ( x : sort ) = Z3native.sort_to_string (gnc x) (gno x) - - let mk_uninterpreted ( ctx : context ) ( s : Symbol.symbol ) = - let res = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.inc_ref ; - dec_ref = Z3native.dec_ref } in - (z3obj_sno res ctx (Z3native.mk_uninterpreted_sort (context_gno ctx) (Symbol.gno s))) ; - (z3obj_create res) ; - UninterpretedSort(Sort(res)) - - let mk_uninterpreted_s ( ctx : context ) ( s : string ) = - mk_uninterpreted ctx (Symbol.mk_string ( ctx : context ) s) -end - -open Sort - - -module rec FuncDecl : -sig - type func_decl = FuncDecl of AST.ast - val ast_of_func_decl : FuncDecl.func_decl -> AST.ast - val func_decl_of_ptr : context -> Z3native.ptr -> func_decl - val gc : func_decl -> context - val gnc : func_decl -> Z3native.ptr - val gno : func_decl -> Z3native.ptr - module Parameter : - sig - type parameter = - P_Int of int - | P_Dbl of float - | P_Sym of Symbol.symbol - | P_Srt of Sort.sort - | P_Ast of AST.ast - | P_Fdl of func_decl - | P_Rat of string - - val get_kind : parameter -> Z3enums.parameter_kind - val get_int : parameter -> int - val get_float : parameter -> float - val get_symbol : parameter -> Symbol.symbol - val get_sort : parameter -> Sort.sort - val get_ast : parameter -> AST.ast - val get_func_decl : parameter -> func_decl - val get_rational : parameter -> string - end - val mk_func_decl : context -> Symbol.symbol -> Sort.sort list -> Sort.sort -> func_decl - val mk_func_decl_s : context -> string -> Sort.sort list -> Sort.sort -> func_decl - val mk_fresh_func_decl : context -> string -> Sort.sort list -> Sort.sort -> func_decl - val mk_const_decl : context -> Symbol.symbol -> Sort.sort -> func_decl - val mk_const_decl_s : context -> string -> Sort.sort -> func_decl - val mk_fresh_const_decl : context -> string -> Sort.sort -> func_decl - val ( = ) : func_decl -> func_decl -> bool - val to_string : func_decl -> string - val get_id : func_decl -> int - val get_arity : func_decl -> int - val get_domain_size : func_decl -> int - val get_domain : func_decl -> Sort.sort list - val get_range : func_decl -> Sort.sort - val get_decl_kind : func_decl -> Z3enums.decl_kind - val get_name : func_decl -> Symbol.symbol - val get_num_parameters : func_decl -> int - val get_parameters : func_decl -> Parameter.parameter list - val apply : func_decl -> Expr.expr list -> Expr.expr -end = struct - type func_decl = FuncDecl of AST.ast - - let func_decl_of_ptr : context -> Z3native.ptr -> func_decl = fun ctx no -> - if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.FUNC_DECL_AST) then - raise (Z3native.Exception "Invalid coercion") - else - FuncDecl(z3_native_object_of_ast_ptr ctx no) - - let ast_of_func_decl f = match f with FuncDecl(x) -> x - - let create_ndr ( ctx : context ) ( name : Symbol.symbol ) ( domain : sort list ) ( range : sort ) = - let res = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.inc_ref ; - dec_ref = Z3native.dec_ref } in - (z3obj_sno res ctx (Z3native.mk_func_decl (context_gno ctx) (Symbol.gno name) (List.length domain) (sort_lton domain) (Sort.gno range))) ; - (z3obj_create res) ; - FuncDecl(res) - - let create_pdr ( ctx : context) ( prefix : string ) ( domain : sort list ) ( range : sort ) = - let res = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.inc_ref ; - dec_ref = Z3native.dec_ref } in - (z3obj_sno res ctx (Z3native.mk_fresh_func_decl (context_gno ctx) prefix (List.length domain) (sort_lton domain) (Sort.gno range))) ; - (z3obj_create res) ; - FuncDecl(res) - - let gc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gc a) - let gnc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gnc a) - let gno ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gno a) - - module Parameter = - struct - type parameter = - | P_Int of int - | P_Dbl of float - | P_Sym of Symbol.symbol - | P_Srt of Sort.sort - | P_Ast of AST.ast - | P_Fdl of func_decl - | P_Rat of string - - let get_kind ( x : parameter ) = - (match x with - | P_Int(_) -> PARAMETER_INT - | P_Dbl(_) -> PARAMETER_DOUBLE - | P_Sym(_) -> PARAMETER_SYMBOL - | P_Srt(_) -> PARAMETER_SORT - | P_Ast(_) -> PARAMETER_AST - | P_Fdl(_) -> PARAMETER_FUNC_DECL - | P_Rat(_) -> PARAMETER_RATIONAL) - - let get_int ( x : parameter ) = - match x with - | P_Int(x) -> x - | _ -> raise (Z3native.Exception "parameter is not an int") - - let get_float ( x : parameter ) = - match x with - | P_Dbl(x) -> x - | _ -> raise (Z3native.Exception "parameter is not a double") - - let get_symbol ( x : parameter ) = - match x with - | P_Sym(x) -> x - | _ -> raise (Z3native.Exception "parameter is not a symbol") - - let get_sort ( x : parameter ) = - match x with - | P_Srt(x) -> x - | _ -> raise (Z3native.Exception "parameter is not a sort") - - let get_ast ( x : parameter ) = - match x with - | P_Ast(x) -> x - | _ -> raise (Z3native.Exception "parameter is not an ast") - - let get_func_decl ( x : parameter ) = - match x with - | P_Fdl(x) -> x - | _ -> raise (Z3native.Exception "parameter is not a func_decl") - - let get_rational ( x : parameter ) = - match x with - | P_Rat(x) -> x - | _ -> raise (Z3native.Exception "parameter is not a rational string") - end - - let mk_func_decl ( ctx : context ) ( name : Symbol.symbol ) ( domain : sort list ) ( range : sort ) = - create_ndr ctx name domain range - - let mk_func_decl_s ( ctx : context ) ( name : string ) ( domain : sort list ) ( range : sort ) = - mk_func_decl ctx (Symbol.mk_string ctx name) domain range - - let mk_fresh_func_decl ( ctx : context ) ( prefix : string ) ( domain : sort list ) ( range : sort ) = - create_pdr ctx prefix domain range - - let mk_const_decl ( ctx : context ) ( name : Symbol.symbol ) ( range : sort ) = - create_ndr ctx name [] range - - let mk_const_decl_s ( ctx : context ) ( name : string ) ( range : sort ) = - create_ndr ctx (Symbol.mk_string ctx name) [] range - - let mk_fresh_const_decl ( ctx : context ) ( prefix : string ) ( range : sort ) = - create_pdr ctx prefix [] range - - - let ( = ) ( a : func_decl ) ( b : func_decl ) = (a == b) || - if (gnc a) != (gnc b) then - false - else - (Z3native.is_eq_func_decl (gnc a) (gno a) (gno b)) - - let to_string ( x : func_decl ) = Z3native.func_decl_to_string (gnc x) (gno x) - - let get_id ( x : func_decl ) = Z3native.get_func_decl_id (gnc x) (gno x) - - let get_arity ( x : func_decl ) = Z3native.get_arity (gnc x) (gno x) - - let get_domain_size ( x : func_decl ) = Z3native.get_domain_size (gnc x) (gno x) - - let get_domain ( x : func_decl ) = - let n = (get_domain_size x) in - let f i = sort_of_ptr (gc x) (Z3native.get_domain (gnc x) (gno x) i) in - mk_list f n - - let get_range ( x : func_decl ) = - sort_of_ptr (gc x) (Z3native.get_range (gnc x) (gno x)) - - let get_decl_kind ( x : func_decl ) = (decl_kind_of_int (Z3native.get_decl_kind (gnc x) (gno x))) - - let get_name ( x : func_decl ) = (Symbol.create (gc x) (Z3native.get_decl_name (gnc x) (gno x))) - - let get_num_parameters ( x : func_decl ) = (Z3native.get_decl_num_parameters (gnc x) (gno x)) - - let get_parameters ( x : func_decl ) = - let n = (get_num_parameters x) in - let f i = (match (parameter_kind_of_int (Z3native.get_decl_parameter_kind (gnc x) (gno x) i)) with - | PARAMETER_INT -> Parameter.P_Int (Z3native.get_decl_int_parameter (gnc x) (gno x) i) - | PARAMETER_DOUBLE -> Parameter.P_Dbl (Z3native.get_decl_double_parameter (gnc x) (gno x) i) - | PARAMETER_SYMBOL-> Parameter.P_Sym (Symbol.create (gc x) (Z3native.get_decl_symbol_parameter (gnc x) (gno x) i)) - | PARAMETER_SORT -> Parameter.P_Srt (sort_of_ptr (gc x) (Z3native.get_decl_sort_parameter (gnc x) (gno x) i)) - | PARAMETER_AST -> Parameter.P_Ast (AST.ast_of_ptr (gc x) (Z3native.get_decl_ast_parameter (gnc x) (gno x) i)) - | PARAMETER_FUNC_DECL -> Parameter.P_Fdl (func_decl_of_ptr (gc x) (Z3native.get_decl_func_decl_parameter (gnc x) (gno x) i)) - | PARAMETER_RATIONAL -> Parameter.P_Rat (Z3native.get_decl_rational_parameter (gnc x) (gno x) i) - ) in - mk_list f n - - let apply ( x : func_decl ) ( args : Expr.expr list ) = Expr.expr_of_func_app (gc x) x args -end - - -and Params : -sig - type params = z3_native_object - module ParamDescrs : - sig - type param_descrs - val param_descrs_of_ptr : context -> Z3native.ptr -> param_descrs - val validate : param_descrs -> params -> unit - val get_kind : param_descrs -> Symbol.symbol -> Z3enums.param_kind - val get_names : param_descrs -> Symbol.symbol list - val get_size : param_descrs -> int - val to_string : param_descrs -> string - end - val add_bool : params -> Symbol.symbol -> bool -> unit - val add_int : params -> Symbol.symbol -> int -> unit - val add_double : params -> Symbol.symbol -> float -> unit - val add_symbol : params -> Symbol.symbol -> Symbol.symbol -> unit - val add_s_bool : params -> string -> bool -> unit - val add_s_int : params -> string -> int -> unit - val add_s_double : params -> string -> float -> unit - val add_s_symbol : params -> string -> Symbol.symbol -> unit - val mk_params : context -> params - val to_string : params -> string -end = struct - type params = z3_native_object - - module ParamDescrs = - struct - type param_descrs = z3_native_object - - let param_descrs_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let res : param_descrs = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.param_descrs_inc_ref ; - dec_ref = Z3native.param_descrs_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let validate ( x : param_descrs ) ( p : params ) = - Z3native.params_validate (z3obj_gnc x) (z3obj_gno p) (z3obj_gno x) - - let get_kind ( x : param_descrs ) ( name : Symbol.symbol ) = - (param_kind_of_int (Z3native.param_descrs_get_kind (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name))) - - let get_names ( x : param_descrs ) = - let n = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x) in - let f i = Symbol.create (z3obj_gc x) (Z3native.param_descrs_get_name (z3obj_gnc x) (z3obj_gno x) i) in - mk_list f n - - let get_size ( x : param_descrs ) = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x) - let to_string ( x : param_descrs ) = Z3native.param_descrs_to_string (z3obj_gnc x) (z3obj_gno x) - end - - let add_bool ( x : params ) ( name : Symbol.symbol ) ( value : bool ) = - Z3native.params_set_bool (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value - - let add_int ( x : params ) (name : Symbol.symbol ) ( value : int ) = - Z3native.params_set_uint (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value - - let add_double ( x : params ) ( name : Symbol.symbol ) ( value : float ) = - Z3native.params_set_double (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value - - let add_symbol ( x : params ) ( name : Symbol.symbol ) ( value : Symbol.symbol ) = - Z3native.params_set_symbol (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) (Symbol.gno value) - - let add_s_bool ( x : params ) ( name : string ) ( value : bool ) = - add_bool x (Symbol.mk_string (z3obj_gc x) name) value - - let add_s_int ( x : params) ( name : string ) ( value : int ) = - add_int x (Symbol.mk_string (z3obj_gc x) name) value - - let add_s_double ( x : params ) ( name : string ) ( value : float ) = - add_double x (Symbol.mk_string (z3obj_gc x) name) value - - let add_s_symbol ( x : params ) ( name : string ) ( value : Symbol.symbol ) = - add_symbol x (Symbol.mk_string (z3obj_gc x) name) value - - let mk_params ( ctx : context ) = - let res : params = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.params_inc_ref ; - dec_ref = Z3native.params_dec_ref } in - (z3obj_sno res ctx (Z3native.mk_params (context_gno ctx))) ; - (z3obj_create res) ; - res - - let to_string ( x : params ) = Z3native.params_to_string (z3obj_gnc x) (z3obj_gno x) -end - -(** General expressions (terms) *) -and Expr : -sig - type expr = Expr of AST.ast - val expr_of_ptr : context -> Z3native.ptr -> expr - val gc : expr -> context - val gnc : expr -> Z3native.ptr - val gno : expr -> Z3native.ptr - val expr_lton : expr list -> Z3native.ptr array - val ast_of_expr : expr -> AST.ast - val expr_of_ast : AST.ast -> expr - val expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr - val simplify : expr -> Params.params option -> expr - val get_simplify_help : context -> string - val get_simplify_parameter_descrs : context -> Params.ParamDescrs.param_descrs - val get_func_decl : expr -> FuncDecl.func_decl - val get_bool_value : expr -> Z3enums.lbool - val get_num_args : expr -> int - val get_args : expr -> expr list - val update : expr -> expr list -> expr - val substitute : expr -> expr list -> expr list -> expr - val substitute_one : expr -> expr -> expr -> expr - val substitute_vars : expr -> expr list -> expr - val translate : expr -> context -> expr - val to_string : expr -> string - val is_numeral : expr -> bool - val is_well_sorted : expr -> bool - val get_sort : expr -> Sort.sort - val is_bool : expr -> bool - val is_const : expr -> bool - val is_true : expr -> bool - val is_false : expr -> bool - val is_eq : expr -> bool - val is_distinct : expr -> bool - val is_ite : expr -> bool - val is_and : expr -> bool - val is_or : expr -> bool - val is_iff : expr -> bool - val is_xor : expr -> bool - val is_not : expr -> bool - val is_implies : expr -> bool - val is_label : expr -> bool - val is_label_lit : expr -> bool - val is_oeq : expr -> bool - val mk_const : context -> Symbol.symbol -> Sort.sort -> expr - val mk_const_s : context -> string -> Sort.sort -> expr - val mk_const_f : context -> FuncDecl.func_decl -> expr - val mk_fresh_const : context -> string -> Sort.sort -> expr - val mk_app : context -> FuncDecl.func_decl -> expr list -> expr - val mk_numeral_string : context -> string -> Sort.sort -> expr - val mk_numeral_int : context -> int -> Sort.sort -> expr -end = struct - type expr = Expr of AST.ast - - let c_of_expr e = match e with Expr(a) -> (z3obj_gc a) - let nc_of_expr e = match e with Expr(a) -> (z3obj_gnc a) - let ptr_of_expr e = match e with Expr(a) -> (z3obj_gno a) - - let expr_of_ptr : context -> Z3native.ptr -> expr = fun ctx no -> - if ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no) == QUANTIFIER_AST then - Expr(z3_native_object_of_ast_ptr ctx no) - else - let s = Z3native.get_sort (context_gno ctx) no in - let sk = (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) s)) in - if (Z3native.is_algebraic_number (context_gno ctx) no) then - Expr(z3_native_object_of_ast_ptr ctx no) - else - if (Z3native.is_numeral_ast (context_gno ctx) no) then - if (sk == INT_SORT or sk == REAL_SORT or sk == BV_SORT) then - Expr(z3_native_object_of_ast_ptr ctx no) - else - raise (Z3native.Exception "Unsupported numeral object") - else - Expr(z3_native_object_of_ast_ptr ctx no) - - let expr_of_ast a = - let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in - if (q != Z3enums.APP_AST && q != VAR_AST && q != QUANTIFIER_AST && q != NUMERAL_AST) then - raise (Z3native.Exception "Invalid coercion") - else - Expr(a) - - let ast_of_expr e = match e with Expr(a) -> a - - let expr_lton ( a : expr list ) = - let f ( e : expr ) = match e with Expr(a) -> (AST.ptr_of_ast a) in - Array.of_list (List.map f a) - - let expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr = fun ctx f args -> - match f with FuncDecl.FuncDecl(fa) -> - let o = Z3native.mk_app (context_gno ctx) (AST.ptr_of_ast fa) (List.length args) (expr_lton args) in - expr_of_ptr ctx o - - let simplify ( x : expr ) ( p : Params.params option ) = match p with - | None -> expr_of_ptr (Expr.gc x) (Z3native.simplify (Expr.gnc x) (Expr.gno x)) - | Some pp -> expr_of_ptr (Expr.gc x) (Z3native.simplify_ex (Expr.gnc x) (Expr.gno x) (z3obj_gno pp)) - - let get_simplify_help ( ctx : context ) = - Z3native.simplify_get_help (context_gno ctx) - - let get_simplify_parameter_descrs ( ctx : context ) = - Params.ParamDescrs.param_descrs_of_ptr ctx (Z3native.simplify_get_param_descrs (context_gno ctx)) - let get_func_decl ( x : expr ) = FuncDecl.func_decl_of_ptr (Expr.gc x) (Z3native.get_app_decl (Expr.gnc x) (Expr.gno x)) - - let get_bool_value ( x : expr ) = lbool_of_int (Z3native.get_bool_value (Expr.gnc x) (Expr.gno x)) - - let get_num_args ( x : expr ) = Z3native.get_app_num_args (Expr.gnc x) (Expr.gno x) - - let get_args ( x : expr ) = let n = (get_num_args x) in - let f i = expr_of_ptr (Expr.gc x) (Z3native.get_app_arg (Expr.gnc x) (Expr.gno x) i) in - mk_list f n - - let update ( x : expr ) ( args : expr list ) = - if (List.length args <> (get_num_args x)) then - raise (Z3native.Exception "Number of arguments does not match") - else - expr_of_ptr (Expr.gc x) (Z3native.update_term (Expr.gnc x) (Expr.gno x) (List.length args) (expr_lton args)) - - let substitute ( x : expr ) from to_ = - if (List.length from) <> (List.length to_) then - raise (Z3native.Exception "Argument sizes do not match") - else - expr_of_ptr (Expr.gc x) (Z3native.substitute (Expr.gnc x) (Expr.gno x) (List.length from) (expr_lton from) (expr_lton to_)) - - let substitute_one ( x : expr ) from to_ = - substitute ( x : expr ) [ from ] [ to_ ] - - let substitute_vars ( x : expr ) to_ = - expr_of_ptr (Expr.gc x) (Z3native.substitute_vars (Expr.gnc x) (Expr.gno x) (List.length to_) (expr_lton to_)) - - let translate ( x : expr ) to_ctx = - if (Expr.gc x) == to_ctx then - x - else - expr_of_ptr to_ctx (Z3native.translate (Expr.gnc x) (Expr.gno x) (context_gno to_ctx)) - - let to_string ( x : expr ) = Z3native.ast_to_string (Expr.gnc x) (Expr.gno x) - - let is_numeral ( x : expr ) = (Z3native.is_numeral_ast (Expr.gnc x) (Expr.gno x)) - - let is_well_sorted ( x : expr ) = Z3native.is_well_sorted (Expr.gnc x) (Expr.gno x) - - let get_sort ( x : expr ) = sort_of_ptr (Expr.gc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)) - - let is_bool ( x : expr ) = (match x with Expr(a) -> (AST.is_expr a)) && - (Z3native.is_eq_sort (Expr.gnc x) - (Z3native.mk_bool_sort (Expr.gnc x)) - (Z3native.get_sort (Expr.gnc x) (Expr.gno x))) - - let is_const ( x : expr ) = (match x with Expr(a) -> (AST.is_expr a)) && - (get_num_args x) == 0 && - (FuncDecl.get_domain_size (get_func_decl x)) == 0 - - let is_true ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_TRUE) - let is_false ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_FALSE) - let is_eq ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_EQ) - let is_distinct ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_DISTINCT) - let is_ite ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_ITE) - let is_and ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_AND) - let is_or ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_OR) - let is_iff ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_IFF) - let is_xor ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_XOR) - let is_not ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_NOT) - let is_implies ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_IMPLIES) - let is_label ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_LABEL) - let is_label_lit ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_LABEL_LIT) - let is_oeq ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_OEQ) - - let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( range : sort ) = - expr_of_ptr ctx (Z3native.mk_const (context_gno ctx) (Symbol.gno name) (Sort.gno range)) - - let mk_const_s ( ctx : context ) ( name : string ) ( range : sort ) = - mk_const ctx (Symbol.mk_string ctx name) range - - let mk_const_f ( ctx : context ) ( f : FuncDecl.func_decl ) = Expr.expr_of_func_app ctx f [] - - let mk_fresh_const ( ctx : context ) ( prefix : string ) ( range : sort ) = - expr_of_ptr ctx (Z3native.mk_fresh_const (context_gno ctx) prefix (Sort.gno range)) - - let mk_app ( ctx : context ) ( f : FuncDecl.func_decl ) ( args : expr list ) = expr_of_func_app ctx f args - - let mk_numeral_string ( ctx : context ) ( v : string ) ( ty : sort ) = - expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno ty)) - - let mk_numeral_int ( ctx : context ) ( v : int ) ( ty : sort ) = - expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno ty)) -end - -open FuncDecl -open Expr - -module Boolean = -struct - type bool_sort = BoolSort of Sort.sort - type bool_expr = BoolExpr of Expr.expr - - let bool_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let a = (AST.ast_of_ptr ctx no) in - BoolExpr(Expr.Expr(a)) - - let bool_expr_of_expr e = - match e with Expr.Expr(a) -> - let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in - if (q != Z3enums.BOOL_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - BoolExpr(e) - - let bool_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - BoolSort(sort_of_ptr ctx no) - - let sort_of_bool_sort s = match s with BoolSort(x) -> x - - let bool_sort_of_sort s = match s with Sort(a) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.BOOL_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - BoolSort(s) - - let expr_of_bool_expr e = match e with BoolExpr(x) -> x - - let gc ( x : bool_expr ) = match x with BoolExpr(e) -> (Expr.c_of_expr e) - let gnc ( x : bool_expr ) = match x with BoolExpr(e) -> (Expr.nc_of_expr e) - let gno ( x : bool_expr ) = match x with BoolExpr(e) -> (Expr.ptr_of_expr e) - - let mk_sort ( ctx : context ) = - BoolSort(sort_of_ptr ctx (Z3native.mk_bool_sort (context_gno ctx))) - - let mk_const ( ctx : context ) ( name : Symbol.symbol ) = - let s = (match (mk_sort ctx) with BoolSort(q) -> q) in - BoolExpr(Expr.mk_const ctx name s) - - let mk_const_s ( ctx : context ) ( name : string ) = - mk_const ctx (Symbol.mk_string ctx name) - - let mk_true ( ctx : context ) = - bool_expr_of_ptr ctx (Z3native.mk_true (context_gno ctx)) - - let mk_false ( ctx : context ) = - bool_expr_of_ptr ctx (Z3native.mk_false (context_gno ctx)) - - let mk_val ( ctx : context ) ( value : bool ) = - if value then mk_true ctx else mk_false ctx - - let mk_eq ( ctx : context ) ( x : expr ) ( y : expr ) = - bool_expr_of_ptr ctx (Z3native.mk_eq (context_gno ctx) (Expr.gno x) (Expr.gno y)) - - let mk_distinct ( ctx : context ) ( args : expr list ) = - bool_expr_of_ptr ctx (Z3native.mk_distinct (context_gno ctx) (List.length args) (expr_lton args)) - - let mk_not ( ctx : context ) ( a : bool_expr ) = - bool_expr_of_ptr ctx (Z3native.mk_not (context_gno ctx) (gno a)) - - let mk_ite ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) ( t3 : bool_expr ) = - bool_expr_of_ptr ctx (Z3native.mk_ite (context_gno ctx) (gno t1) (gno t2) (gno t3)) - - let mk_iff ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) = - bool_expr_of_ptr ctx (Z3native.mk_iff (context_gno ctx) (gno t1) (gno t2)) - - let mk_implies ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) = - bool_expr_of_ptr ctx (Z3native.mk_implies (context_gno ctx) (gno t1) (gno t2)) - - let mk_xor ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) = - bool_expr_of_ptr ctx (Z3native.mk_xor (context_gno ctx) (gno t1) (gno t2)) - - let mk_and ( ctx : context ) ( args : bool_expr list ) = - let f x = (Expr.gno (expr_of_bool_expr x)) in - bool_expr_of_ptr ctx (Z3native.mk_and (context_gno ctx) (List.length args) (Array.of_list (List.map f args))) - - let mk_or ( ctx : context ) ( args : bool_expr list ) = - let f x = (Expr.gno (expr_of_bool_expr x)) in - bool_expr_of_ptr ctx (Z3native.mk_or (context_gno ctx) (List.length args) (Array.of_list(List.map f args))) -end - - -module Quantifier = -struct - type quantifier = Quantifier of expr - - let expr_of_quantifier e = match e with Quantifier(x) -> x - - let quantifier_of_expr e = - match e with Expr.Expr(a) -> - let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in - if (q != Z3enums.QUANTIFIER_AST) then - raise (Z3native.Exception "Invalid coercion") - else - Quantifier(e) - - let gc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gc e) - let gnc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gnc e) - let gno ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gno e) - - module Pattern = - struct - type pattern = Pattern of ast - - let ast_of_pattern e = match e with Pattern(x) -> x - - let pattern_of_ast a = - (* CMW: Unchecked ok? *) - Pattern(a) - - let gc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gc a) - let gnc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gnc a) - let gno ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gno a) - - let get_num_terms ( x : pattern ) = - Z3native.get_pattern_num_terms (gnc x) (gno x) - - let get_terms ( x : pattern ) = - let n = (get_num_terms x) in - let f i = (expr_of_ptr (gc x) (Z3native.get_pattern (gnc x) (gno x) i)) in - mk_list f n - - let to_string ( x : pattern ) = Z3native.pattern_to_string (gnc x) (gno x) - end - - let get_index ( x : expr ) = - if not (AST.is_var (match x with Expr.Expr(a) -> a)) then - raise (Z3native.Exception "Term is not a bound variable.") - else - Z3native.get_index_value (Expr.gnc x) (Expr.gno x) - - let is_universal ( x : quantifier ) = - Z3native.is_quantifier_forall (gnc x) (gno x) - - let is_existential ( x : quantifier ) = not (is_universal x) - - let get_weight ( x : quantifier ) = Z3native.get_quantifier_weight (gnc x) (gno x) - - let get_num_patterns ( x : quantifier ) = Z3native.get_quantifier_num_patterns (gnc x) (gno x) - - let get_patterns ( x : quantifier ) = - let n = (get_num_patterns x) in - let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_pattern_ast (gnc x) (gno x) i)) in - mk_list f n - - let get_num_no_patterns ( x : quantifier ) = Z3native.get_quantifier_num_no_patterns (gnc x) (gno x) - - let get_no_patterns ( x : quantifier ) = - let n = (get_num_patterns x) in - let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_no_pattern_ast (gnc x) (gno x) i)) in - mk_list f n - - let get_num_bound ( x : quantifier ) = Z3native.get_quantifier_num_bound (gnc x) (gno x) - - let get_bound_variable_names ( x : quantifier ) = - let n = (get_num_bound x) in - let f i = (Symbol.create (gc x) (Z3native.get_quantifier_bound_name (gnc x) (gno x) i)) in - mk_list f n - - let get_bound_variable_sorts ( x : quantifier ) = - let n = (get_num_bound x) in - let f i = (sort_of_ptr (gc x) (Z3native.get_quantifier_bound_sort (gnc x) (gno x) i)) in - mk_list f n - - let get_body ( x : quantifier ) = - Boolean.bool_expr_of_ptr (gc x) (Z3native.get_quantifier_body (gnc x) (gno x)) - - let mk_bound ( ctx : context ) ( index : int ) ( ty : sort ) = - expr_of_ptr ctx (Z3native.mk_bound (context_gno ctx) index (Sort.gno ty)) - - let mk_pattern ( ctx : context ) ( terms : expr list ) = - if (List.length terms) == 0 then - raise (Z3native.Exception "Cannot create a pattern from zero terms") - else - Pattern.Pattern(z3_native_object_of_ast_ptr ctx (Z3native.mk_pattern (context_gno ctx) (List.length terms) (expr_lton terms))) - - let mk_forall ( ctx : context ) ( sorts : sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) = - if (List.length sorts) != (List.length names) then - raise (Z3native.Exception "Number of sorts does not match number of names") - else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) true - (match weight with | None -> 1 | Some(x) -> x) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (List.length sorts) (sort_lton sorts) - (Symbol.symbol_lton names) - (Expr.gno body))) - else - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) true - (match weight with | None -> 1 | Some(x) -> x) - (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x)) - (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x)) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (List.length nopatterns) (expr_lton nopatterns) - (List.length sorts) (sort_lton sorts) - (Symbol.symbol_lton names) - (Expr.gno body))) - - let mk_forall_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) = - if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) true - (match weight with | None -> 1 | Some(x) -> x) - (List.length bound_constants) (expr_lton bound_constants) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (Expr.gno body))) - else - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) true - (match weight with | None -> 1 | Some(x) -> x) - (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x)) - (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x)) - (List.length bound_constants) (expr_lton bound_constants) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (List.length nopatterns) (expr_lton nopatterns) - (Expr.gno body))) - - let mk_exists ( ctx : context ) ( sorts : sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) = - if (List.length sorts) != (List.length names) then - raise (Z3native.Exception "Number of sorts does not match number of names") - else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) false - (match weight with | None -> 1 | Some(x) -> x) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (List.length sorts) (sort_lton sorts) - (Symbol.symbol_lton names) - (Expr.gno body))) - else - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) false - (match weight with | None -> 1 | Some(x) -> x) - (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x)) - (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x)) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (List.length nopatterns) (expr_lton nopatterns) - (List.length sorts) (sort_lton sorts) - (Symbol.symbol_lton names) - (Expr.gno body))) - - let mk_exists_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) = - if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) false - (match weight with | None -> 1 | Some(x) -> x) - (List.length bound_constants) (expr_lton bound_constants) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (Expr.gno body))) - else - Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) false - (match weight with | None -> 1 | Some(x) -> x) - (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x)) - (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x)) - (List.length bound_constants) (expr_lton bound_constants) - (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns))) - (List.length nopatterns) (expr_lton nopatterns) - (Expr.gno body))) - - let mk_quantifier ( ctx : context ) ( universal : bool ) ( sorts : sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) = - if (universal) then - (mk_forall ctx sorts names body weight patterns nopatterns quantifier_id skolem_id) - else - (mk_exists ctx sorts names body weight patterns nopatterns quantifier_id skolem_id) - - let mk_quantifier ( ctx : context ) ( universal : bool ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) = - if (universal) then - mk_forall_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id - else - mk_exists_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id -end - - -module Array_ = -struct - type array_sort = ArraySort of sort - type array_expr = ArrayExpr of expr - - let array_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let e = (expr_of_ptr ctx no) in - ArrayExpr(e) - - let array_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let s = (sort_of_ptr ctx no) in - ArraySort(s) - - let sort_of_array_sort s = match s with ArraySort(x) -> x - - let array_sort_of_sort s = match s with Sort(a) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.ARRAY_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - ArraySort(s) - - let array_expr_of_expr e = - match e with Expr(a) -> - let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in - if (q != Z3enums.ARRAY_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - ArrayExpr(e) - - let expr_of_array_expr e = match e with ArrayExpr(x) -> x - - let sgc ( x : array_sort ) = match (x) with ArraySort(Sort(s)) -> (z3obj_gc s) - let sgnc ( x : array_sort ) = match (x) with ArraySort(Sort(s)) -> (z3obj_gnc s) - let sgno ( x : array_sort ) = match (x) with ArraySort(Sort(s)) -> (z3obj_gno s) - - let egc ( x : array_expr ) = match (x) with ArrayExpr(Expr(e)) -> (z3obj_gc e) - let egnc ( x : array_expr ) = match (x) with ArrayExpr(Expr(e)) -> (z3obj_gnc e) - let egno ( x : array_expr ) = match (x) with ArrayExpr(Expr(e)) -> (z3obj_gno e) - - let mk_sort ( ctx : context ) ( domain : sort ) ( range : sort ) = - array_sort_of_ptr ctx (Z3native.mk_array_sort (context_gno ctx) (Sort.gno domain) (Sort.gno range)) - - let is_store ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_STORE) - let is_select ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SELECT) - let is_constant_array ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONST_ARRAY) - let is_default_array ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_DEFAULT) - let is_array_map ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_MAP) - let is_as_array ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_AS_ARRAY) - let is_array ( x : expr ) = - (Z3native.is_app (Expr.gnc x) (Expr.gno x)) && - ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == ARRAY_SORT) - - let get_domain ( x : array_sort ) = Sort.sort_of_ptr (sgc x) (Z3native.get_array_sort_domain (sgnc x) (sgno x)) - let get_range ( x : array_sort ) = Sort.sort_of_ptr (sgc x) (Z3native.get_array_sort_range (sgnc x) (sgno x)) - - let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( domain : sort ) ( range : sort ) = - ArrayExpr(Expr.mk_const ctx name (match (mk_sort ctx domain range) with ArraySort(s) -> s)) - - let mk_const_s ( ctx : context ) ( name : string ) ( domain : sort ) ( range : sort ) = - mk_const ctx (Symbol.mk_string ctx name) domain range - - let mk_select ( ctx : context ) ( a : array_expr ) ( i : expr ) = - array_expr_of_ptr ctx (Z3native.mk_select (context_gno ctx) (egno a) (Expr.gno i)) - - let mk_store ( ctx : context ) ( a : array_expr ) ( i : expr ) ( v : expr ) = - array_expr_of_ptr ctx (Z3native.mk_store (context_gno ctx) (egno a) (Expr.gno i) (Expr.gno v)) - - let mk_const_array ( ctx : context ) ( domain : sort ) ( v : expr ) = - array_expr_of_ptr ctx (Z3native.mk_const_array (context_gno ctx) (Sort.gno domain) (Expr.gno v)) - - let mk_map ( ctx : context ) ( f : func_decl ) ( args : array_expr list ) = - let m x = (Expr.gno (expr_of_array_expr x)) in - array_expr_of_ptr ctx (Z3native.mk_map (context_gno ctx) (FuncDecl.gno f) (List.length args) (Array.of_list (List.map m args))) - - let mk_term_array ( ctx : context ) ( arg : array_expr ) = - array_expr_of_ptr ctx (Z3native.mk_array_default (context_gno ctx) (egno arg)) -end - - -module Set = -struct - type set_sort = SetSort of sort - - let set_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let s = (sort_of_ptr ctx no) in - SetSort(s) - - let sort_of_set_sort s = match s with SetSort(x) -> x - - let mk_sort ( ctx : context ) ( ty : sort ) = - set_sort_of_ptr ctx (Z3native.mk_set_sort (context_gno ctx) (Sort.gno ty)) - - let is_union ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_UNION) - let is_intersect ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_INTERSECT) - let is_difference ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_DIFFERENCE) - let is_complement ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_COMPLEMENT) - let is_subset ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_SUBSET) - - - let mk_empty ( ctx : context ) ( domain : sort ) = - (expr_of_ptr ctx (Z3native.mk_empty_set (context_gno ctx) (Sort.gno domain))) - - let mk_full ( ctx : context ) ( domain : sort ) = - expr_of_ptr ctx (Z3native.mk_full_set (context_gno ctx) (Sort.gno domain)) - - let mk_set_add ( ctx : context ) ( set : expr ) ( element : expr ) = - expr_of_ptr ctx (Z3native.mk_set_add (context_gno ctx) (Expr.gno set) (Expr.gno element)) - - let mk_del ( ctx : context ) ( set : expr ) ( element : expr ) = - expr_of_ptr ctx (Z3native.mk_set_del (context_gno ctx) (Expr.gno set) (Expr.gno element)) - - let mk_union ( ctx : context ) ( args : expr list ) = - expr_of_ptr ctx (Z3native.mk_set_union (context_gno ctx) (List.length args) (expr_lton args)) - - let mk_intersection ( ctx : context ) ( args : expr list ) = - expr_of_ptr ctx (Z3native.mk_set_intersect (context_gno ctx) (List.length args) (expr_lton args)) - - let mk_difference ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) = - expr_of_ptr ctx (Z3native.mk_set_difference (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2)) - - let mk_complement ( ctx : context ) ( arg : expr ) = - expr_of_ptr ctx (Z3native.mk_set_complement (context_gno ctx) (Expr.gno arg)) - - let mk_membership ( ctx : context ) ( elem : expr ) ( set : expr ) = - expr_of_ptr ctx (Z3native.mk_set_member (context_gno ctx) (Expr.gno elem) (Expr.gno set)) - - let mk_subset ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) = - expr_of_ptr ctx (Z3native.mk_set_subset (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2)) - -end - - -module FiniteDomain = -struct - type finite_domain_sort = FiniteDomainSort of sort - - let sort_of_finite_domain_sort s = match s with FiniteDomainSort(x) -> x - - let finite_domain_sort_of_sort s = match s with Sort(a) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.FINITE_DOMAIN_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - FiniteDomainSort(s) - - let gc ( x : finite_domain_sort ) = match (x) with FiniteDomainSort(Sort(s)) -> (z3obj_gc s) - let gnc ( x : finite_domain_sort ) = match (x) with FiniteDomainSort(Sort(s)) -> (z3obj_gnc s) - let gno ( x : finite_domain_sort ) = match (x) with FiniteDomainSort(Sort(s))-> (z3obj_gno s) - - let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) = - let s = (sort_of_ptr ctx (Z3native.mk_finite_domain_sort (context_gno ctx) (Symbol.gno name) size)) in - FiniteDomainSort(s) - - let mk_sort_s ( ctx : context ) ( name : string ) ( size : int ) = - mk_sort ctx (Symbol.mk_string ctx name) size - - - let is_finite_domain ( x : expr ) = - let nc = (Expr.gnc x) in - (Z3native.is_app (Expr.gnc x) (Expr.gno x)) && - (sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == FINITE_DOMAIN_SORT) - - let is_lt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FD_LT) - - let get_size ( x : finite_domain_sort ) = - let (r, v) = (Z3native.get_finite_domain_sort_size (gnc x) (gno x)) in - if r then v - else raise (Z3native.Exception "Conversion failed.") -end - - -module Relation = -struct - type relation_sort = RelationSort of sort - - let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let s = (sort_of_ptr ctx no) in - RelationSort(s) - - let sort_of_relation_sort s = match s with RelationSort(x) -> x - - let relation_sort_of_sort s = match s with Sort(a) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.RELATION_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - RelationSort(s) - - let gc ( x : relation_sort ) = match (x) with RelationSort(Sort(s)) -> (z3obj_gc s) - let gnc ( x : relation_sort ) = match (x) with RelationSort(Sort(s)) -> (z3obj_gnc s) - let gno ( x : relation_sort ) = match (x) with RelationSort(Sort(s))-> (z3obj_gno s) - - - let is_relation ( x : expr ) = - let nc = (Expr.gnc x) in - ((Z3native.is_app (Expr.gnc x) (Expr.gno x)) && - (sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == RELATION_SORT)) - - let is_store ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_STORE) - let is_empty ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_EMPTY) - let is_is_empty ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_IS_EMPTY) - let is_join ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_JOIN) - let is_union ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_UNION) - let is_widen ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_WIDEN) - let is_project ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_PROJECT) - let is_filter ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_FILTER) - let is_negation_filter ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_NEGATION_FILTER) - let is_rename ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_RENAME) - let is_complement ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_COMPLEMENT) - let is_select ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_SELECT) - let is_clone ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_CLONE) - - let get_arity ( x : relation_sort ) = Z3native.get_relation_arity (gnc x) (gno x) - - let get_column_sorts ( x : relation_sort ) = - let n = get_arity x in - let f i = (sort_of_ptr (gc x) (Z3native.get_relation_column (gnc x) (gno x) i)) in - mk_list f n - -end - - -module Datatype = -struct - type datatype_sort = DatatypeSort of sort - type datatype_expr = DatatypeExpr of expr - - let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let s = (sort_of_ptr ctx no) in - DatatypeSort(s) - - let sort_of_datatype_sort s = match s with DatatypeSort(x) -> x - - let datatype_sort_of_sort s = match s with Sort(a) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.DATATYPE_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - DatatypeSort(s) - - let datatype_expr_of_expr e = - match e with Expr(a) -> - let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in - if (q != Z3enums.DATATYPE_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - DatatypeExpr(e) - - let expr_of_datatype_expr e = match e with DatatypeExpr(x) -> x - - let sgc ( x : datatype_sort ) = match (x) with DatatypeSort(Sort(s)) -> (z3obj_gc s) - let sgnc ( x : datatype_sort ) = match (x) with DatatypeSort(Sort(s)) -> (z3obj_gnc s) - let sgno ( x : datatype_sort ) = match (x) with DatatypeSort(Sort(s))-> (z3obj_gno s) - - module Constructor = - struct - type constructor = z3_native_object - - let _sizes = Hashtbl.create 0 - - let create ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : sort list ) ( sort_refs : int list ) = - let n = (List.length field_names) in - if n != (List.length sorts) then - raise (Z3native.Exception "Number of field names does not match number of sorts") - else - if n != (List.length sort_refs) then - raise (Z3native.Exception "Number of field names does not match number of sort refs") - else - let ptr = (Z3native.mk_constructor (context_gno ctx) (Symbol.gno name) - (Symbol.gno recognizer) - n - (Symbol.symbol_lton field_names) - (sort_lton sorts) - (Array.of_list sort_refs)) in - let no : constructor = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = z3obj_nil_ref ; - dec_ref = z3obj_nil_ref} in - (z3obj_sno no ctx ptr) ; - (z3obj_create no) ; - let f = fun o -> Z3native.del_constructor (z3obj_gnc o) (z3obj_gno o) in - Gc.finalise f no ; - Hashtbl.add _sizes no n ; - no - - let get_num_fields ( x : constructor ) = Hashtbl.find _sizes x - - let get_constructor_decl ( x : constructor ) = - let (a, _, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in - func_decl_of_ptr (z3obj_gc x) a - - let get_tester_decl ( x : constructor ) = - let (_, b, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in - func_decl_of_ptr (z3obj_gc x) b - - let get_accessor_decls ( x : constructor ) = - let (_, _, c) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in - let f i = func_decl_of_ptr (z3obj_gc x) (Array.get c i) in - mk_list f (Array.length c) - - end - - module ConstructorList = - struct - type constructor_list = z3_native_object - - let create ( ctx : context ) ( c : Constructor.constructor list ) = - let res : constructor_list = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = z3obj_nil_ref ; - dec_ref = z3obj_nil_ref} in - let f x =(z3obj_gno x) in - (z3obj_sno res ctx (Z3native.mk_constructor_list (context_gno ctx) (List.length c) (Array.of_list (List.map f c)))) ; - (z3obj_create res) ; - let f = fun o -> Z3native.del_constructor_list (z3obj_gnc o) (z3obj_gno o) in - Gc.finalise f res; - res - end - - let mk_constructor ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : sort list ) ( sort_refs : int list ) = - Constructor.create ctx name recognizer field_names sorts sort_refs - - - let mk_constructor_s ( ctx : context ) ( name : string ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : sort list ) ( sort_refs : int list ) = - mk_constructor ctx (Symbol.mk_string ctx name) recognizer field_names sorts sort_refs - - let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( constructors : Constructor.constructor list ) = - let f x = (z3obj_gno x) in - let (x,_) = (Z3native.mk_datatype (context_gno ctx) (Symbol.gno name) (List.length constructors) (Array.of_list (List.map f constructors))) in - sort_of_ptr ctx x - - let mk_sort_s ( ctx : context ) ( name : string ) ( constructors : Constructor.constructor list ) = - mk_sort ctx (Symbol.mk_string ctx name) constructors - - let mk_sorts ( ctx : context ) ( names : Symbol.symbol list ) ( c : Constructor.constructor list list ) = - let n = (List.length names) in - let f e = (AST.ptr_of_ast (ConstructorList.create ctx e)) in - let cla = (Array.of_list (List.map f c)) in - let (r, a) = (Z3native.mk_datatypes (context_gno ctx) n (Symbol.symbol_lton names) cla) in - let g i = (sort_of_ptr ctx (Array.get r i)) in - mk_list g (Array.length r) - - let mk_sorts_s ( ctx : context ) ( names : string list ) ( c : Constructor.constructor list list ) = - mk_sorts ctx - ( - let f e = (Symbol.mk_string ctx e) in - List.map f names - ) - c - - let get_num_constructors ( x : datatype_sort ) = Z3native.get_datatype_sort_num_constructors (sgnc x) (sgno x) - - let get_constructors ( x : datatype_sort ) = - let n = (get_num_constructors x) in - let f i = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) i) in - mk_list f n - - let get_recognizers ( x : datatype_sort ) = - let n = (get_num_constructors x) in - let f i = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) i) in - mk_list f n - - let get_accessors ( x : datatype_sort ) = - let n = (get_num_constructors x) in - let f i = ( - let fd = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) i) in - let ds = Z3native.get_domain_size (FuncDecl.gnc fd) (FuncDecl.gno fd) in - let g j = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor_accessor (sgnc x) (sgno x) i j) in - mk_list g ds - ) in - mk_list f n -end - - -module Enumeration = -struct - type enum_sort = EnumSort of sort - - let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) ( cdecls : Z3native.z3_func_decl list ) ( tdecls : Z3native.z3_func_decl list ) = - let s = (sort_of_ptr ctx no) in - let res = EnumSort(s) in - res - - let sort_of_enum_sort s = match s with EnumSort(x) -> x - - let sgc ( x : enum_sort ) = match (x) with EnumSort(Sort(s)) -> (z3obj_gc s) - let sgnc ( x : enum_sort ) = match (x) with EnumSort(Sort(s)) -> (z3obj_gnc s) - let sgno ( x : enum_sort ) = match (x) with EnumSort(Sort(s))-> (z3obj_gno s) - - let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( enum_names : Symbol.symbol list ) = - let (a, b, c) = (Z3native.mk_enumeration_sort (context_gno ctx) (Symbol.gno name) (List.length enum_names) (Symbol.symbol_lton enum_names)) in - sort_of_ptr ctx a (list_of_array b) (list_of_array c) - - let mk_sort_s ( ctx : context ) ( name : string ) ( enum_names : string list ) = - mk_sort ctx (Symbol.mk_string ctx name) (Symbol.mk_strings ctx enum_names) - - let get_const_decls ( x : enum_sort ) = - let n = Z3native.get_datatype_sort_num_constructors (sgnc x) (sgno x) in - let f i = (func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) i)) in - mk_list f n - - let get_tester_decls ( x : enum_sort ) = - let n = Z3native.get_datatype_sort_num_constructors (sgnc x) (sgno x) in - let f i = (func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) i)) in - mk_list f n - -end - - -module List_ = -struct - type list_sort = ListSort of sort - - let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) ( nildecl : Z3native.ptr ) ( is_nildecl : Z3native.ptr ) ( consdecl : Z3native.ptr ) ( is_consdecl : Z3native.ptr ) ( headdecl : Z3native.ptr ) ( taildecl : Z3native.ptr ) = - let s = (sort_of_ptr ctx no) in - let res = ListSort(s) in - res - - let sort_of_list_sort s = match s with ListSort(x) -> x - - let sgc ( x : list_sort ) = match (x) with ListSort(Sort(s)) -> (z3obj_gc s) - let sgnc ( x : list_sort ) = match (x) with ListSort(Sort(s)) -> (z3obj_gnc s) - let sgno ( x : list_sort ) = match (x) with ListSort(Sort(s))-> (z3obj_gno s) - - let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( elem_sort : sort ) = - let (r, a, b, c, d, e, f) = (Z3native.mk_list_sort (context_gno ctx) (Symbol.gno name) (Sort.gno elem_sort)) in - sort_of_ptr ctx r a b c d e f - - let mk_list_s ( ctx : context ) (name : string) elem_sort = - mk_sort ctx (Symbol.mk_string ctx name) elem_sort - - let get_nil_decl ( x : list_sort ) = - func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) 0) - - let get_is_nil_decl ( x : list_sort ) = - func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) 0) - - let get_cons_decl ( x : list_sort ) = - func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) 1) - - let get_is_cons_decl ( x : list_sort ) = - func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) 1) - - let get_head_decl ( x : list_sort ) = - func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor_accessor (sgnc x) (sgno x) 1 0) - - let get_tail_decl ( x : list_sort ) = - func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor_accessor (sgnc x) (sgno x) 1 1) - - let nil ( x : list_sort ) = expr_of_func_app (sgc x) (get_nil_decl x) [] -end - - -module Tuple = -struct - type tuple_sort = TupleSort of sort - - let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - let s = (sort_of_ptr ctx no) in - TupleSort(s) - - let sort_of_tuple_sort s = match s with TupleSort(x) -> x - - let sgc ( x : tuple_sort ) = match (x) with TupleSort(Sort(s)) -> (z3obj_gc s) - let sgnc ( x : tuple_sort ) = match (x) with TupleSort(Sort(s)) -> (z3obj_gnc s) - let sgno ( x : tuple_sort ) = match (x) with TupleSort(Sort(s))-> (z3obj_gno s) - - let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( field_sorts : sort list ) = - let (r, _, _) = (Z3native.mk_tuple_sort (context_gno ctx) (Symbol.gno name) (List.length field_names) (Symbol.symbol_lton field_names) (sort_lton field_sorts)) in - sort_of_ptr ctx r - - let get_mk_decl ( x : tuple_sort ) = - func_decl_of_ptr (sgc x) (Z3native.get_tuple_sort_mk_decl (sgnc x) (sgno x)) - - let get_num_fields ( x : tuple_sort ) = Z3native.get_tuple_sort_num_fields (sgnc x) (sgno x) - - let get_field_decls ( x : tuple_sort ) = - let n = get_num_fields x in - let f i = func_decl_of_ptr (sgc x) (Z3native.get_tuple_sort_field_decl (sgnc x) (sgno x) i) in - mk_list f n -end - - -module rec Arithmetic : -sig - type arith_sort = ArithSort of Sort.sort - type arith_expr = ArithExpr of Expr.expr - - val sort_of_arith_sort : arith_sort -> Sort.sort - val arith_sort_of_sort : Sort.sort -> arith_sort - val expr_of_arith_expr : arith_expr -> Expr.expr - val arith_expr_of_expr : Expr.expr -> arith_expr - - module rec Integer : - sig - type int_sort = IntSort of arith_sort - type int_expr = IntExpr of arith_expr - type int_num = IntNum of int_expr - - val int_expr_of_ptr : context -> Z3native.ptr -> int_expr - val int_num_of_ptr : context -> Z3native.ptr -> int_num - - val arith_sort_of_int_sort : Integer.int_sort -> arith_sort - val int_sort_of_arith_sort : arith_sort -> int_sort - val arith_expr_of_int_expr : int_expr -> arith_expr - val int_expr_of_int_num : int_num -> int_expr - val int_expr_of_arith_expr : arith_expr -> int_expr - val int_num_of_int_expr : int_expr -> int_num - - val mk_sort : context -> int_sort - val get_int : int_num -> int - val to_string : int_num -> string - val mk_const : context -> Symbol.symbol -> int_expr - val mk_const_s : context -> string -> int_expr - val mk_mod : context -> int_expr -> int_expr -> int_expr - val mk_rem : context -> int_expr -> int_expr -> int_expr - val mk_numeral_s : context -> string -> int_num - val mk_numeral_i : context -> int -> int_num - val mk_int2real : context -> int_expr -> Real.real_expr - val mk_int2bv : context -> int -> int_expr -> BitVector.bitvec_expr - end - and Real : - sig - type real_sort = RealSort of arith_sort - type real_expr = RealExpr of arith_expr - type rat_num = RatNum of real_expr - - val real_expr_of_ptr : context -> Z3native.ptr -> real_expr - val rat_num_of_ptr : context -> Z3native.ptr -> rat_num - - val arith_sort_of_real_sort : Arithmetic.Real.real_sort -> Arithmetic.arith_sort - val real_sort_of_arith_sort : Arithmetic.arith_sort -> Arithmetic.Real.real_sort - val arith_expr_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.arith_expr - val real_expr_of_rat_num : Arithmetic.Real.rat_num -> Arithmetic.Real.real_expr - val real_expr_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.Real.real_expr - val rat_num_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.Real.rat_num - - val mk_sort : context -> real_sort - val get_numerator : rat_num -> Integer.int_num - val get_denominator : rat_num -> Integer.int_num - val to_decimal_string : rat_num -> int -> string - val to_string : rat_num -> string - val mk_const : context -> Symbol.symbol -> real_expr - val mk_const_s : context -> string -> real_expr - val mk_numeral_nd : context -> int -> int -> rat_num - val mk_numeral_s : context -> string -> rat_num - val mk_numeral_i : context -> int -> rat_num - val mk_is_integer : context -> real_expr -> Boolean.bool_expr - val mk_real2int : context -> real_expr -> Integer.int_expr - end - and AlgebraicNumber : - sig - type algebraic_num = AlgebraicNum of arith_expr - - val arith_expr_of_algebraic_num : algebraic_num -> arith_expr - val algebraic_num_of_arith_expr : arith_expr -> algebraic_num - - val to_upper : algebraic_num -> int -> Real.rat_num - val to_lower : algebraic_num -> int -> Real.rat_num - val to_decimal_string : algebraic_num -> int -> string - val to_string : algebraic_num -> string - end - - val is_int : Expr.expr -> bool - val is_arithmetic_numeral : Expr.expr -> bool - val is_le : Expr.expr -> bool - val is_ge : Expr.expr -> bool - val is_lt : Expr.expr -> bool - val is_gt : Expr.expr -> bool - val is_add : Expr.expr -> bool - val is_sub : Expr.expr -> bool - val is_uminus : Expr.expr -> bool - val is_mul : Expr.expr -> bool - val is_div : Expr.expr -> bool - val is_idiv : Expr.expr -> bool - val is_remainder : Expr.expr -> bool - val is_modulus : Expr.expr -> bool - val is_inttoreal : Expr.expr -> bool - val is_real_to_int : Expr.expr -> bool - val is_real_is_int : Expr.expr -> bool - val is_real : Expr.expr -> bool - val is_int_numeral : Expr.expr -> bool - val is_rat_num : Expr.expr -> bool - val is_algebraic_number : Expr.expr -> bool - val mk_add : context -> arith_expr list -> arith_expr - val mk_mul : context -> arith_expr list -> arith_expr - val mk_sub : context -> arith_expr list -> arith_expr - val mk_unary_minus : context -> arith_expr -> arith_expr - val mk_div : context -> arith_expr -> arith_expr -> arith_expr - val mk_power : context -> arith_expr -> arith_expr -> arith_expr - val mk_lt : context -> arith_expr -> arith_expr -> Boolean.bool_expr - val mk_le : context -> arith_expr -> arith_expr -> Boolean.bool_expr - val mk_gt : context -> arith_expr -> arith_expr -> Boolean.bool_expr - val mk_ge : context -> arith_expr -> arith_expr -> Boolean.bool_expr -end = struct - type arith_sort = ArithSort of sort - type arith_expr = ArithExpr of expr - - let arith_expr_of_expr e = - match e with Expr(a) -> - let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in - if (q != Z3enums.INT_SORT && q != Z3enums.REAL_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - ArithExpr(e) - - let arith_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - arith_expr_of_expr (expr_of_ptr ctx no) - - let sort_of_arith_sort s = match s with ArithSort(x) -> x - let expr_of_arith_expr e = match e with ArithExpr(x) -> x - - let arith_sort_of_sort s = match s with Sort(a) -> - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) in - if (q != Z3enums.INT_SORT && q != Z3enums.REAL_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - ArithSort(s) - - let arith_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - arith_sort_of_sort (sort_of_ptr ctx no) - - let sgc ( x : arith_sort ) = match (x) with ArithSort(Sort(s)) -> (z3obj_gc s) - let sgnc ( x : arith_sort ) = match (x) with ArithSort(Sort(s)) -> (z3obj_gnc s) - let sgno ( x : arith_sort ) = match (x) with ArithSort(Sort(s)) -> (z3obj_gno s) - let egc ( x : arith_expr ) = match (x) with ArithExpr(e) -> (Expr.gc e) - let egnc ( x : arith_expr ) = match (x) with ArithExpr(e) -> (Expr.gnc e) - let egno ( x : arith_expr ) = match (x) with ArithExpr(e) -> (Expr.gno e) - - module rec Integer : - sig - type int_sort = IntSort of arith_sort - type int_expr = IntExpr of arith_expr - type int_num = IntNum of int_expr - - val int_expr_of_ptr : context -> Z3native.ptr -> int_expr - val int_num_of_ptr : context -> Z3native.ptr -> int_num - - val arith_sort_of_int_sort : Integer.int_sort -> arith_sort - val int_sort_of_arith_sort : arith_sort -> int_sort - val arith_expr_of_int_expr : int_expr -> arith_expr - val int_expr_of_int_num : int_num -> int_expr - val int_expr_of_arith_expr : arith_expr -> int_expr - val int_num_of_int_expr : int_expr -> int_num - - val mk_sort : context -> int_sort - val get_int : int_num -> int - val to_string : int_num -> string - val mk_const : context -> Symbol.symbol -> int_expr - val mk_const_s : context -> string -> int_expr - val mk_mod : context -> int_expr -> int_expr -> int_expr - val mk_rem : context -> int_expr -> int_expr -> int_expr - val mk_numeral_s : context -> string -> int_num - val mk_numeral_i : context -> int -> int_num - val mk_int2real : context -> int_expr -> Real.real_expr - val mk_int2bv : context -> int -> int_expr -> BitVector.bitvec_expr - end = struct - type int_sort = IntSort of arith_sort - type int_expr = IntExpr of arith_expr - type int_num = IntNum of int_expr - - let int_expr_of_arith_expr e = - match e with ArithExpr(Expr(a)) -> - let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in - if (q != Z3enums.INT_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - IntExpr(e) - - let int_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - int_expr_of_arith_expr (arith_expr_of_expr (Expr.expr_of_ptr ctx no)) - - let int_num_of_int_expr e = - match e with IntExpr(ArithExpr(Expr(a))) -> - if (not (Z3native.is_numeral_ast (z3obj_gnc a) (z3obj_gno a))) then - raise (Z3native.Exception "Invalid coercion") - else - IntNum(e) - - let int_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - int_num_of_int_expr (int_expr_of_ptr ctx no) - - let arith_sort_of_int_sort s = match s with IntSort(x) -> x - let arith_expr_of_int_expr e = match e with IntExpr(x) -> x - let int_expr_of_int_num e = match e with IntNum(x) -> x - - let int_sort_of_arith_sort s = match s with ArithSort(Sort(a)) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.INT_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - IntSort(s) - - let int_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - int_sort_of_arith_sort (arith_sort_of_sort (Sort.sort_of_ptr ctx no)) - - let sgc ( x : int_sort ) = match (x) with IntSort(s) -> (sgc s) - let sgnc ( x : int_sort ) = match (x) with IntSort(s) -> (sgnc s) - let sgno ( x : int_sort ) = match (x) with IntSort(s) -> (sgno s) - let egc ( x : int_expr ) = match (x) with IntExpr(e) -> (egc e) - let egnc ( x : int_expr ) = match (x) with IntExpr(e) -> (egnc e) - let egno ( x : int_expr ) = match (x) with IntExpr(e) -> (egno e) - let ngc ( x : int_num ) = match (x) with IntNum(e) -> (egc e) - let ngnc ( x : int_num ) = match (x) with IntNum(e) -> (egnc e) - let ngno ( x : int_num ) = match (x) with IntNum(e) -> (egno e) - - let mk_sort ( ctx : context ) = - int_sort_of_ptr ctx (Z3native.mk_int_sort (context_gno ctx)) - - let get_int ( x : int_num ) = - let (r, v) = Z3native.get_numeral_int (ngnc x) (ngno x) in - if r then v - else raise (Z3native.Exception "Conversion failed.") - - let to_string ( x : int_num ) = Z3native.get_numeral_string (ngnc x) (ngno x) - - let mk_const ( ctx : context ) ( name : Symbol.symbol ) = - IntExpr(ArithExpr(Expr.mk_const ctx name (match (mk_sort ctx) with IntSort(ArithSort(s)) -> s))) - - let mk_const_s ( ctx : context ) ( name : string ) = - mk_const ctx (Symbol.mk_string ctx name) - - let mk_mod ( ctx : context ) ( t1 : int_expr ) ( t2 : int_expr ) = - int_expr_of_ptr ctx (Z3native.mk_mod (context_gno ctx) (egno t1) (egno t2)) - - let mk_rem ( ctx : context ) ( t1 : int_expr ) ( t2 : int_expr ) = - int_expr_of_ptr ctx (Z3native.mk_rem (context_gno ctx) (egno t1) (egno t2)) - - let mk_numeral_s ( ctx : context ) ( v : string ) = - int_num_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (sgno (mk_sort ctx))) - - let mk_numeral_i ( ctx : context ) ( v : int ) = - int_num_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (sgno (mk_sort ctx))) - - let mk_int2real ( ctx : context ) ( t : int_expr ) = - Real.real_expr_of_arith_expr (arith_expr_of_expr (Expr.expr_of_ptr ctx (Z3native.mk_int2real (context_gno ctx) (egno t)))) - - let mk_int2bv ( ctx : context ) ( n : int ) ( t : int_expr ) = - BitVector.bitvec_expr_of_expr (Expr.expr_of_ptr ctx (Z3native.mk_int2bv (context_gno ctx) n (egno t))) - end - - and Real : - sig - type real_sort = RealSort of arith_sort - type real_expr = RealExpr of arith_expr - type rat_num = RatNum of real_expr - - val real_expr_of_ptr : context -> Z3native.ptr -> real_expr - val rat_num_of_ptr : context -> Z3native.ptr -> rat_num - - val arith_sort_of_real_sort : real_sort -> arith_sort - val real_sort_of_arith_sort : arith_sort -> real_sort - val arith_expr_of_real_expr : real_expr -> arith_expr - val real_expr_of_rat_num : rat_num -> real_expr - val real_expr_of_arith_expr : arith_expr -> real_expr - val rat_num_of_real_expr : real_expr -> rat_num - - val mk_sort : context -> real_sort - val get_numerator : rat_num -> Integer.int_num - val get_denominator : rat_num -> Integer.int_num - val to_decimal_string : rat_num -> int -> string - val to_string : rat_num -> string - val mk_const : context -> Symbol.symbol -> real_expr - val mk_const_s : context -> string -> real_expr - val mk_numeral_nd : context -> int -> int -> rat_num - val mk_numeral_s : context -> string -> rat_num - val mk_numeral_i : context -> int -> rat_num - val mk_is_integer : context -> real_expr -> Boolean.bool_expr - val mk_real2int : context -> real_expr -> Integer.int_expr - end = struct - type real_sort = RealSort of arith_sort - type real_expr = RealExpr of arith_expr - type rat_num = RatNum of real_expr - - let arith_sort_of_real_sort s = match s with RealSort(x) -> x - let arith_expr_of_real_expr e = match e with RealExpr(x) -> x - let real_expr_of_rat_num e = match e with RatNum(x) -> x - - let real_expr_of_arith_expr e = - match e with ArithExpr(Expr(a)) -> - let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in - if (q != Z3enums.REAL_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - RealExpr(e) - - let real_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - real_expr_of_arith_expr (arith_expr_of_expr (Expr.expr_of_ptr ctx no)) - - let rat_num_of_real_expr e = - match e with RealExpr(ArithExpr(Expr(a))) -> - if (not (Z3native.is_numeral_ast (z3obj_gnc a) (z3obj_gno a))) then - raise (Z3native.Exception "Invalid coercion") - else - RatNum(e) - - let rat_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - rat_num_of_real_expr (real_expr_of_ptr ctx no) - - let real_sort_of_arith_sort s = match s with ArithSort(Sort(a)) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.REAL_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - RealSort(s) - - let real_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - real_sort_of_arith_sort (arith_sort_of_sort (sort_of_ptr ctx no)) - - let sgc ( x : real_sort ) = match (x) with RealSort(s) -> (sgc s) - let sgnc ( x : real_sort ) = match (x) with RealSort(s) -> (sgnc s) - let sgno ( x : real_sort ) = match (x) with RealSort(s) -> (sgno s) - let egc ( x : real_expr ) = match (x) with RealExpr(e) -> (egc e) - let egnc ( x : real_expr ) = match (x) with RealExpr(e) -> (egnc e) - let egno ( x : real_expr ) = match (x) with RealExpr(e) -> (egno e) - let ngc ( x : rat_num ) = match (x) with RatNum(e) -> (egc e) - let ngnc ( x : rat_num ) = match (x) with RatNum(e) -> (egnc e) - let ngno ( x : rat_num ) = match (x) with RatNum(e) -> (egno e) - - - let mk_sort ( ctx : context ) = - real_sort_of_ptr ctx (Z3native.mk_real_sort (context_gno ctx)) - - let get_numerator ( x : rat_num ) = - Integer.int_num_of_ptr (ngc x) (Z3native.get_numerator (ngnc x) (ngno x)) - - let get_denominator ( x : rat_num ) = - Integer.int_num_of_ptr (ngc x) (Z3native.get_denominator (ngnc x) (ngno x)) - - let to_decimal_string ( x : rat_num ) ( precision : int ) = - Z3native.get_numeral_decimal_string (ngnc x) (ngno x) precision - - let to_string ( x : rat_num ) = Z3native.get_numeral_string (ngnc x) (ngno x) - - let mk_const ( ctx : context ) ( name : Symbol.symbol ) = - RealExpr(ArithExpr(Expr.mk_const ctx name (match (mk_sort ctx) with RealSort(ArithSort(s)) -> s))) - - let mk_const_s ( ctx : context ) ( name : string ) = - mk_const ctx (Symbol.mk_string ctx name) - - let mk_numeral_nd ( ctx : context ) ( num : int ) ( den : int) = - if (den == 0) then - raise (Z3native.Exception "Denominator is zero") - else - rat_num_of_ptr ctx (Z3native.mk_real (context_gno ctx) num den) - - let mk_numeral_s ( ctx : context ) ( v : string ) = - rat_num_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (sgno (mk_sort ctx))) - - let mk_numeral_i ( ctx : context ) ( v : int ) = - rat_num_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (sgno (mk_sort ctx))) - - let mk_is_integer ( ctx : context ) ( t : real_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_is_int (context_gno ctx) (egno t))) - - let mk_real2int ( ctx : context ) ( t : real_expr ) = - Integer.int_expr_of_arith_expr (arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_real2int (context_gno ctx) (egno t)))) - end - - and AlgebraicNumber : - sig - type algebraic_num = AlgebraicNum of arith_expr - - val arith_expr_of_algebraic_num : algebraic_num -> arith_expr - val algebraic_num_of_arith_expr : arith_expr -> algebraic_num - - val to_upper : algebraic_num -> int -> Real.rat_num - val to_lower : algebraic_num -> int -> Real.rat_num - val to_decimal_string : algebraic_num -> int -> string - val to_string : algebraic_num -> string - end = struct - type algebraic_num = AlgebraicNum of arith_expr - - let arith_expr_of_algebraic_num e = match e with AlgebraicNum(x) -> x - - let algebraic_num_of_arith_expr e = - match e with ArithExpr(Expr(a)) -> - if (not (Z3native.is_algebraic_number (z3obj_gnc a) (z3obj_gno a))) then - raise (Z3native.Exception "Invalid coercion") - else - AlgebraicNum(e) - - let algebraic_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - algebraic_num_of_arith_expr (arith_expr_of_expr (expr_of_ptr ctx no)) - - let ngc ( x : algebraic_num ) = match (x) with AlgebraicNum(e) -> (egc e) - let ngnc ( x : algebraic_num ) = match (x) with AlgebraicNum(e) -> (egnc e) - let ngno ( x : algebraic_num ) = match (x) with AlgebraicNum(e) -> (egno e) - - - let to_upper ( x : algebraic_num ) ( precision : int ) = - Real.rat_num_of_ptr (ngc x) (Z3native.get_algebraic_number_upper (ngnc x) (ngno x) precision) - - let to_lower ( x : algebraic_num ) precision = - Real.rat_num_of_ptr (ngc x) (Z3native.get_algebraic_number_lower (ngnc x) (ngno x) precision) - - let to_decimal_string ( x : algebraic_num ) ( precision : int ) = - Z3native.get_numeral_decimal_string (ngnc x) (ngno x) precision - - let to_string ( x : algebraic_num ) = Z3native.get_numeral_string (ngnc x) (ngno x) - end - - let is_int ( x : expr ) = - (Z3native.is_numeral_ast (Expr.gnc x) (Expr.gno x)) && - ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == INT_SORT) - - let is_arithmetic_numeral ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ANUM) - - let is_le ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LE) - - let is_ge ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GE) - - let is_lt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LT) - - let is_gt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GT) - - let is_add ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ADD) - - let is_sub ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SUB) - - let is_uminus ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UMINUS) - - let is_mul ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MUL) - - let is_div ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_DIV) - - let is_idiv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IDIV) - - let is_remainder ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REM) - - let is_modulus ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MOD) - - let is_inttoreal ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_REAL) - - let is_real_to_int ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_INT) - - let is_real_is_int ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IS_INT) - - let is_real ( x : expr ) = - ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == REAL_SORT) - let is_int_numeral ( x : expr ) = (Expr.is_numeral x) && (is_int x) - - let is_rat_num ( x : expr ) = (Expr.is_numeral x) && (is_real x) - - let is_algebraic_number ( x : expr ) = Z3native.is_algebraic_number (Expr.gnc x) (Expr.gno x) - - let mk_add ( ctx : context ) ( t : arith_expr list ) = - let f x = (Expr.gno (expr_of_arith_expr x)) in - arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_add (context_gno ctx) (List.length t) (Array.of_list (List.map f t)))) - - let mk_mul ( ctx : context ) ( t : arith_expr list ) = - let f x = (Expr.gno (expr_of_arith_expr x)) in - arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_mul (context_gno ctx) (List.length t) (Array.of_list (List.map f t)))) - - let mk_sub ( ctx : context ) ( t : arith_expr list ) = - let f x = (Expr.gno (expr_of_arith_expr x)) in - arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_sub (context_gno ctx) (List.length t) (Array.of_list (List.map f t)))) - - let mk_unary_minus ( ctx : context ) ( t : arith_expr ) = - arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_unary_minus (context_gno ctx) (egno t))) - - let mk_div ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) = - arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_div (context_gno ctx) (egno t1) (egno t2))) - - let mk_power ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) = - arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_power (context_gno ctx) (egno t1) (egno t2))) - - let mk_lt ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_lt (context_gno ctx) (egno t1) (egno t2))) - - let mk_le ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_le (context_gno ctx) (egno t1) (egno t2))) - - let mk_gt ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_gt (context_gno ctx) (egno t1) (egno t2))) - - let mk_ge ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_ge (context_gno ctx) (egno t1) (egno t2))) -end - - -and BitVector : -sig - type bitvec_sort = BitVecSort of Sort.sort - type bitvec_expr = BitVecExpr of Expr.expr - type bitvec_num = BitVecNum of bitvec_expr - - val sort_of_bitvec_sort : BitVector.bitvec_sort -> Sort.sort - val bitvec_sort_of_sort : Sort.sort -> BitVector.bitvec_sort - val expr_of_bitvec_expr : BitVector.bitvec_expr -> Expr.expr - val bitvec_expr_of_bitvec_num : BitVector.bitvec_num -> BitVector.bitvec_expr - val bitvec_expr_of_expr : Expr.expr -> BitVector.bitvec_expr - val bitvec_num_of_bitvec_expr : BitVector.bitvec_expr -> BitVector.bitvec_num - - val mk_sort : context -> int -> bitvec_sort - val is_bv : Expr.expr -> bool - val is_bv_numeral : Expr.expr -> bool - val is_bv_bit1 : Expr.expr -> bool - val is_bv_bit0 : Expr.expr -> bool - val is_bv_uminus : Expr.expr -> bool - val is_bv_add : Expr.expr -> bool - val is_bv_sub : Expr.expr -> bool - val is_bv_mul : Expr.expr -> bool - val is_bv_sdiv : Expr.expr -> bool - val is_bv_udiv : Expr.expr -> bool - val is_bv_SRem : Expr.expr -> bool - val is_bv_urem : Expr.expr -> bool - val is_bv_smod : Expr.expr -> bool - val is_bv_sdiv0 : Expr.expr -> bool - val is_bv_udiv0 : Expr.expr -> bool - val is_bv_srem0 : Expr.expr -> bool - val is_bv_urem0 : Expr.expr -> bool - val is_bv_smod0 : Expr.expr -> bool - val is_bv_ule : Expr.expr -> bool - val is_bv_sle : Expr.expr -> bool - val is_bv_uge : Expr.expr -> bool - val is_bv_sge : Expr.expr -> bool - val is_bv_ult : Expr.expr -> bool - val is_bv_slt : Expr.expr -> bool - val is_bv_ugt : Expr.expr -> bool - val is_bv_sgt : Expr.expr -> bool - val is_bv_and : Expr.expr -> bool - val is_bv_or : Expr.expr -> bool - val is_bv_not : Expr.expr -> bool - val is_bv_xor : Expr.expr -> bool - val is_bv_nand : Expr.expr -> bool - val is_bv_nor : Expr.expr -> bool - val is_bv_xnor : Expr.expr -> bool - val is_bv_concat : Expr.expr -> bool - val is_bv_signextension : Expr.expr -> bool - val is_bv_zeroextension : Expr.expr -> bool - val is_bv_extract : Expr.expr -> bool - val is_bv_repeat : Expr.expr -> bool - val is_bv_reduceor : Expr.expr -> bool - val is_bv_reduceand : Expr.expr -> bool - val is_bv_comp : Expr.expr -> bool - val is_bv_shiftleft : Expr.expr -> bool - val is_bv_shiftrightlogical : Expr.expr -> bool - val is_bv_shiftrightarithmetic : Expr.expr -> bool - val is_bv_rotateleft : Expr.expr -> bool - val is_bv_rotateright : Expr.expr -> bool - val is_bv_rotateleftextended : Expr.expr -> bool - val is_bv_rotaterightextended : Expr.expr -> bool - val is_int_to_bv : Expr.expr -> bool - val is_bv_to_int : Expr.expr -> bool - val is_bv_carry : Expr.expr -> bool - val is_bv_xor3 : Expr.expr -> bool - val get_size : bitvec_sort -> int - val get_int : bitvec_num -> int - val to_string : bitvec_num -> string - val mk_const : context -> Symbol.symbol -> int -> bitvec_expr - val mk_const_s : context -> string -> int -> bitvec_expr - val mk_not : context -> bitvec_expr -> Expr.expr - val mk_redand : context -> bitvec_expr -> Expr.expr - val mk_redor : context -> bitvec_expr -> Expr.expr - val mk_and : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_or : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_xor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_nand : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_nor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_xnor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_neg : context -> bitvec_expr -> bitvec_expr - val mk_add : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_sub : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_mul : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_udiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_sdiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_urem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_srem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_smod : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_ult : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_slt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_ule : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_sle : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_uge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_sge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_ugt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_sgt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_concat : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_extract : context -> int -> int -> bitvec_expr -> bitvec_expr - val mk_sign_ext : context -> int -> bitvec_expr -> bitvec_expr - val mk_zero_ext : context -> int -> bitvec_expr -> bitvec_expr - val mk_repeat : context -> int -> bitvec_expr -> bitvec_expr - val mk_shl : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_lshr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_ashr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_rotate_left : context -> int -> bitvec_expr -> bitvec_expr - val mk_rotate_right : context -> int -> bitvec_expr -> bitvec_expr - val mk_ext_rotate_left : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_ext_rotate_right : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - val mk_bv2int : context -> bitvec_expr -> bool -> Arithmetic.Integer.int_expr - val mk_add_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr - val mk_add_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_sub_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_sub_no_underflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr - val mk_sdiv_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_neg_no_overflow : context -> bitvec_expr -> Boolean.bool_expr - val mk_mul_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr - val mk_mul_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - val mk_numeral : context -> string -> int -> bitvec_num -end = struct - type bitvec_sort = BitVecSort of sort - type bitvec_expr = BitVecExpr of expr - type bitvec_num = BitVecNum of bitvec_expr - - let sort_of_bitvec_sort s = match s with BitVecSort(x) -> x - - let bitvec_sort_of_sort s = match s with Sort(a) -> - if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.BV_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - BitVecSort(s) - - let bitvec_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - bitvec_sort_of_sort (sort_of_ptr ctx no) - - let bitvec_expr_of_expr e = - match e with Expr(a) -> - let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in - let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in - if (q != Z3enums.BV_SORT) then - raise (Z3native.Exception "Invalid coercion") - else - BitVecExpr(e) - - let bitvec_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - bitvec_expr_of_expr (expr_of_ptr ctx no) - - let bitvec_num_of_bitvec_expr e = - match e with BitVecExpr(Expr(a)) -> - if (not (Z3native.is_numeral_ast (z3obj_gnc a) (z3obj_gno a))) then - raise (Z3native.Exception "Invalid coercion") - else - BitVecNum(e) - - let bitvec_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) = - bitvec_num_of_bitvec_expr (bitvec_expr_of_expr (expr_of_ptr ctx no)) - - let expr_of_bitvec_expr e = match e with BitVecExpr(x) -> x - let bitvec_expr_of_bitvec_num e = match e with BitVecNum(x) -> x - - - let sgc ( x : bitvec_sort ) = match (x) with BitVecSort(s) -> (Sort.gc s) - let sgnc ( x : bitvec_sort ) = match (x) with BitVecSort(s) -> (Sort.gnc s) - let sgno ( x : bitvec_sort ) = match (x) with BitVecSort(s) -> (Sort.gno s) - let egc ( x : bitvec_expr ) = match (x) with BitVecExpr(e) -> (Expr.gc e) - let egnc ( x : bitvec_expr ) = match (x) with BitVecExpr(e) -> (Expr.gnc e) - let egno ( x : bitvec_expr ) = match (x) with BitVecExpr(e) -> (Expr.gno e) - let ngc ( x : bitvec_num ) = match (x) with BitVecNum(e) -> (egc e) - let ngnc ( x : bitvec_num ) = match (x) with BitVecNum(e) -> (egnc e) - let ngno ( x : bitvec_num ) = match (x) with BitVecNum(e) -> (egno e) - - - let mk_sort ( ctx : context ) size = - bitvec_sort_of_ptr ctx (Z3native.mk_bv_sort (context_gno ctx) size) - let is_bv ( x : expr ) = - ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == BV_SORT) - let is_bv_numeral ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNUM) - let is_bv_bit1 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT1) - let is_bv_bit0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT0) - let is_bv_uminus ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNEG) - let is_bv_add ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BADD) - let is_bv_sub ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSUB) - let is_bv_mul ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BMUL) - let is_bv_sdiv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV) - let is_bv_udiv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV) - let is_bv_SRem ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM) - let is_bv_urem ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM) - let is_bv_smod ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD) - let is_bv_sdiv0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV0) - let is_bv_udiv0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV0) - let is_bv_srem0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM0) - let is_bv_urem0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM0) - let is_bv_smod0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD0) - let is_bv_ule ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULEQ) - let is_bv_sle ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLEQ) - let is_bv_uge ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGEQ) - let is_bv_sge ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGEQ) - let is_bv_ult ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULT) - let is_bv_slt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLT) - let is_bv_ugt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGT) - let is_bv_sgt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGT) - let is_bv_and ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BAND) - let is_bv_or ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BOR) - let is_bv_not ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOT) - let is_bv_xor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXOR) - let is_bv_nand ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNAND) - let is_bv_nor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOR) - let is_bv_xnor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXNOR) - let is_bv_concat ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONCAT) - let is_bv_signextension ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SIGN_EXT) - let is_bv_zeroextension ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ZERO_EXT) - let is_bv_extract ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXTRACT) - let is_bv_repeat ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REPEAT) - let is_bv_reduceor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDOR) - let is_bv_reduceand ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDAND) - let is_bv_comp ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BCOMP) - let is_bv_shiftleft ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSHL) - let is_bv_shiftrightlogical ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BLSHR) - let is_bv_shiftrightarithmetic ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BASHR) - let is_bv_rotateleft ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_LEFT) - let is_bv_rotateright ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_RIGHT) - let is_bv_rotateleftextended ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_LEFT) - let is_bv_rotaterightextended ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_RIGHT) - let is_int_to_bv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_INT2BV) - let is_bv_to_int ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BV2INT) - let is_bv_carry ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CARRY) - let is_bv_xor3 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_XOR3) - let get_size (x : bitvec_sort ) = Z3native.get_bv_sort_size (sgnc x) (sgno x) - let get_int ( x : bitvec_num ) = - let (r, v) = Z3native.get_numeral_int (ngnc x) (ngno x) in - if r then v - else raise (Z3native.Exception "Conversion failed.") - let to_string ( x : bitvec_num ) = Z3native.get_numeral_string (ngnc x) (ngno x) - let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) = - BitVecExpr(Expr.mk_const ctx name (match (BitVector.mk_sort ctx size) with BitVecSort(s) -> s)) - let mk_const_s ( ctx : context ) ( name : string ) ( size : int ) = - mk_const ctx (Symbol.mk_string ctx name) size - let mk_not ( ctx : context ) ( t : bitvec_expr ) = - expr_of_ptr ctx (Z3native.mk_bvnot (context_gno ctx) (egno t)) - let mk_redand ( ctx : context ) ( t : bitvec_expr) = - expr_of_ptr ctx (Z3native.mk_bvredand (context_gno ctx) (egno t)) - let mk_redor ( ctx : context ) ( t : bitvec_expr) = - expr_of_ptr ctx (Z3native.mk_bvredor (context_gno ctx) (egno t)) - let mk_and ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvand (context_gno ctx) (egno t1) (egno t2)) - let mk_or ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvor (context_gno ctx) (egno t1) (egno t2)) - let mk_xor ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvxor (context_gno ctx) (egno t1) (egno t2)) - let mk_nand ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvnand (context_gno ctx) (egno t1) (egno t2)) - let mk_nor ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvnor (context_gno ctx) (egno t1) (egno t2)) - let mk_xnor ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvxnor (context_gno ctx) (egno t1) (egno t2)) - let mk_neg ( ctx : context ) ( t : bitvec_expr) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvneg (context_gno ctx) (egno t)) - let mk_add ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvadd (context_gno ctx) (egno t1) (egno t2)) - let mk_sub ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvsub (context_gno ctx) (egno t1) (egno t2)) - let mk_mul ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvmul (context_gno ctx) (egno t1) (egno t2)) - let mk_udiv ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvudiv (context_gno ctx) (egno t1) (egno t2)) - let mk_sdiv ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvsdiv (context_gno ctx) (egno t1) (egno t2)) - let mk_urem ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvurem (context_gno ctx) (egno t1) (egno t2)) - let mk_srem ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvsrem (context_gno ctx) (egno t1) (egno t2)) - let mk_smod ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvsmod (context_gno ctx) (egno t1) (egno t2)) - let mk_ult ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvult (context_gno ctx) (egno t1) (egno t2))) - let mk_slt ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvslt (context_gno ctx) (egno t1) (egno t2))) - let mk_ule ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvule (context_gno ctx) (egno t1) (egno t2))) - let mk_sle ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsle (context_gno ctx) (egno t1) (egno t2))) - let mk_uge ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvuge (context_gno ctx) (egno t1) (egno t2))) - let mk_sge ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsge (context_gno ctx) (egno t1) (egno t2))) - let mk_ugt ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvugt (context_gno ctx) (egno t1) (egno t2))) - let mk_sgt ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsgt (context_gno ctx) (egno t1) (egno t2))) - let mk_concat ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_concat (context_gno ctx) (egno t1) (egno t2)) - let mk_extract ( ctx : context ) ( high : int ) ( low : int ) ( t : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_extract (context_gno ctx) high low (egno t)) - let mk_sign_ext ( ctx : context ) ( i : int ) ( t : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_sign_ext (context_gno ctx) i (egno t)) - let mk_zero_ext ( ctx : context ) ( i : int ) ( t : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_zero_ext (context_gno ctx) i (egno t)) - let mk_repeat ( ctx : context ) ( i : int ) ( t : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_repeat (context_gno ctx) i (egno t)) - let mk_shl ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvshl (context_gno ctx) (egno t1) (egno t2)) - let mk_lshr ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvlshr (context_gno ctx) (egno t1) (egno t2)) - let mk_ashr ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_bvashr (context_gno ctx) (egno t1) (egno t2)) - let mk_rotate_left ( ctx : context ) ( i : int ) ( t : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_rotate_left (context_gno ctx) i (egno t)) - let mk_rotate_right ( ctx : context ) ( i : int ) ( t : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_rotate_right (context_gno ctx) i (egno t)) - let mk_ext_rotate_left ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_ext_rotate_left (context_gno ctx) (egno t1) (egno t2)) - let mk_ext_rotate_right ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - bitvec_expr_of_ptr ctx (Z3native.mk_ext_rotate_right (context_gno ctx) (egno t1) (egno t2)) - let mk_bv2int ( ctx : context ) ( t : bitvec_expr ) ( signed : bool ) = - Arithmetic.Integer.int_expr_of_ptr ctx (Z3native.mk_bv2int (context_gno ctx) (egno t) signed) - let mk_add_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvadd_no_overflow (context_gno ctx) (egno t1) (egno t2) signed)) - let mk_add_no_underflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvadd_no_underflow (context_gno ctx) (egno t1) (egno t2))) - let mk_sub_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsub_no_overflow (context_gno ctx) (egno t1) (egno t2))) - let mk_sub_no_underflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsub_no_underflow (context_gno ctx) (egno t1) (egno t2) signed)) - let mk_sdiv_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsdiv_no_overflow (context_gno ctx) (egno t1) (egno t2))) - let mk_neg_no_overflow ( ctx : context ) ( t : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvneg_no_overflow (context_gno ctx) (egno t))) - let mk_mul_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvmul_no_overflow (context_gno ctx) (egno t1) (egno t2) signed)) - let mk_mul_no_underflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) = - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvmul_no_underflow (context_gno ctx) (egno t1) (egno t2))) - let mk_numeral ( ctx : context ) ( v : string ) ( size : int) = - bitvec_num_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (sgno (BitVector.mk_sort ctx size))) -end - - -module Proof = -struct - let is_true ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRUE) - let is_asserted ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ASSERTED) - let is_goal ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_GOAL) - let is_modus_ponens ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS) - let is_reflexivity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REFLEXIVITY) - let is_symmetry ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SYMMETRY) - let is_transitivity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY) - let is_Transitivity_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY_STAR) - let is_monotonicity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MONOTONICITY) - let is_quant_intro ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INTRO) - let is_distributivity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DISTRIBUTIVITY) - let is_and_elimination ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_AND_ELIM) - let is_or_elimination ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NOT_OR_ELIM) - let is_rewrite ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE) - let is_rewrite_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE_STAR) - let is_pull_quant ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT) - let is_pull_quant_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT_STAR) - let is_push_quant ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PUSH_QUANT) - let is_elim_unused_vars ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ELIM_UNUSED_VARS) - let is_der ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DER) - let is_quant_inst ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INST) - let is_hypothesis ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_HYPOTHESIS) - let is_lemma ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_LEMMA) - let is_unit_resolution ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_UNIT_RESOLUTION) - let is_iff_true ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_TRUE) - let is_iff_false ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_FALSE) - let is_commutativity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_COMMUTATIVITY) (* *) - let is_def_axiom ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_AXIOM) - let is_def_intro ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_INTRO) - let is_apply_def ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_APPLY_DEF) - let is_iff_oeq ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_OEQ) - let is_nnf_pos ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_POS) - let is_nnf_neg ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_NEG) - let is_nnf_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_STAR) - let is_cnf_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_CNF_STAR) - let is_skolemize ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SKOLEMIZE) - let is_modus_ponens_oeq ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS_OEQ) - let is_theory_lemma ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TH_LEMMA) -end - - -module Goal = -struct - type goal = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : goal = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.goal_inc_ref ; - dec_ref = Z3native.goal_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let get_precision ( x : goal ) = - goal_prec_of_int (Z3native.goal_precision (z3obj_gnc x) (z3obj_gno x)) - - let is_precise ( x : goal ) = - (get_precision x) == GOAL_PRECISE - - let is_underapproximation ( x : goal ) = - (get_precision x) == GOAL_UNDER - - let is_overapproximation ( x : goal ) = - (get_precision x) == GOAL_OVER - - let is_garbage ( x : goal ) = - (get_precision x) == GOAL_UNDER_OVER - - let assert_ ( x : goal ) ( constraints : Boolean.bool_expr list ) = - let f e = Z3native.goal_assert (z3obj_gnc x) (z3obj_gno x) (Boolean.gno e) in - ignore (List.map f constraints) ; - () - - let is_inconsistent ( x : goal ) = - Z3native.goal_inconsistent (z3obj_gnc x) (z3obj_gno x) - - let get_depth ( x : goal ) = Z3native.goal_depth (z3obj_gnc x) (z3obj_gno x) - - let reset ( x : goal ) = Z3native.goal_reset (z3obj_gnc x) (z3obj_gno x) - - let get_size ( x : goal ) = Z3native.goal_size (z3obj_gnc x) (z3obj_gno x) - - let get_formulas ( x : goal ) = - let n = get_size x in - let f i = (Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x) - (Z3native.goal_formula (z3obj_gnc x) (z3obj_gno x) i))) in - mk_list f n - - let get_num_exprs ( x : goal ) = Z3native.goal_num_exprs (z3obj_gnc x) (z3obj_gno x) - - let is_decided_sat ( x : goal ) = - Z3native.goal_is_decided_sat (z3obj_gnc x) (z3obj_gno x) - - let is_decided_unsat ( x : goal ) = - Z3native.goal_is_decided_unsat (z3obj_gnc x) (z3obj_gno x) - - let translate ( x : goal ) ( to_ctx : context ) = - create to_ctx (Z3native.goal_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx)) - - let simplify ( x : goal ) ( p : Params.params option ) = - let tn = Z3native.mk_tactic (z3obj_gnc x) "simplify" in - Z3native.tactic_inc_ref (z3obj_gnc x) tn ; - let arn = match p with - | None -> Z3native.tactic_apply (z3obj_gnc x) tn (z3obj_gno x) - | Some(pn) -> Z3native.tactic_apply_ex (z3obj_gnc x) tn (z3obj_gno x) (z3obj_gno pn) - in - Z3native.apply_result_inc_ref (z3obj_gnc x) arn ; - let sg = Z3native.apply_result_get_num_subgoals (z3obj_gnc x) arn in - let res = if sg == 0 then - raise (Z3native.Exception "No subgoals") - else - Z3native.apply_result_get_subgoal (z3obj_gnc x) arn 0 in - Z3native.apply_result_dec_ref (z3obj_gnc x) arn ; - Z3native.tactic_dec_ref (z3obj_gnc x) tn ; - create (z3obj_gc x) res - - let mk_goal ( ctx : context ) ( models : bool ) ( unsat_cores : bool ) ( proofs : bool ) = - create ctx (Z3native.mk_goal (context_gno ctx) models unsat_cores proofs) - - let to_string ( x : goal ) = Z3native.goal_to_string (z3obj_gnc x) (z3obj_gno x) -end - - -module Model = -struct - type model = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : model = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.model_inc_ref ; - dec_ref = Z3native.model_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - module FuncInterp = - struct - type func_interp = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : func_interp = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.func_interp_inc_ref ; - dec_ref = Z3native.func_interp_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - module FuncEntry = - struct - type func_entry = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : func_entry = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.func_entry_inc_ref ; - dec_ref = Z3native.func_entry_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let get_value ( x : func_entry ) = - expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_value (z3obj_gnc x) (z3obj_gno x)) - - let get_num_args ( x : func_entry ) = Z3native.func_entry_get_num_args (z3obj_gnc x) (z3obj_gno x) - - let get_args ( x : func_entry ) = - let n = (get_num_args x) in - let f i = (expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_arg (z3obj_gnc x) (z3obj_gno x) i)) in - mk_list f n - - let to_string ( x : func_entry ) = - let a = (get_args x) in - let f c p = (p ^ (Expr.to_string c) ^ ", ") in - "[" ^ List.fold_right f a ((Expr.to_string (get_value x)) ^ "]") - end - - let get_num_entries ( x: func_interp ) = Z3native.func_interp_get_num_entries (z3obj_gnc x) (z3obj_gno x) - - let get_entries ( x : func_interp ) = - let n = (get_num_entries x) in - let f i = (FuncEntry.create (z3obj_gc x) (Z3native.func_interp_get_entry (z3obj_gnc x) (z3obj_gno x) i)) in - mk_list f n - - let get_else ( x : func_interp ) = expr_of_ptr (z3obj_gc x) (Z3native.func_interp_get_else (z3obj_gnc x) (z3obj_gno x)) - - let get_arity ( x : func_interp ) = Z3native.func_interp_get_arity (z3obj_gnc x) (z3obj_gno x) - - let to_string ( x : func_interp ) = - let f c p = ( - let n = (FuncEntry.get_num_args c) in - p ^ - let g c p = (p ^ (Expr.to_string c) ^ ", ") in - (if n > 1 then "[" else "") ^ - (List.fold_right - g - (FuncEntry.get_args c) - ((if n > 1 then "]" else "") ^ " -> " ^ (Expr.to_string (FuncEntry.get_value c)) ^ ", ")) - ) in - List.fold_right f (get_entries x) ("else -> " ^ (Expr.to_string (get_else x)) ^ "]") - end - - let get_const_interp ( x : model ) ( f : func_decl ) = - if (FuncDecl.get_arity f) != 0 || - (sort_kind_of_int (Z3native.get_sort_kind (FuncDecl.gnc f) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) == ARRAY_SORT then - raise (Z3native.Exception "Non-zero arity functions and arrays have FunctionInterpretations as a model. Use FuncInterp.") - else - let np = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in - if (Z3native.is_null np) then - None - else - Some (expr_of_ptr (z3obj_gc x) np) - - let get_const_interp_e ( x : model ) ( a : expr ) = get_const_interp x (Expr.get_func_decl a) - - - let rec get_func_interp ( x : model ) ( f : func_decl ) = - let sk = (sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc x) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) in - if (FuncDecl.get_arity f) == 0 then - let n = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in - if (Z3native.is_null n) then - None - else - match sk with - | ARRAY_SORT -> - if not (Z3native.is_as_array (z3obj_gnc x) n) then - raise (Z3native.Exception "Argument was not an array constant") - else - let fd = Z3native.get_as_array_func_decl (z3obj_gnc x) n in - get_func_interp x (func_decl_of_ptr (z3obj_gc x) fd) - | _ -> raise (Z3native.Exception "Constant functions do not have a function interpretation; use ConstInterp"); - else - let n = (Z3native.model_get_func_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f)) in - if (Z3native.is_null n) then None else Some (FuncInterp.create (z3obj_gc x) n) - - (** The number of constants that have an interpretation in the model. *) - let get_num_consts ( x : model ) = Z3native.model_get_num_consts (z3obj_gnc x) (z3obj_gno x) - - let get_const_decls ( x : model ) = - let n = (get_num_consts x) in - let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in - mk_list f n - - let get_num_funcs ( x : model ) = Z3native.model_get_num_funcs (z3obj_gnc x) (z3obj_gno x) - - let get_func_decls ( x : model ) = - let n = (get_num_consts x) in - let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in - mk_list f n - - let get_decls ( x : model ) = - let n_funcs = (get_num_funcs x) in - let n_consts = (get_num_consts x ) in - let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in - let g i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in - (mk_list f n_funcs) @ (mk_list g n_consts) - - exception ModelEvaluationFailedException of string - - let eval ( x : model ) ( t : expr ) ( completion : bool ) = - let (r, v) = (Z3native.model_eval (z3obj_gnc x) (z3obj_gno x) (Expr.gno t) completion) in - if not r then - raise (ModelEvaluationFailedException "evaluation failed") - else - expr_of_ptr (z3obj_gc x) v - - let evaluate ( x : model ) ( t : expr ) ( completion : bool ) = - eval x t completion - - let get_num_sorts ( x : model ) = Z3native.model_get_num_sorts (z3obj_gnc x) (z3obj_gno x) - - let get_sorts ( x : model ) = - let n = (get_num_sorts x) in - let f i = (sort_of_ptr (z3obj_gc x) (Z3native.model_get_sort (z3obj_gnc x) (z3obj_gno x) i)) in - mk_list f n - - let sort_universe ( x : model ) ( s : sort ) = - let n_univ = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.model_get_sort_universe (z3obj_gnc x) (z3obj_gno x) (Sort.gno s)) in - let n = (AST.ASTVector.get_size n_univ) in - let f i = (AST.ASTVector.get n_univ i) in - mk_list f n - - let to_string ( x : model ) = Z3native.model_to_string (z3obj_gnc x) (z3obj_gno x) -end - - -module Probe = -struct - type probe = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : probe = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.probe_inc_ref ; - dec_ref = Z3native.probe_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - - let apply ( x : probe ) ( g : Goal.goal ) = - Z3native.probe_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g) - - let get_num_probes ( ctx : context ) = - Z3native.get_num_probes (context_gno ctx) - - let get_probe_names ( ctx : context ) = - let n = (get_num_probes ctx) in - let f i = (Z3native.get_probe_name (context_gno ctx) i) in - mk_list f n - - let get_probe_description ( ctx : context ) ( name : string ) = - Z3native.probe_get_descr (context_gno ctx) name - - let mk_probe ( ctx : context ) ( name : string ) = - (create ctx (Z3native.mk_probe (context_gno ctx) name)) - - let const ( ctx : context ) ( v : float ) = - (create ctx (Z3native.probe_const (context_gno ctx) v)) - - let lt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = - (create ctx (Z3native.probe_lt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2))) - - let gt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = - (create ctx (Z3native.probe_gt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2))) - - let le ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = - (create ctx (Z3native.probe_le (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2))) - - let ge ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = - (create ctx (Z3native.probe_ge (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2))) - - let eq ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = - (create ctx (Z3native.probe_eq (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2))) - - let and_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = - (create ctx (Z3native.probe_and (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2))) - - let or_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) = - (create ctx (Z3native.probe_or (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2))) - - let not_ ( ctx : context ) ( p : probe ) = - (create ctx (Z3native.probe_not (context_gno ctx) (z3obj_gno p))) -end - - -module Tactic = -struct - type tactic = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : tactic = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.tactic_inc_ref ; - dec_ref = Z3native.tactic_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - module ApplyResult = - struct - type apply_result = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : apply_result = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.apply_result_inc_ref ; - dec_ref = Z3native.apply_result_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let get_num_subgoals ( x : apply_result ) = - Z3native.apply_result_get_num_subgoals (z3obj_gnc x) (z3obj_gno x) - - let get_subgoals ( x : apply_result ) = - let n = (get_num_subgoals x) in - let f i = Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i) in - mk_list f n - - let get_subgoal ( x : apply_result ) ( i : int ) = - Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i) - - let convert_model ( x : apply_result ) ( i : int ) ( m : Model.model ) = - Model.create (z3obj_gc x) (Z3native.apply_result_convert_model (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno m)) - - let to_string ( x : apply_result ) = Z3native.apply_result_to_string (z3obj_gnc x) (z3obj_gno x) - end - - let get_help ( x : tactic ) = Z3native.tactic_get_help (z3obj_gnc x) (z3obj_gno x) - - let get_param_descrs ( x : tactic ) = - Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.tactic_get_param_descrs (z3obj_gnc x) (z3obj_gno x)) - - let apply ( x : tactic ) ( g : Goal.goal ) ( p : Params.params option ) = - match p with - | None -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g))) - | Some (pn) -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply_ex (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g) (z3obj_gno pn))) - - let get_num_tactics ( ctx : context ) = Z3native.get_num_tactics (context_gno ctx) - - let get_tactic_names ( ctx : context ) = - let n = (get_num_tactics ctx ) in - let f i = (Z3native.get_tactic_name (context_gno ctx) i) in - mk_list f n - - let get_tactic_description ( ctx : context ) ( name : string ) = - Z3native.tactic_get_descr (context_gno ctx) name - - let mk_tactic ( ctx : context ) ( name : string ) = - create ctx (Z3native.mk_tactic (context_gno ctx) name) - - let and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) ( ts : tactic list ) = - let f p c = (match p with - | None -> (Some (z3obj_gno c)) - | Some(x) -> (Some (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno c) x))) in - match (List.fold_left f None ts) with - | None -> - create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2)) - | Some(x) -> - let o = (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t2) x) in - create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) o) - - let or_else ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) = - create ctx (Z3native.tactic_or_else (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2)) - - let try_for ( ctx : context ) ( t : tactic ) ( ms : int ) = - create ctx (Z3native.tactic_try_for (context_gno ctx) (z3obj_gno t) ms) - - let when_ ( ctx : context ) ( p : Probe.probe ) ( t : tactic ) = - create ctx (Z3native.tactic_when (context_gno ctx) (z3obj_gno p) (z3obj_gno t)) - - let cond ( ctx : context ) ( p : Probe.probe ) ( t1 : tactic ) ( t2 : tactic ) = - create ctx (Z3native.tactic_cond (context_gno ctx) (z3obj_gno p) (z3obj_gno t1) (z3obj_gno t2)) - - let repeat ( ctx : context ) ( t : tactic ) ( max : int ) = - create ctx (Z3native.tactic_repeat (context_gno ctx) (z3obj_gno t) max) - - let skip ( ctx : context ) = - create ctx (Z3native.tactic_skip (context_gno ctx)) - - let fail ( ctx : context ) = - create ctx (Z3native.tactic_fail (context_gno ctx)) - - let fail_if ( ctx : context ) ( p : Probe.probe ) = - create ctx (Z3native.tactic_fail_if (context_gno ctx) (z3obj_gno p)) - - let fail_if_not_decided ( ctx : context ) = - create ctx (Z3native.tactic_fail_if_not_decided (context_gno ctx)) - - let using_params ( ctx : context ) ( t : tactic ) ( p : Params.params ) = - create ctx (Z3native.tactic_using_params (context_gno ctx) (z3obj_gno t) (z3obj_gno p)) - - let with_ ( ctx : context ) ( t : tactic ) ( p : Params.params ) = - using_params ctx t p - - let par_or ( ctx : context ) ( t : tactic list ) = - let f e = (z3obj_gno e) in - create ctx (Z3native.tactic_par_or (context_gno ctx) (List.length t) (Array.of_list (List.map f t))) - - let par_and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) = - create ctx (Z3native.tactic_par_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2)) - - let interrupt ( ctx : context ) = - Z3native.interrupt (context_gno ctx) -end - - -module Solver = -struct - type solver = z3_native_object - type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : solver = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.solver_inc_ref ; - dec_ref = Z3native.solver_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - let string_of_status ( s : status) = match s with - | UNSATISFIABLE -> "unsatisfiable" - | SATISFIABLE -> "satisfiable" - | _ -> "unknown" - - module Statistics = - struct - type statistics = z3_native_object - - let create ( ctx : context ) ( no : Z3native.ptr ) = - let res : statistics = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.stats_inc_ref ; - dec_ref = Z3native.stats_dec_ref } in - (z3obj_sno res ctx no) ; - (z3obj_create res) ; - res - - - module Entry = - struct - type statistics_entry = { - mutable m_key : string; - mutable m_is_int : bool ; - mutable m_is_float : bool ; - mutable m_int : int ; - mutable m_float : float } - - let create_si k v = - let res : statistics_entry = { - m_key = k ; - m_is_int = true ; - m_is_float = false ; - m_int = v ; - m_float = 0.0 - } in - res - - let create_sd k v = - let res : statistics_entry = { - m_key = k ; - m_is_int = false ; - m_is_float = true ; - m_int = 0 ; - m_float = v - } in - res - - - let get_key (x : statistics_entry) = x.m_key - let get_int (x : statistics_entry) = x.m_int - let get_float (x : statistics_entry) = x.m_float - let is_int (x : statistics_entry) = x.m_is_int - let is_float (x : statistics_entry) = x.m_is_float - let to_string_value (x : statistics_entry) = - if (is_int x) then - string_of_int (get_int x) - else if (is_float x) then - string_of_float (get_float x) - else - raise (Z3native.Exception "Unknown statistical entry type") - let to_string ( x : statistics_entry ) = (get_key x) ^ ": " ^ (to_string_value x) - end - - let to_string ( x : statistics ) = Z3native.stats_to_string (z3obj_gnc x) (z3obj_gno x) - - let get_size ( x : statistics ) = Z3native.stats_size (z3obj_gnc x) (z3obj_gno x) - - let get_entries ( x : statistics ) = - let n = (get_size x ) in - let f i = ( - let k = Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i in - if (Z3native.stats_is_uint (z3obj_gnc x) (z3obj_gno x) i) then - (Entry.create_si k (Z3native.stats_get_uint_value (z3obj_gnc x) (z3obj_gno x) i)) - else - (Entry.create_sd k (Z3native.stats_get_double_value (z3obj_gnc x) (z3obj_gno x) i)) - ) in - mk_list f n - - let get_keys ( x : statistics ) = - let n = (get_size x) in - let f i = (Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i) in - mk_list f n - - let get ( x : statistics ) ( key : string ) = - let f p c = (if ((Entry.get_key c) == key) then (Some c) else p) in - List.fold_left f None (get_entries x) - end - - let get_help ( x : solver ) = Z3native.solver_get_help (z3obj_gnc x) (z3obj_gno x) - - let set_parameters ( x : solver ) ( p : Params.params )= - Z3native.solver_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p) - - let get_param_descrs ( x : solver ) = - Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.solver_get_param_descrs (z3obj_gnc x) (z3obj_gno x)) - - let get_num_scopes ( x : solver ) = Z3native.solver_get_num_scopes (z3obj_gnc x) (z3obj_gno x) - - let push ( x : solver ) = Z3native.solver_push (z3obj_gnc x) (z3obj_gno x) - - let pop ( x : solver ) ( n : int ) = Z3native.solver_pop (z3obj_gnc x) (z3obj_gno x) n - - let reset ( x : solver ) = Z3native.solver_reset (z3obj_gnc x) (z3obj_gno x) - - let assert_ ( x : solver ) ( constraints : Boolean.bool_expr list ) = - let f e = (Z3native.solver_assert (z3obj_gnc x) (z3obj_gno x) (Boolean.gno e)) in - ignore (List.map f constraints) - - let assert_and_track_a ( x : solver ) ( cs : Boolean.bool_expr list ) ( ps : Boolean.bool_expr list ) = - if ((List.length cs) != (List.length ps)) then - raise (Z3native.Exception "Argument size mismatch") - else - let f a b = (Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Boolean.gno a) (Boolean.gno b)) in - ignore (List.iter2 f cs ps) - - let assert_and_track ( x : solver ) ( c : Boolean.bool_expr ) ( p : Boolean.bool_expr ) = - Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Boolean.gno c) (Boolean.gno p) - - let get_num_assertions ( x : solver ) = - let a = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in - (AST.ASTVector.get_size a) - - let get_assertions ( x : solver ) = - let a = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in - let n = (AST.ASTVector.get_size a) in - let f i = Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x) (z3obj_gno (AST.ASTVector.get a i))) in - mk_list f n - - let check ( x : solver ) ( assumptions : Boolean.bool_expr list ) = - let r = - if ((List.length assumptions) == 0) then - lbool_of_int (Z3native.solver_check (z3obj_gnc x) (z3obj_gno x)) - else - let f x = (Expr.gno (Boolean.expr_of_bool_expr x)) in - lbool_of_int (Z3native.solver_check_assumptions (z3obj_gnc x) (z3obj_gno x) (List.length assumptions) (Array.of_list (List.map f assumptions))) - in - match r with - | L_TRUE -> SATISFIABLE - | L_FALSE -> UNSATISFIABLE - | _ -> UNKNOWN - - let get_model ( x : solver ) = - let q = Z3native.solver_get_model (z3obj_gnc x) (z3obj_gno x) in - if (Z3native.is_null q) then - None - else - Some (Model.create (z3obj_gc x) q) - - let get_proof ( x : solver ) = - let q = Z3native.solver_get_proof (z3obj_gnc x) (z3obj_gno x) in - if (Z3native.is_null q) then - None - else - Some (expr_of_ptr (z3obj_gc x) q) - - let get_unsat_core ( x : solver ) = - let cn = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.solver_get_unsat_core (z3obj_gnc x) (z3obj_gno x)) in - let n = (AST.ASTVector.get_size cn) in - let f i = (AST.ASTVector.get cn i) in - mk_list f n - - let get_reason_unknown ( x : solver ) = Z3native.solver_get_reason_unknown (z3obj_gnc x) (z3obj_gno x) - - let get_statistics ( x : solver ) = - (Statistics.create (z3obj_gc x) (Z3native.solver_get_statistics (z3obj_gnc x) (z3obj_gno x))) - - let mk_solver ( ctx : context ) ( logic : Symbol.symbol option ) = - match logic with - | None -> (create ctx (Z3native.mk_solver (context_gno ctx))) - | Some (x) -> (create ctx (Z3native.mk_solver_for_logic (context_gno ctx) (Symbol.gno x))) - - let mk_solver_s ( ctx : context ) ( logic : string ) = - mk_solver ctx (Some (Symbol.mk_string ctx logic)) - - let mk_simple_solver ( ctx : context ) = - (create ctx (Z3native.mk_simple_solver (context_gno ctx))) - - let mk_solver_t ( ctx : context ) ( t : Tactic.tactic ) = - (create ctx (Z3native.mk_solver_from_tactic (context_gno ctx) (z3obj_gno t))) - - let to_string ( x : solver ) = Z3native.solver_to_string (z3obj_gnc x) (z3obj_gno x) -end - - -module Fixedpoint = -struct - type fixedpoint = z3_native_object - - let create ( ctx : context ) = - let res : fixedpoint = { m_ctx = ctx ; - m_n_obj = null ; - inc_ref = Z3native.fixedpoint_inc_ref ; - dec_ref = Z3native.fixedpoint_dec_ref } in - (z3obj_sno res ctx (Z3native.mk_fixedpoint (context_gno ctx))) ; - (z3obj_create res) ; - res - - - let get_help ( x : fixedpoint ) = - Z3native.fixedpoint_get_help (z3obj_gnc x) (z3obj_gno x) - - let set_params ( x : fixedpoint ) ( p : Params.params )= - Z3native.fixedpoint_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p) - - let get_param_descrs ( x : fixedpoint ) = - Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_param_descrs (z3obj_gnc x) (z3obj_gno x)) - - let assert_ ( x : fixedpoint ) ( constraints : Boolean.bool_expr list ) = - let f e = (Z3native.fixedpoint_assert (z3obj_gnc x) (z3obj_gno x) (Boolean.gno e)) in - ignore (List.map f constraints) ; - () - - let register_relation ( x : fixedpoint ) ( f : func_decl ) = - Z3native.fixedpoint_register_relation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) - - let add_rule ( x : fixedpoint ) ( rule : Boolean.bool_expr ) ( name : Symbol.symbol option ) = - match name with - | None -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Boolean.gno rule) null - | Some(y) -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Boolean.gno rule) (Symbol.gno y) - - let add_fact ( x : fixedpoint ) ( pred : func_decl ) ( args : int list ) = - Z3native.fixedpoint_add_fact (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno pred) (List.length args) (Array.of_list args) - - let query ( x : fixedpoint ) ( query : Boolean.bool_expr ) = - match (lbool_of_int (Z3native.fixedpoint_query (z3obj_gnc x) (z3obj_gno x) (Boolean.gno query))) with - | L_TRUE -> Solver.SATISFIABLE - | L_FALSE -> Solver.UNSATISFIABLE - | _ -> Solver.UNKNOWN - - let query_r ( x : fixedpoint ) ( relations : func_decl list ) = - let f x = ptr_of_ast (ast_of_func_decl x) in - match (lbool_of_int (Z3native.fixedpoint_query_relations (z3obj_gnc x) (z3obj_gno x) (List.length relations) (Array.of_list (List.map f relations)))) with - | L_TRUE -> Solver.SATISFIABLE - | L_FALSE -> Solver.UNSATISFIABLE - | _ -> Solver.UNKNOWN - - let push ( x : fixedpoint ) = - Z3native.fixedpoint_push (z3obj_gnc x) (z3obj_gno x) - - let pop ( x : fixedpoint ) = - Z3native.fixedpoint_pop (z3obj_gnc x) (z3obj_gno x) - - let update_rule ( x : fixedpoint ) ( rule : Boolean.bool_expr ) ( name : Symbol.symbol ) = - Z3native.fixedpoint_update_rule (z3obj_gnc x) (z3obj_gno x) (Boolean.gno rule) (Symbol.gno name) - - let get_answer ( x : fixedpoint ) = - let q = (Z3native.fixedpoint_get_answer (z3obj_gnc x) (z3obj_gno x)) in - if (Z3native.is_null q) then - None - else - Some (expr_of_ptr (z3obj_gc x) q) - - let get_reason_unknown ( x : fixedpoint ) = - Z3native.fixedpoint_get_reason_unknown (z3obj_gnc x) (z3obj_gno x) - - let get_num_levels ( x : fixedpoint ) ( predicate : func_decl ) = - Z3native.fixedpoint_get_num_levels (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno predicate) - - let get_cover_delta ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) = - let q = (Z3native.fixedpoint_get_cover_delta (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate)) in - if (Z3native.is_null q) then - None - else - Some (expr_of_ptr (z3obj_gc x) q) - - let add_cover ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) ( property : expr ) = - Z3native.fixedpoint_add_cover (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate) (Expr.gno property) - - let to_string ( x : fixedpoint ) = Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) 0 [||] - - let set_predicate_representation ( x : fixedpoint ) ( f : func_decl ) ( kinds : Symbol.symbol list ) = - Z3native.fixedpoint_set_predicate_representation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) (List.length kinds) (Symbol.symbol_lton kinds) - - let to_string_q ( x : fixedpoint ) ( queries : Boolean.bool_expr list ) = - let f x = ptr_of_expr (Boolean.expr_of_bool_expr x) in - Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) (List.length queries) (Array.of_list (List.map f queries)) - - let get_rules ( x : fixedpoint ) = - let v = (AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_rules (z3obj_gnc x) (z3obj_gno x))) in - let n = (AST.ASTVector.get_size v) in - let f i = Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x) (z3obj_gno (AST.ASTVector.get v i))) in - mk_list f n - - let get_assertions ( x : fixedpoint ) = - let v = (AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_assertions (z3obj_gnc x) (z3obj_gno x))) in - let n = (AST.ASTVector.get_size v) in - let f i = Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x) (z3obj_gno (AST.ASTVector.get v i))) in - mk_list f n - - let mk_fixedpoint ( ctx : context ) = create ctx -end - -module Options = -struct - - let update_param_value ( ctx : context ) ( id : string) ( value : string )= - Z3native.update_param_value (context_gno ctx) id value - - let get_param_value ( ctx : context ) ( id : string ) = - let (r, v) = (Z3native.get_param_value (context_gno ctx) id) in - if not r then - None - else - Some v - - let set_print_mode ( ctx : context ) ( value : ast_print_mode ) = - Z3native.set_ast_print_mode (context_gno ctx) (int_of_ast_print_mode value) - - let toggle_warning_messages ( enabled: bool ) = - Z3native.toggle_warning_messages enabled -end - - -module SMT = -struct - let benchmark_to_smtstring ( ctx : context ) ( name : string ) ( logic : string ) ( status : string ) ( attributes : string ) ( assumptions : Boolean.bool_expr list ) ( formula : Boolean.bool_expr ) = - Z3native.benchmark_to_smtlib_string (context_gno ctx) name logic status attributes - (List.length assumptions) (let f x = ptr_of_expr (Boolean.expr_of_bool_expr x) in (Array.of_list (List.map f assumptions))) - (Boolean.gno formula) - - let parse_smtlib_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) = - let csn = (List.length sort_names) in - let cs = (List.length sorts) in - let cdn = (List.length decl_names) in - let cd = (List.length decls) in - if (csn != cs || cdn != cd) then - raise (Z3native.Exception "Argument size mismatch") - else - Z3native.parse_smtlib_string (context_gno ctx) str - cs - (Symbol.symbol_lton sort_names) - (sort_lton sorts) - cd - (Symbol.symbol_lton decl_names) - (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls))) - - let parse_smtlib_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) = - let csn = (List.length sort_names) in - let cs = (List.length sorts) in - let cdn = (List.length decl_names) in - let cd = (List.length decls) in - if (csn != cs || cdn != cd) then - raise (Z3native.Exception "Argument size mismatch") - else - Z3native.parse_smtlib_file (context_gno ctx) file_name - cs - (Symbol.symbol_lton sort_names) - (sort_lton sorts) - cd - (Symbol.symbol_lton decl_names) - (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls))) - - let get_num_smtlib_formulas ( ctx : context ) = Z3native.get_smtlib_num_formulas (context_gno ctx) - - let get_smtlib_formulas ( ctx : context ) = - let n = (get_num_smtlib_formulas ctx ) in - let f i = Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.get_smtlib_formula (context_gno ctx) i)) in - mk_list f n - - let get_num_smtlib_assumptions ( ctx : context ) = Z3native.get_smtlib_num_assumptions (context_gno ctx) - - let get_smtlib_assumptions ( ctx : context ) = - let n = (get_num_smtlib_assumptions ctx ) in - let f i = Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.get_smtlib_assumption (context_gno ctx) i)) in - mk_list f n - - let get_num_smtlib_decls ( ctx : context ) = Z3native.get_smtlib_num_decls (context_gno ctx) - - let get_smtlib_decls ( ctx : context ) = - let n = (get_num_smtlib_decls ctx) in - let f i = func_decl_of_ptr ctx (Z3native.get_smtlib_decl (context_gno ctx) i) in - mk_list f n - - let get_num_smtlib_sorts ( ctx : context ) = Z3native.get_smtlib_num_sorts (context_gno ctx) - - let get_smtlib_sorts ( ctx : context ) = - let n = (get_num_smtlib_sorts ctx) in - let f i = (sort_of_ptr ctx (Z3native.get_smtlib_sort (context_gno ctx) i)) in - mk_list f n - - let parse_smtlib2_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) = - let csn = (List.length sort_names) in - let cs = (List.length sorts) in - let cdn = (List.length decl_names) in - let cd = (List.length decls) in - if (csn != cs || cdn != cd) then - raise (Z3native.Exception "Argument size mismatch") - else - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) str - cs - (Symbol.symbol_lton sort_names) - (sort_lton sorts) - cd - (Symbol.symbol_lton decl_names) - (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls))))) - - let parse_smtlib2_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) = - let csn = (List.length sort_names) in - let cs = (List.length sorts) in - let cdn = (List.length decl_names) in - let cd = (List.length decls) in - if (csn != cs || cdn != cd) then - raise (Z3native.Exception "Argument size mismatch") - else - Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) file_name - cs - (Symbol.symbol_lton sort_names) - (sort_lton sorts) - cd - (Symbol.symbol_lton decl_names) - (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls))))) -end - - -let set_global_param ( id : string ) ( value : string ) = - (Z3native.global_param_set id value) - -let get_global_param ( id : string ) = - let (r, v) = (Z3native.global_param_get id) in - if not r then - None - else - Some v - -let global_param_reset_all = - Z3native.global_param_reset_all diff --git a/src/api/ml/z3_rich.mli b/src/api/ml/z3_rich.mli deleted file mode 100644 index f2ecd326d..000000000 --- a/src/api/ml/z3_rich.mli +++ /dev/null @@ -1,3071 +0,0 @@ -(** - The Z3 ML/Ocaml Interface. - - Copyright (C) 2012 Microsoft Corporation - @author CM Wintersteiger (cwinter) 2012-12-17 - - NOTE: This is the *rich* version of the interface, using more - type information directly in the type system. Coercion functions - are provided to tran coerce on type into another where applicable. -*) - -(** Context objects. - - Most interactions with Z3 are interpreted in some context; many users will only - require one such object, but power users may require more than one. To start using - Z3, do - - - let ctx = (mk_context []) in - (...) - - - where a list of pairs of strings may be passed to set options on - the context, e.g., like so: - - - let cfg = [("model", "true"); ("...", "...")] in - let ctx = (mk_context cfg) in - (...) - -*) -type context - -(** Create a context object *) -val mk_context : (string * string) list -> context - -(** Interaction logging for Z3 - Note that this is a global, static log and if multiple Context - objects are created, it logs the interaction with all of them. *) -module Log : -sig - (** Open an interaction log file. - @return True if opening the log file succeeds, false otherwise. *) - (* CMW: "open" seems to be a reserved keyword? *) - val open_ : string -> bool - - (** Closes the interaction log. *) - val close : unit - - (** Appends a user-provided string to the interaction log. *) - val append : string -> unit -end - -(** Version information *) -module Version : -sig - (** The major version. *) - val major : int - - (** The minor version. *) - val minor : int - - (** The build version. *) - val build : int - - (** The revision. *) - val revision : int - - (** A string representation of the version information. *) - val to_string : string -end - -(** Symbols are used to name several term and type constructors *) -module Symbol : -sig - (** Numbered Symbols *) - type int_symbol - - (** Named Symbols *) - type string_symbol - - (** Symbols *) - type symbol = S_Int of int_symbol | S_Str of string_symbol - - (** The kind of the symbol (int or string) *) - val kind : symbol -> Z3enums.symbol_kind - - (** Indicates whether the symbol is of Int kind *) - val is_int_symbol : symbol -> bool - - (** Indicates whether the symbol is of string kind. *) - val is_string_symbol : symbol -> bool - - (** The int value of the symbol. *) - val get_int : int_symbol -> int - - (** The string value of the symbol. *) - val get_string : string_symbol -> string - - (** A string representation of the symbol. *) - val to_string : symbol -> string - - (** Creates a new symbol using an integer. - - Not all integers can be passed to this function. - The legal range of unsigned integers is 0 to 2^30-1. *) - val mk_int : context -> int -> symbol - - (** Creates a new symbol using a string. *) - val mk_string : context -> string -> symbol - - (** Create a list of symbols. *) - val mk_ints : context -> int list -> symbol list - - (** Create a list of symbols. *) - val mk_strings : context -> string list -> symbol list -end - -(** The abstract syntax tree (AST) module *) -module AST : -sig - type ast - - (** Vectors of ASTs *) - module ASTVector : - sig - type ast_vector - - (** The size of the vector *) - val get_size : ast_vector -> int - - (** - Retrieves the i-th object in the vector. - @return An AST *) - val get : ast_vector -> int -> ast - - (** Sets the i-th object in the vector. *) - val set : ast_vector -> int -> ast -> unit - - (** Resize the vector to a new size. *) - val resize : ast_vector -> int -> unit - - (** Add an ast to the back of the vector. The size - is increased by 1. *) - val push : ast_vector -> ast -> unit - - (** Translates all ASTs in the vector to another context. - @return A new ASTVector *) - val translate : ast_vector -> context -> ast_vector - - (** Retrieves a string representation of the vector. *) - val to_string : ast_vector -> string - end - - (** Map from AST to AST *) - module ASTMap : - sig - type ast_map - - (** Checks whether the map contains a key. - @return True if the key in the map, false otherwise. *) - val contains : ast_map -> ast -> bool - - (** Finds the value associated with the key. - This function signs an error when the key is not a key in the map. *) - val find : ast_map -> ast -> ast - - (** Stores or replaces a new key/value pair in the map. *) - val insert : ast_map -> ast -> ast -> unit - - (** Erases the key from the map.*) - val erase : ast_map -> ast -> unit - - (** Removes all keys from the map. *) - val reset : ast_map -> unit - - (** The size of the map *) - val get_size : ast_map -> int - - (** The keys stored in the map. *) - val get_keys : ast_map -> ast list - - (** Retrieves a string representation of the map.*) - val to_string : ast_map -> string - end - - (** The AST's hash code. - @return A hash code *) - val get_hash_code : ast -> int - - (** A unique identifier for the AST (unique among all ASTs). *) - val get_id : ast -> int - - (** The kind of the AST. *) - val get_ast_kind : ast -> Z3enums.ast_kind - - (** Indicates whether the AST is an Expr *) - val is_expr : ast -> bool - - (** Indicates whether the AST is a bound variable*) - val is_var : ast -> bool - - (** Indicates whether the AST is a Quantifier *) - val is_quantifier : ast -> bool - - (** Indicates whether the AST is a Sort *) - val is_sort : ast -> bool - - (** Indicates whether the AST is a func_decl *) - val is_func_decl : ast -> bool - - (** A string representation of the AST. *) - val to_string : ast -> string - - (** A string representation of the AST in s-expression notation. *) - val to_sexpr : ast -> string - - (** Comparison operator. - @return True if the two ast's are from the same context - and represent the same sort; false otherwise. *) - val ( = ) : ast -> ast -> bool - - (** Object Comparison. - @return Negative if the first ast should be sorted before the second, positive if after else zero. *) - val compare : ast -> ast -> int - - (** Operator < *) - val ( < ) : ast -> ast -> int - - (** Translates (copies) the AST to another context. - @return A copy of the AST which is associated with the other context. *) - val translate : ast -> context -> ast - - (** Wraps an AST. - - This function is used for transitions between native and - managed objects. Note that the native ast that is passed must be a - native object obtained from Z3 (e.g., through {!unwrap_ast}) - and that it must have a correct reference count (see e.g., - Z3native.inc_ref). *) - val wrap_ast : context -> Z3native.z3_ast -> ast - - (** Unwraps an AST. - This function is used for transitions between native and - managed objects. It returns the native pointer to the AST. Note that - AST objects are reference counted and unwrapping an AST disables automatic - reference counting, i.e., all references to the IntPtr that is returned - must be handled externally and through native calls (see e.g., - Z3native.inc_ref). - {!wrap_ast} *) - val unwrap_ast : ast -> Z3native.ptr -end - -(** The Sort module implements type information for ASTs *) -module Sort : -sig - (** Sorts *) - type sort = Sort of AST.ast - - (** Uninterpreted Sorts *) - type uninterpreted_sort = UninterpretedSort of sort - - val ast_of_sort : sort -> AST.ast - val sort_of_uninterpreted_sort : uninterpreted_sort -> sort - val uninterpreted_sort_of_sort : sort -> uninterpreted_sort - - (** Comparison operator. - @return True if the two sorts are from the same context - and represent the same sort; false otherwise. *) - val ( = ) : sort -> sort -> bool - - (** Returns a unique identifier for the sort. *) - val get_id : sort -> int - - (** The kind of the sort. *) - val get_sort_kind : sort -> Z3enums.sort_kind - - (** The name of the sort *) - val get_name : sort -> Symbol.symbol - - (** A string representation of the sort. *) - val to_string : sort -> string - - (** Create a new uninterpreted sort. *) - val mk_uninterpreted : context -> Symbol.symbol -> uninterpreted_sort - - (** Create a new uninterpreted sort. *) - val mk_uninterpreted_s : context -> string -> uninterpreted_sort -end - -(** Function declarations *) -module rec FuncDecl : -sig - type func_decl = FuncDecl of AST.ast - - val ast_of_func_decl : FuncDecl.func_decl -> AST.ast - - (** Parameters of Func_Decls *) - module Parameter : - sig - (** Parameters of func_decls *) - type parameter = - P_Int of int - | P_Dbl of float - | P_Sym of Symbol.symbol - | P_Srt of Sort.sort - | P_Ast of AST.ast - | P_Fdl of func_decl - | P_Rat of string - - (** The kind of the parameter. *) - val get_kind : parameter -> Z3enums.parameter_kind - - (** The int value of the parameter.*) - val get_int : parameter -> int - - (** The double value of the parameter.*) - val get_float : parameter -> float - - (** The Symbol.Symbol value of the parameter.*) - val get_symbol : parameter -> Symbol.symbol - - (** The Sort value of the parameter.*) - val get_sort : parameter -> Sort.sort - - (** The AST value of the parameter.*) - val get_ast : parameter -> AST.ast - - (** The FunctionDeclaration value of the parameter.*) - val get_func_decl : parameter -> func_decl - - (** The rational string value of the parameter.*) - val get_rational : parameter -> string - end - - (** Creates a new function declaration. *) - val mk_func_decl : context -> Symbol.symbol -> Sort.sort list -> Sort.sort -> func_decl - - (** Creates a new function declaration. *) - val mk_func_decl_s : context -> string -> Sort.sort list -> Sort.sort -> func_decl - (** Creates a fresh function declaration with a name prefixed with a prefix string. *) - - val mk_fresh_func_decl : context -> string -> Sort.sort list -> Sort.sort -> func_decl - - (** Creates a new constant function declaration. *) - val mk_const_decl : context -> Symbol.symbol -> Sort.sort -> func_decl - - (** Creates a new constant function declaration. *) - val mk_const_decl_s : context -> string -> Sort.sort -> func_decl - - (** Creates a fresh constant function declaration with a name prefixed with a prefix string. - {!mk_func_decl} - {!mk_func_decl} *) - val mk_fresh_const_decl : context -> string -> Sort.sort -> func_decl - - (** Comparison operator. - @return True if a and b are from the same context and represent the same func_decl; false otherwise. *) - val ( = ) : func_decl -> func_decl -> bool - - (** A string representations of the function declaration. *) - val to_string : func_decl -> string - - (** Returns a unique identifier for the function declaration. *) - val get_id : func_decl -> int - - (** The arity of the function declaration *) - val get_arity : func_decl -> int - - (** The size of the domain of the function declaration - {!get_arity} *) - val get_domain_size : func_decl -> int - - (** The domain of the function declaration *) - val get_domain : func_decl -> Sort.sort list - - (** The range of the function declaration *) - val get_range : func_decl -> Sort.sort - - (** The kind of the function declaration. *) - val get_decl_kind : func_decl -> Z3enums.decl_kind - - (** The name of the function declaration*) - val get_name : func_decl -> Symbol.symbol - - (** The number of parameters of the function declaration *) - val get_num_parameters : func_decl -> int - - (** The parameters of the function declaration *) - val get_parameters : func_decl -> Parameter.parameter list - - (** Create expression that applies function to arguments. *) - val apply : func_decl -> Expr.expr list -> Expr.expr -end - -(** Parameter sets (of Solvers, Tactics, ...) - - A Params objects represents a configuration in the form of Symbol.symbol/value pairs. *) -and Params : -sig - type params - - (** ParamDescrs describe sets of parameters (of Solvers, Tactics, ...) *) - module ParamDescrs : - sig - type param_descrs - - (** Validate a set of parameters. *) - val validate : param_descrs -> params -> unit - - (** Retrieve kind of parameter. *) - val get_kind : param_descrs -> Symbol.symbol -> Z3enums.param_kind - - (** Retrieve all names of parameters. *) - val get_names : param_descrs -> Symbol.symbol list - - (** The size of the ParamDescrs. *) - val get_size : param_descrs -> int - - (** Retrieves a string representation of the ParamDescrs. *) - val to_string : param_descrs -> string - end - - (** Adds a parameter setting. *) - val add_bool : params -> Symbol.symbol -> bool -> unit - - (** Adds a parameter setting. *) - val add_int : params -> Symbol.symbol -> int -> unit - - (** Adds a parameter setting. *) - val add_double : params -> Symbol.symbol -> float -> unit - - (** Adds a parameter setting. *) - val add_symbol : params -> Symbol.symbol -> Symbol.symbol -> unit - - (** Adds a parameter setting. *) - val add_s_bool : params -> string -> bool -> unit - - (** Adds a parameter setting. *) - val add_s_int : params -> string -> int -> unit - - (** Adds a parameter setting. *) - val add_s_double : params -> string -> float -> unit - - (** Adds a parameter setting. *) - val add_s_symbol : params -> string -> Symbol.symbol -> unit - - (** Creates a new parameter set *) - val mk_params : context -> params - - (** A string representation of the parameter set. *) - val to_string : params -> string -end - -(** General Expressions (terms) *) -and Expr : -sig - type expr = Expr of AST.ast - - val ast_of_expr : Expr.expr -> AST.ast - val expr_of_ast : AST.ast -> Expr.expr - - (** Returns a simplified version of the expression. - {!get_simplify_help} *) - val simplify : Expr.expr -> Params.params option -> expr - - (** A string describing all available parameters to Expr.Simplify. *) - val get_simplify_help : context -> string - - (** Retrieves parameter descriptions for simplifier. *) - val get_simplify_parameter_descrs : context -> Params.ParamDescrs.param_descrs - - (** The function declaration of the function that is applied in this expression. *) - val get_func_decl : Expr.expr -> FuncDecl.func_decl - - (** Indicates whether the expression is the true or false expression - or something else (L_UNDEF). *) - val get_bool_value : Expr.expr -> Z3enums.lbool - - (** The number of arguments of the expression. *) - val get_num_args : Expr.expr -> int - - (** The arguments of the expression. *) - val get_args : Expr.expr -> Expr.expr list - - (** Update the arguments of the expression using an array of expressions. - The number of new arguments should coincide with the current number of arguments. *) - val update : Expr.expr -> Expr.expr list -> expr - - (** Substitute every occurrence of from[i] in the expression with to[i], for i smaller than num_exprs. - - The result is the new expression. The arrays from and to must have size num_exprs. - For every i smaller than num_exprs, we must have that - sort of from[i] must be equal to sort of to[i]. *) - val substitute : Expr.expr -> Expr.expr list -> Expr.expr list -> expr - - (** Substitute every occurrence of from in the expression with to. - {!substitute} *) - val substitute_one : Expr.expr -> Expr.expr -> Expr.expr -> expr - - (** Substitute the free variables in the expression with the expressions in the expr array - - For every i smaller than num_exprs, the variable with de-Bruijn index i is replaced with term to[i]. *) - val substitute_vars : Expr.expr -> Expr.expr list -> expr - - (** Translates (copies) the term to another context. - @return A copy of the term which is associated with the other context *) - val translate : Expr.expr -> context -> expr - - (** Returns a string representation of the expression. *) - val to_string : Expr.expr -> string - - (** Indicates whether the term is a numeral *) - val is_numeral : Expr.expr -> bool - - (** Indicates whether the term is well-sorted. - @return True if the term is well-sorted, false otherwise. *) - val is_well_sorted : Expr.expr -> bool - - (** The Sort of the term. *) - val get_sort : Expr.expr -> Sort.sort - - (** Indicates whether the term has Boolean sort. *) - val is_bool : Expr.expr -> bool - - (** Indicates whether the term represents a constant. *) - val is_const : Expr.expr -> bool - - (** Indicates whether the term is the constant true. *) - val is_true : Expr.expr -> bool - - (** Indicates whether the term is the constant false. *) - val is_false : Expr.expr -> bool - - (** Indicates whether the term is an equality predicate. *) - val is_eq : Expr.expr -> bool - - (** Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct). *) - val is_distinct : Expr.expr -> bool - - (** Indicates whether the term is a ternary if-then-else term *) - val is_ite : Expr.expr -> bool - - (** Indicates whether the term is an n-ary conjunction *) - val is_and : Expr.expr -> bool - - (** Indicates whether the term is an n-ary disjunction *) - val is_or : Expr.expr -> bool - - (** Indicates whether the term is an if-and-only-if (Boolean equivalence, binary) *) - val is_iff : Expr.expr -> bool - - (** Indicates whether the term is an exclusive or *) - val is_xor : Expr.expr -> bool - - (** Indicates whether the term is a negation *) - val is_not : Expr.expr -> bool - - (** Indicates whether the term is an implication *) - val is_implies : Expr.expr -> bool - - (** Indicates whether the term is a label (used by the Boogie Verification condition generator). - The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula. *) - val is_label : Expr.expr -> bool - - (** Indicates whether the term is a label literal (used by the Boogie Verification condition generator). - A label literal has a set of string parameters. It takes no arguments. - let is_label_lit ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_LABEL_LIT) *) - val is_label_lit : Expr.expr -> bool - - (** Indicates whether the term is a binary equivalence modulo namings. - This binary predicate is used in proof terms. - It captures equisatisfiability and equivalence modulo renamings. *) - val is_oeq : Expr.expr -> bool - - (** Creates a new constant. *) - val mk_const : context -> Symbol.symbol -> Sort.sort -> expr - - (** Creates a new constant. *) - val mk_const_s : context -> string -> Sort.sort -> expr - - (** Creates a constant from the func_decl. *) - val mk_const_f : context -> FuncDecl.func_decl -> expr - - (** Creates a fresh constant with a name prefixed with a string. *) - val mk_fresh_const : context -> string -> Sort.sort -> expr - - (** Create a new function application. *) - val mk_app : context -> FuncDecl.func_decl -> Expr.expr list -> expr - - (** Create a numeral of a given sort. - @return A Term with the goven value and sort *) - val mk_numeral_string : context -> string -> Sort.sort -> expr - - (** Create a numeral of a given sort. This function can be use to create numerals that fit in a machine integer. - It is slightly faster than MakeNumeral since it is not necessary to parse a string. - @return A Term with the given value and sort *) - val mk_numeral_int : context -> int -> Sort.sort -> expr -end - -(** Boolean expressions *) -module Boolean : -sig - type bool_sort = BoolSort of Sort.sort - type bool_expr = BoolExpr of Expr.expr - - val expr_of_bool_expr : bool_expr -> Expr.expr - val sort_of_bool_sort : bool_sort -> Sort.sort - val bool_sort_of_sort : Sort.sort -> bool_sort - val bool_expr_of_expr : Expr.expr -> bool_expr - - (** Create a Boolean sort *) - val mk_sort : context -> bool_sort - - (** Create a Boolean constant. *) - val mk_const : context -> Symbol.symbol -> bool_expr - - (** Create a Boolean constant. *) - val mk_const_s : context -> string -> bool_expr - - (** The true Term. *) - val mk_true : context -> bool_expr - - (** The false Term. *) - val mk_false : context -> bool_expr - - (** Creates a Boolean value. *) - val mk_val : context -> bool -> bool_expr - - (** Creates the equality between two expr's. *) - val mk_eq : context -> Expr.expr -> Expr.expr -> bool_expr - - (** Creates a distinct term. *) - val mk_distinct : context -> Expr.expr list -> bool_expr - - (** Mk an expression representing not(a). *) - val mk_not : context -> bool_expr -> bool_expr - - (** Create an expression representing an if-then-else: ite(t1, t2, t3). *) - val mk_ite : context -> bool_expr -> bool_expr -> bool_expr -> bool_expr - - (** Create an expression representing t1 iff t2. *) - val mk_iff : context -> bool_expr -> bool_expr -> bool_expr - - (** Create an expression representing t1 -> t2. *) - val mk_implies : context -> bool_expr -> bool_expr -> bool_expr - - (** Create an expression representing t1 xor t2. *) - val mk_xor : context -> bool_expr -> bool_expr -> bool_expr - - (** Create an expression representing the AND of args *) - val mk_and : context -> bool_expr list -> bool_expr - - (** Create an expression representing the OR of args *) - val mk_or : context -> bool_expr list -> bool_expr -end - -(** Quantifier expressions *) -module Quantifier : -sig - type quantifier = Quantifier of Expr.expr - - val expr_of_quantifier : quantifier -> Expr.expr - val quantifier_of_expr : Expr.expr -> quantifier - - (** Quantifier patterns - - Patterns comprise a list of terms. The list should be - non-empty. If the list comprises of more than one term, it is - also called a multi-pattern. *) - module Pattern : - sig - type pattern = Pattern of AST.ast - - val ast_of_pattern : pattern -> AST.ast - val pattern_of_ast : AST.ast -> pattern - - (** The number of terms in the pattern. *) - val get_num_terms : pattern -> int - - (** The terms in the pattern. *) - val get_terms : pattern -> Expr.expr list - - (** A string representation of the pattern. *) - val to_string : pattern -> string - end - - - (** The de-Burijn index of a bound variable. - - Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain - the meaning of de-Bruijn indices by indicating the compilation process from - non-de-Bruijn formulas to de-Bruijn format. - - abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0) - abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi)) - abs1(x, x, n) = b_n - abs1(y, x, n) = y - abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n)) - abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1)) - - The last line is significant: the index of a bound variable is different depending - on the scope in which it appears. The deeper ( x : expr ) appears, the higher is its - index. *) - val get_index : Expr.expr -> int - - (** Indicates whether the quantifier is universal. *) - val is_universal : quantifier -> bool - - (** Indicates whether the quantifier is existential. *) - val is_existential : quantifier -> bool - - (** The weight of the quantifier. *) - val get_weight : quantifier -> int - - (** The number of patterns. *) - val get_num_patterns : quantifier -> int - - (** The patterns. *) - val get_patterns : quantifier -> Pattern.pattern list - - (** The number of no-patterns. *) - val get_num_no_patterns : quantifier -> int - - (** The no-patterns. *) - val get_no_patterns : quantifier -> Pattern.pattern list - - (** The number of bound variables. *) - val get_num_bound : quantifier -> int - - (** The symbols for the bound variables. *) - val get_bound_variable_names : quantifier -> Symbol.symbol list - - (** The sorts of the bound variables. *) - val get_bound_variable_sorts : quantifier -> Sort.sort list - - (** The body of the quantifier. *) - val get_body : quantifier -> Boolean.bool_expr - - (** Creates a new bound variable. *) - val mk_bound : context -> int -> Sort.sort -> Expr.expr - - (** Create a quantifier pattern. *) - val mk_pattern : context -> Expr.expr list -> Pattern.pattern - - (** Create a universal Quantifier. *) - val mk_forall : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier - - (** Create a universal Quantifier. *) - val mk_forall_const : context -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier - - (** Create an existential Quantifier. *) - val mk_exists : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier - - (** Create an existential Quantifier. *) - val mk_exists_const : context -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier - - (** Create a Quantifier. *) - val mk_quantifier : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier - - (** Create a Quantifier. *) - val mk_quantifier : context -> bool -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier -end - -(** Functions to manipulate Array expressions *) -module Array_ : -sig - type array_sort = ArraySort of Sort.sort - type array_expr = ArrayExpr of Expr.expr - - val sort_of_array_sort : array_sort -> Sort.sort - val array_sort_of_sort : Sort.sort -> array_sort - val expr_of_array_expr : array_expr -> Expr.expr - - val array_expr_of_expr : Expr.expr -> array_expr - - (** Create a new array sort. *) - val mk_sort : context -> Sort.sort -> Sort.sort -> array_sort - - (** Indicates whether the term is an array store. - It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j). - Array store takes at least 3 arguments. *) - val is_store : Expr.expr -> bool - - (** Indicates whether the term is an array select. *) - val is_select : Expr.expr -> bool - - (** Indicates whether the term is a constant array. - For example, select(const(v),i) = v holds for every v and i. The function is unary. *) - val is_constant_array : Expr.expr -> bool - - (** Indicates whether the term is a default array. - For example default(const(v)) = v. The function is unary. *) - val is_default_array : Expr.expr -> bool - - (** Indicates whether the term is an array map. - It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i. *) - val is_array_map : Expr.expr -> bool - - (** Indicates whether the term is an as-array term. - An as-array term is n array value that behaves as the function graph of the - function passed as parameter. *) - val is_as_array : Expr.expr -> bool - - (** Indicates whether the term is of an array sort. *) - val is_array : Expr.expr -> bool - - (** The domain of the array sort. *) - val get_domain : array_sort -> Sort.sort - - (** The range of the array sort. *) - val get_range : array_sort -> Sort.sort - - (** Create an array constant. *) - val mk_const : context -> Symbol.symbol -> Sort.sort -> Sort.sort -> array_expr - - (** Create an array constant. *) - val mk_const_s : context -> string -> Sort.sort -> Sort.sort -> array_expr - - (** Array read. - - The argument a is the array and i is the index - of the array that gets read. - - The node a must have an array sort [domain -> range], - and i must have the sort domain. - The sort of the result is range. - {!Array_.mk_sort} - {!mk_store} *) - val mk_select : context -> array_expr -> Expr.expr -> array_expr - - (** Array update. - - The node a must have an array sort [domain -> range], - i must have sort domain, - v must have sort range. The sort of the result is [domain -> range]. - The semantics of this function is given by the theory of arrays described in the SMT-LIB - standard. See http://smtlib.org for more details. - The result of this function is an array that is equal to a - (with respect to select) - on all indices except for i, where it maps to v - (and the select of a with - respect to i may be a different value). - {!Array_.mk_sort} - {!mk_select} *) - val mk_store : context -> array_expr -> Expr.expr -> Expr.expr -> array_expr - - (** Create a constant array. - - The resulting term is an array, such that a selecton an arbitrary index - produces the value v. - {!Array_.mk_sort} - {!mk_select} *) - val mk_const_array : context -> Sort.sort -> Expr.expr -> array_expr - - (** Maps f on the argument arrays. - - Eeach element of args must be of an array sort [domain_i -> range_i]. - The function declaration f must have type range_1 .. range_n -> range. - v must have sort range. The sort of the result is [domain_i -> range]. - {!Array_.mk_sort} - {!mk_select} - {!mk_store} *) - val mk_map : context -> FuncDecl.func_decl -> array_expr list -> array_expr - - (** Access the array default value. - - Produces the default range value, for arrays that can be represented as - finite maps with a default range value. *) - val mk_term_array : context -> array_expr -> array_expr -end - -(** Functions to manipulate Set expressions *) -module Set : -sig - type set_sort = SetSort of Sort.sort - - val sort_of_set_sort : set_sort -> Sort.sort - - (** Create a set type. *) - val mk_sort : context -> Sort.sort -> set_sort - - (** Indicates whether the term is set union *) - val is_union : Expr.expr -> bool - - (** Indicates whether the term is set intersection *) - val is_intersect : Expr.expr -> bool - - (** Indicates whether the term is set difference *) - val is_difference : Expr.expr -> bool - - (** Indicates whether the term is set complement *) - val is_complement : Expr.expr -> bool - - (** Indicates whether the term is set subset *) - val is_subset : Expr.expr -> bool - - (** Create an empty set. *) - val mk_empty : context -> Sort.sort -> Expr.expr - - (** Create the full set. *) - val mk_full : context -> Sort.sort -> Expr.expr - - (** Add an element to the set. *) - val mk_set_add : context -> Expr.expr -> Expr.expr -> Expr.expr - - (** Remove an element from a set. *) - val mk_del : context -> Expr.expr -> Expr.expr -> Expr.expr - - (** Take the union of a list of sets. *) - val mk_union : context -> Expr.expr list -> Expr.expr - - (** Take the intersection of a list of sets. *) - val mk_intersection : context -> Expr.expr list -> Expr.expr - - (** Take the difference between two sets. *) - val mk_difference : context -> Expr.expr -> Expr.expr -> Expr.expr - - (** Take the complement of a set. *) - val mk_complement : context -> Expr.expr -> Expr.expr - - (** Check for set membership. *) - val mk_membership : context -> Expr.expr -> Expr.expr -> Expr.expr - - (** Check for subsetness of sets. *) - val mk_subset : context -> Expr.expr -> Expr.expr -> Expr.expr -end - -(** Functions to manipulate Finite Domain expressions *) -module FiniteDomain : -sig - type finite_domain_sort = FiniteDomainSort of Sort.sort - - val sort_of_finite_domain_sort : finite_domain_sort -> Sort.sort - val finite_domain_sort_of_sort : Sort.sort -> finite_domain_sort - - (** Create a new finite domain sort. *) - val mk_sort : context -> Symbol.symbol -> int -> finite_domain_sort - - (** Create a new finite domain sort. *) - val mk_sort_s : context -> string -> int -> finite_domain_sort - - (** Indicates whether the term is of an array sort. *) - val is_finite_domain : Expr.expr -> bool - - (** Indicates whether the term is a less than predicate over a finite domain. *) - val is_lt : Expr.expr -> bool - - (** The size of the finite domain sort. *) - val get_size : finite_domain_sort -> int -end - - -(** Functions to manipulate Relation expressions *) -module Relation : -sig - type relation_sort = RelationSort of Sort.sort - - val sort_of_relation_sort : relation_sort -> Sort.sort - val relation_sort_of_sort : Sort.sort -> relation_sort - - (** Indicates whether the term is of a relation sort. *) - val is_relation : Expr.expr -> bool - - (** Indicates whether the term is an relation store - - Insert a record into a relation. - The function takes n+1 arguments, where the first argument is the relation and the remaining n elements - correspond to the n columns of the relation. *) - val is_store : Expr.expr -> bool - - (** Indicates whether the term is an empty relation *) - val is_empty : Expr.expr -> bool - - (** Indicates whether the term is a test for the emptiness of a relation *) - val is_is_empty : Expr.expr -> bool - - (** Indicates whether the term is a relational join *) - val is_join : Expr.expr -> bool - - (** Indicates whether the term is the union or convex hull of two relations. - The function takes two arguments. *) - val is_union : Expr.expr -> bool - - (** Indicates whether the term is the widening of two relations - The function takes two arguments. *) - val is_widen : Expr.expr -> bool - - (** Indicates whether the term is a projection of columns (provided as numbers in the parameters). - The function takes one argument. *) - val is_project : Expr.expr -> bool - - (** Indicates whether the term is a relation filter - - Filter (restrict) a relation with respect to a predicate. - The first argument is a relation. - The second argument is a predicate with free de-Brujin indices - corresponding to the columns of the relation. - So the first column in the relation has index 0. *) - val is_filter : Expr.expr -> bool - - (** Indicates whether the term is an intersection of a relation with the negation of another. - - Intersect the first relation with respect to negation - of the second relation (the function takes two arguments). - Logically, the specification can be described by a function - - target = filter_by_negation(pos, neg, columns) - - where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that - target are elements in ( x : expr ) in pos, such that there is no y in neg that agrees with - ( x : expr ) on the columns c1, d1, .., cN, dN. *) - val is_negation_filter : Expr.expr -> bool - - (** Indicates whether the term is the renaming of a column in a relation - - The function takes one argument. - The parameters contain the renaming as a cycle. *) - val is_rename : Expr.expr -> bool - - (** Indicates whether the term is the complement of a relation *) - val is_complement : Expr.expr -> bool - - (** Indicates whether the term is a relational select - - Check if a record is an element of the relation. - The function takes n+1 arguments, where the first argument is a relation, - and the remaining n arguments correspond to a record. *) - val is_select : Expr.expr -> bool - - (** Indicates whether the term is a relational clone (copy) - - Create a fresh copy (clone) of a relation. - The function is logically the identity, but - in the context of a register machine allows - for terms of kind {!is_union} - to perform destructive updates to the first argument. *) - val is_clone : Expr.expr -> bool - - (** The arity of the relation sort. *) - val get_arity : relation_sort -> int - - (** The sorts of the columns of the relation sort. *) - val get_column_sorts : relation_sort -> relation_sort list -end - -(** Functions to manipulate Datatype expressions *) -module Datatype : -sig - type datatype_sort = DatatypeSort of Sort.sort - type datatype_expr = DatatypeExpr of Expr.expr - - val sort_of_datatype_sort : datatype_sort -> Sort.sort - val datatype_sort_of_sort : Sort.sort -> datatype_sort - val expr_of_datatype_expr : datatype_expr -> Expr.expr - val datatype_expr_of_expr : Expr.expr -> datatype_expr - - (** Datatype Constructors *) - module Constructor : - sig - type constructor - - (** The number of fields of the constructor. *) - val get_num_fields : constructor -> int - - (** The function declaration of the constructor. *) - val get_constructor_decl : constructor -> FuncDecl.func_decl - - (** The function declaration of the tester. *) - val get_tester_decl : constructor -> FuncDecl.func_decl - - (** The function declarations of the accessors *) - val get_accessor_decls : constructor -> FuncDecl.func_decl list - end - - (** Create a datatype constructor. - if the corresponding sort reference is 0, then the value in sort_refs should be an index - referring to one of the recursive datatypes that is declared. *) - val mk_constructor : context -> Symbol.symbol -> Symbol.symbol -> Symbol.symbol list -> Sort.sort list -> int list -> Constructor.constructor - - (** Create a datatype constructor. - if the corresponding sort reference is 0, then the value in sort_refs should be an index - referring to one of the recursive datatypes that is declared. *) - val mk_constructor_s : context -> string -> Symbol.symbol -> Symbol.symbol list -> Sort.sort list -> int list -> Constructor.constructor - - (** Create a new datatype sort. *) - val mk_sort : context -> Symbol.symbol -> Constructor.constructor list -> datatype_sort - - (** Create a new datatype sort. *) - val mk_sort_s : context -> string -> Constructor.constructor list -> datatype_sort - - (** Create mutually recursive datatypes. *) - val mk_sorts : context -> Symbol.symbol list -> Constructor.constructor list list -> datatype_sort list - - (** Create mutually recursive data-types. *) - val mk_sorts_s : context -> string list -> Constructor.constructor list list -> datatype_sort list - - - (** The number of constructors of the datatype sort. *) - val get_num_constructors : datatype_sort -> int - - (** The constructors. *) - val get_constructors : datatype_sort -> FuncDecl.func_decl list - - (** The recognizers. *) - val get_recognizers : datatype_sort -> FuncDecl.func_decl list - - (** The constructor accessors. *) - val get_accessors : datatype_sort -> FuncDecl.func_decl list list -end - -(** Functions to manipulate Enumeration expressions *) -module Enumeration : -sig - type enum_sort = EnumSort of Sort.sort - - val sort_of_enum_sort : enum_sort -> Sort.sort - - (** Create a new enumeration sort. *) - val mk_sort : context -> Symbol.symbol -> Symbol.symbol list -> enum_sort - - (** Create a new enumeration sort. *) - val mk_sort_s : context -> string -> string list -> enum_sort - - (** The function declarations of the constants in the enumeration. *) - val get_const_decls : enum_sort -> FuncDecl.func_decl list - - (** The test predicates for the constants in the enumeration. *) - val get_tester_decls : enum_sort -> FuncDecl.func_decl list -end - -(** Functions to manipulate List expressions *) -module List_ : -sig - type list_sort = ListSort of Sort.sort - - val sort_of_list_sort : list_sort -> Sort.sort - - (** Create a new list sort. *) - val mk_sort : context -> Symbol.symbol -> Sort.sort -> list_sort - - (** Create a new list sort. *) - val mk_list_s : context -> string -> Sort.sort -> list_sort - - (** The declaration of the nil function of this list sort. *) - val get_nil_decl : list_sort -> FuncDecl.func_decl - - (** The declaration of the isNil function of this list sort. *) - val get_is_nil_decl : list_sort -> FuncDecl.func_decl - - (** The declaration of the cons function of this list sort. *) - val get_cons_decl : list_sort -> FuncDecl.func_decl - - (** The declaration of the isCons function of this list sort. *) - val get_is_cons_decl : list_sort -> FuncDecl.func_decl - - (** The declaration of the head function of this list sort. *) - val get_head_decl : list_sort -> FuncDecl.func_decl - - (** The declaration of the tail function of this list sort. *) - val get_tail_decl : list_sort -> FuncDecl.func_decl - - (** The empty list. *) - val nil : list_sort -> Expr.expr -end - -(** Functions to manipulate Tuple expressions *) -module Tuple : -sig - type tuple_sort = TupleSort of Sort.sort - - val sort_of_tuple_sort : tuple_sort -> Sort.sort - - (** Create a new tuple sort. *) - val mk_sort : context -> Symbol.symbol -> Symbol.symbol list -> Sort.sort list -> tuple_sort - - (** The constructor function of the tuple. *) - val get_mk_decl : tuple_sort -> FuncDecl.func_decl - - (** The number of fields in the tuple. *) - val get_num_fields : tuple_sort -> int - - (** The field declarations. *) - val get_field_decls : tuple_sort -> FuncDecl.func_decl list -end - -(** Functions to manipulate arithmetic expressions *) -module rec Arithmetic : -sig - type arith_sort = ArithSort of Sort.sort - type arith_expr = ArithExpr of Expr.expr - - val sort_of_arith_sort : Arithmetic.arith_sort -> Sort.sort - val arith_sort_of_sort : Sort.sort -> Arithmetic.arith_sort - val expr_of_arith_expr : Arithmetic.arith_expr -> Expr.expr - val arith_expr_of_expr : Expr.expr -> Arithmetic.arith_expr - - (** Integer Arithmetic *) - module rec Integer : - sig - type int_sort = IntSort of arith_sort - type int_expr = IntExpr of arith_expr - type int_num = IntNum of int_expr - - val arith_sort_of_int_sort : Arithmetic.Integer.int_sort -> Arithmetic.arith_sort - val int_sort_of_arith_sort : Arithmetic.arith_sort -> Arithmetic.Integer.int_sort - val arith_expr_of_int_expr : Arithmetic.Integer.int_expr -> Arithmetic.arith_expr - val int_expr_of_int_num : Arithmetic.Integer.int_num -> Arithmetic.Integer.int_expr - val int_expr_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.Integer.int_expr - val int_num_of_int_expr : Arithmetic.Integer.int_expr -> Arithmetic.Integer.int_num - - (** Create a new integer sort. *) - val mk_sort : context -> int_sort - - (** Retrieve the int value. *) - val get_int : int_num -> int - - (** Returns a string representation of the numeral. *) - val to_string : int_num -> string - - (** Creates an integer constant. *) - val mk_const : context -> Symbol.symbol -> int_expr - - (** Creates an integer constant. *) - val mk_const_s : context -> string -> int_expr - - (** Create an expression representing t1 mod t2. - The arguments must have int type. *) - val mk_mod : context -> int_expr -> int_expr -> int_expr - - (** Create an expression representing t1 rem t2. - The arguments must have int type. *) - val mk_rem : context -> int_expr -> int_expr -> int_expr - - (** Create an integer numeral. *) - val mk_numeral_s : context -> string -> int_num - - (** Create an integer numeral. - @return A Term with the given value and sort Integer *) - val mk_numeral_i : context -> int -> int_num - - (** Coerce an integer to a real. - - - There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard. - - You can take the floor of a real by creating an auxiliary integer Term k and - and asserting MakeInt2Real(k) <= t1 < MkInt2Real(k)+1. - The argument must be of integer sort. *) - val mk_int2real : context -> int_expr -> Real.real_expr - - (** Create an n-bit bit-vector from an integer argument. - - - NB. This function is essentially treated as uninterpreted. - So you cannot expect Z3 to precisely reflect the semantics of this function - when solving constraints with this function. - - The argument must be of integer sort. *) - val mk_int2bv : context -> int -> int_expr -> BitVector.bitvec_expr - end - - (** Real Arithmetic *) - and Real : - sig - type real_sort = RealSort of arith_sort - type real_expr = RealExpr of arith_expr - type rat_num = RatNum of real_expr - - val arith_sort_of_real_sort : Arithmetic.Real.real_sort -> Arithmetic.arith_sort - val real_sort_of_arith_sort : Arithmetic.arith_sort -> Arithmetic.Real.real_sort - val arith_expr_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.arith_expr - val real_expr_of_rat_num : Arithmetic.Real.rat_num -> Arithmetic.Real.real_expr - val real_expr_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.Real.real_expr - val rat_num_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.Real.rat_num - - (** Create a real sort. *) - val mk_sort : context -> real_sort - - (** The numerator of a rational numeral. *) - val get_numerator : rat_num -> Integer.int_num - - (** The denominator of a rational numeral. *) - val get_denominator : rat_num -> Integer.int_num - - (** Returns a string representation in decimal notation. - The result has at most as many decimal places as indicated by the int argument.*) - val to_decimal_string : rat_num -> int -> string - - (** Returns a string representation of the numeral. *) - val to_string : rat_num -> string - - (** Creates a real constant. *) - val mk_const : context -> Symbol.symbol -> real_expr - - (** Creates a real constant. *) - val mk_const_s : context -> string -> real_expr - - (** Create a real numeral from a fraction. - @return A Term with rational value and sort Real - {!mk_numeral_s} *) - val mk_numeral_nd : context -> int -> int -> rat_num - - (** Create a real numeral. - @return A Term with the given value and sort Real *) - val mk_numeral_s : context -> string -> rat_num - - (** Create a real numeral. - @return A Term with the given value and sort Real *) - val mk_numeral_i : context -> int -> rat_num - - (** Creates an expression that checks whether a real number is an integer. *) - val mk_is_integer : context -> real_expr -> Boolean.bool_expr - - (** Coerce a real to an integer. - - The semantics of this function follows the SMT-LIB standard for the function to_int. - The argument must be of real sort. *) - val mk_real2int : context -> real_expr -> Integer.int_expr - end - - (** Algebraic Numbers *) - and AlgebraicNumber : - sig - type algebraic_num = AlgebraicNum of arith_expr - - val arith_expr_of_algebraic_num : Arithmetic.AlgebraicNumber.algebraic_num -> Arithmetic.arith_expr - val algebraic_num_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.AlgebraicNumber.algebraic_num - - (** Return a upper bound for a given real algebraic number. - The interval isolating the number is smaller than 1/10^precision. - {!is_algebraic_number} - @return A numeral Expr of sort Real *) - val to_upper : algebraic_num -> int -> Real.rat_num - - (** Return a lower bound for the given real algebraic number. - The interval isolating the number is smaller than 1/10^precision. - {!is_algebraic_number} - @return A numeral Expr of sort Real *) - val to_lower : algebraic_num -> int -> Real.rat_num - - (** Returns a string representation in decimal notation. - The result has at most as many decimal places as the int argument provided.*) - val to_decimal_string : algebraic_num -> int -> string - - (** Returns a string representation of the numeral. *) - val to_string : algebraic_num -> string - end - - (** Indicates whether the term is of integer sort. *) - val is_int : Expr.expr -> bool - - (** Indicates whether the term is an arithmetic numeral. *) - val is_arithmetic_numeral : Expr.expr -> bool - - (** Indicates whether the term is a less-than-or-equal *) - val is_le : Expr.expr -> bool - - (** Indicates whether the term is a greater-than-or-equal *) - val is_ge : Expr.expr -> bool - - (** Indicates whether the term is a less-than *) - val is_lt : Expr.expr -> bool - - (** Indicates whether the term is a greater-than *) - val is_gt : Expr.expr -> bool - - (** Indicates whether the term is addition (binary) *) - val is_add : Expr.expr -> bool - - (** Indicates whether the term is subtraction (binary) *) - val is_sub : Expr.expr -> bool - - (** Indicates whether the term is a unary minus *) - val is_uminus : Expr.expr -> bool - - (** Indicates whether the term is multiplication (binary) *) - val is_mul : Expr.expr -> bool - - (** Indicates whether the term is division (binary) *) - val is_div : Expr.expr -> bool - - (** Indicates whether the term is integer division (binary) *) - val is_idiv : Expr.expr -> bool - - (** Indicates whether the term is remainder (binary) *) - val is_remainder : Expr.expr -> bool - - (** Indicates whether the term is modulus (binary) *) - val is_modulus : Expr.expr -> bool - - (** Indicates whether the term is a coercion of integer to real (unary) *) - val is_inttoreal : Expr.expr -> bool - - (** Indicates whether the term is a coercion of real to integer (unary) *) - val is_real_to_int : Expr.expr -> bool - - (** Indicates whether the term is a check that tests whether a real is integral (unary) *) - val is_real_is_int : Expr.expr -> bool - - (** Indicates whether the term is of sort real. *) - val is_real : Expr.expr -> bool - - (** Indicates whether the term is an integer numeral. *) - val is_int_numeral : Expr.expr -> bool - - (** Indicates whether the term is a real numeral. *) - val is_rat_num : Expr.expr -> bool - - (** Indicates whether the term is an algebraic number *) - val is_algebraic_number : Expr.expr -> bool - - (** Create an expression representing t[0] + t[1] + .... *) - val mk_add : context -> arith_expr list -> arith_expr - - (** Create an expression representing t[0] * t[1] * .... *) - val mk_mul : context -> arith_expr list -> arith_expr - - (** Create an expression representing t[0] - t[1] - .... *) - val mk_sub : context -> arith_expr list -> arith_expr - - (** Create an expression representing -t. *) - val mk_unary_minus : context -> arith_expr -> arith_expr - - (** Create an expression representing t1 / t2. *) - val mk_div : context -> arith_expr -> arith_expr -> arith_expr - - (** Create an expression representing t1 ^ t2. *) - val mk_power : context -> arith_expr -> arith_expr -> arith_expr - - (** Create an expression representing t1 < t2 *) - val mk_lt : context -> arith_expr -> arith_expr -> Boolean.bool_expr - - (** Create an expression representing t1 <= t2 *) - val mk_le : context -> arith_expr -> arith_expr -> Boolean.bool_expr - - (** Create an expression representing t1 > t2 *) - val mk_gt : context -> arith_expr -> arith_expr -> Boolean.bool_expr - - (** Create an expression representing t1 >= t2 *) - val mk_ge : context -> arith_expr -> arith_expr -> Boolean.bool_expr -end - -(** Functions to manipulate bit-vector expressions *) -and BitVector : -sig - type bitvec_sort = BitVecSort of Sort.sort - type bitvec_expr = BitVecExpr of Expr.expr - type bitvec_num = BitVecNum of bitvec_expr - - val sort_of_bitvec_sort : BitVector.bitvec_sort -> Sort.sort - val bitvec_sort_of_sort : Sort.sort -> BitVector.bitvec_sort - val expr_of_bitvec_expr : BitVector.bitvec_expr -> Expr.expr - val bitvec_expr_of_bitvec_num : BitVector.bitvec_num -> BitVector.bitvec_expr - val bitvec_expr_of_expr : Expr.expr -> BitVector.bitvec_expr - val bitvec_num_of_bitvec_expr : BitVector.bitvec_expr -> BitVector.bitvec_num - - (** Create a new bit-vector sort. *) - val mk_sort : context -> int -> bitvec_sort - - (** Indicates whether the terms is of bit-vector sort. *) - val is_bv : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector numeral *) - val is_bv_numeral : Expr.expr -> bool - - (** Indicates whether the term is a one-bit bit-vector with value one *) - val is_bv_bit1 : Expr.expr -> bool - - (** Indicates whether the term is a one-bit bit-vector with value zero *) - val is_bv_bit0 : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector unary minus *) - val is_bv_uminus : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector addition (binary) *) - val is_bv_add : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector subtraction (binary) *) - val is_bv_sub : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector multiplication (binary) *) - val is_bv_mul : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector signed division (binary) *) - val is_bv_sdiv : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector unsigned division (binary) *) - val is_bv_udiv : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector signed remainder (binary) *) - val is_bv_SRem : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector unsigned remainder (binary) *) - val is_bv_urem : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector signed modulus *) - val is_bv_smod : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector signed division by zero *) - val is_bv_sdiv0 : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector unsigned division by zero *) - val is_bv_udiv0 : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector signed remainder by zero *) - val is_bv_srem0 : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector unsigned remainder by zero *) - val is_bv_urem0 : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector signed modulus by zero *) - val is_bv_smod0 : Expr.expr -> bool - - (** Indicates whether the term is an unsigned bit-vector less-than-or-equal *) - val is_bv_ule : Expr.expr -> bool - - (** Indicates whether the term is a signed bit-vector less-than-or-equal *) - val is_bv_sle : Expr.expr -> bool - - (** Indicates whether the term is an unsigned bit-vector greater-than-or-equal *) - val is_bv_uge : Expr.expr -> bool - - (** Indicates whether the term is a signed bit-vector greater-than-or-equal *) - val is_bv_sge : Expr.expr -> bool - - (** Indicates whether the term is an unsigned bit-vector less-than *) - val is_bv_ult : Expr.expr -> bool - - (** Indicates whether the term is a signed bit-vector less-than *) - val is_bv_slt : Expr.expr -> bool - - (** Indicates whether the term is an unsigned bit-vector greater-than *) - val is_bv_ugt : Expr.expr -> bool - - (** Indicates whether the term is a signed bit-vector greater-than *) - val is_bv_sgt : Expr.expr -> bool - - (** Indicates whether the term is a bit-wise AND *) - val is_bv_and : Expr.expr -> bool - - (** Indicates whether the term is a bit-wise OR *) - val is_bv_or : Expr.expr -> bool - - (** Indicates whether the term is a bit-wise NOT *) - val is_bv_not : Expr.expr -> bool - - (** Indicates whether the term is a bit-wise XOR *) - val is_bv_xor : Expr.expr -> bool - - (** Indicates whether the term is a bit-wise NAND *) - val is_bv_nand : Expr.expr -> bool - - (** Indicates whether the term is a bit-wise NOR *) - val is_bv_nor : Expr.expr -> bool - - (** Indicates whether the term is a bit-wise XNOR *) - val is_bv_xnor : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector concatenation (binary) *) - val is_bv_concat : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector sign extension *) - val is_bv_signextension : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector zero extension *) - val is_bv_zeroextension : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector extraction *) - val is_bv_extract : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector repetition *) - val is_bv_repeat : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector reduce OR *) - val is_bv_reduceor : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector reduce AND *) - val is_bv_reduceand : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector comparison *) - val is_bv_comp : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector shift left *) - val is_bv_shiftleft : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector logical shift right *) - val is_bv_shiftrightlogical : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector arithmetic shift left *) - val is_bv_shiftrightarithmetic : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector rotate left *) - val is_bv_rotateleft : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector rotate right *) - val is_bv_rotateright : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector rotate left (extended) - Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one. *) - val is_bv_rotateleftextended : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector rotate right (extended) - Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one. *) - val is_bv_rotaterightextended : Expr.expr -> bool - - (** Indicates whether the term is a coercion from integer to bit-vector - This function is not supported by the decision procedures. Only the most - rudimentary simplification rules are applied to this function. *) - - (** Indicates whether the term is a coercion from bit-vector to integer - This function is not supported by the decision procedures. Only the most - rudimentary simplification rules are applied to this function. *) - val is_int_to_bv : Expr.expr -> bool - - (** Indicates whether the term is a coercion from integer to bit-vector - This function is not supported by the decision procedures. Only the most - rudimentary simplification rules are applied to this function. *) - val is_bv_to_int : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector carry - Compute the carry bit in a full-adder. The meaning is given by the - equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3))) *) - val is_bv_carry : Expr.expr -> bool - - (** Indicates whether the term is a bit-vector ternary XOR - The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3) *) - val is_bv_xor3 : Expr.expr -> bool - - (** The size of a bit-vector sort. *) - val get_size : bitvec_sort -> int - - (** Retrieve the int value. *) - val get_int : bitvec_num -> int - - (** Returns a string representation of the numeral. *) - val to_string : bitvec_num -> string - - (** Creates a bit-vector constant. *) - val mk_const : context -> Symbol.symbol -> int -> bitvec_expr - - (** Creates a bit-vector constant. *) - val mk_const_s : context -> string -> int -> bitvec_expr - - (** Bitwise negation. - The argument must have a bit-vector sort. *) - val mk_not : context -> bitvec_expr -> Expr.expr - - (** Take conjunction of bits in a vector,vector of length 1. - The argument must have a bit-vector sort. *) - val mk_redand : context -> bitvec_expr -> Expr.expr - - (** Take disjunction of bits in a vector,vector of length 1. - The argument must have a bit-vector sort. *) - val mk_redor : context -> bitvec_expr -> Expr.expr - - (** Bitwise conjunction. - The arguments must have a bit-vector sort. *) - val mk_and : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Bitwise disjunction. - The arguments must have a bit-vector sort. *) - val mk_or : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Bitwise XOR. - The arguments must have a bit-vector sort. *) - val mk_xor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Bitwise NAND. - The arguments must have a bit-vector sort. *) - val mk_nand : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Bitwise NOR. - The arguments must have a bit-vector sort. *) - val mk_nor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Bitwise XNOR. - The arguments must have a bit-vector sort. *) - val mk_xnor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Standard two's complement unary minus. - The arguments must have a bit-vector sort. *) - val mk_neg : context -> bitvec_expr -> bitvec_expr - - (** Two's complement addition. - The arguments must have the same bit-vector sort. *) - val mk_add : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Two's complement subtraction. - The arguments must have the same bit-vector sort. *) - val mk_sub : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Two's complement multiplication. - The arguments must have the same bit-vector sort. *) - val mk_mul : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Unsigned division. - - - It is defined as the floor of t1/t2 if \c t2 is - different from zero. If t2 is zero, then the result - is undefined. - The arguments must have the same bit-vector sort. *) - val mk_udiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Signed division. - - It is defined in the following way: - - - The \c floor of t1/t2 if \c t2 is different from zero, and t1*t2 >= 0. - - - The \c ceiling of t1/t2 if \c t2 is different from zero, and t1*t2 < 0. - - If t2 is zero, then the result is undefined. - The arguments must have the same bit-vector sort. *) - val mk_sdiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Unsigned remainder. - - It is defined as t1 - (t1 /u t2) * t2, where /u represents unsigned division. - If t2 is zero, then the result is undefined. - The arguments must have the same bit-vector sort. *) - val mk_urem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Signed remainder. - - It is defined as t1 - (t1 /s t2) * t2, where /s represents signed division. - The most significant bit (sign) of the result is equal to the most significant bit of \c t1. - - If t2 is zero, then the result is undefined. - The arguments must have the same bit-vector sort. *) - val mk_srem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Two's complement signed remainder (sign follows divisor). - - If t2 is zero, then the result is undefined. - The arguments must have the same bit-vector sort. *) - val mk_smod : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Unsigned less-than - - The arguments must have the same bit-vector sort. *) - val mk_ult : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Two's complement signed less-than - - The arguments must have the same bit-vector sort. *) - val mk_slt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Unsigned less-than or equal to. - - The arguments must have the same bit-vector sort. *) - val mk_ule : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Two's complement signed less-than or equal to. - - The arguments must have the same bit-vector sort. *) - val mk_sle : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Unsigned greater than or equal to. - - The arguments must have the same bit-vector sort. *) - val mk_uge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Two's complement signed greater than or equal to. - - The arguments must have the same bit-vector sort. *) - val mk_sge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Unsigned greater-than. - - The arguments must have the same bit-vector sort. *) - val mk_ugt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Two's complement signed greater-than. - - The arguments must have the same bit-vector sort. *) - val mk_sgt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Bit-vector concatenation. - - The arguments must have a bit-vector sort. - @return - The result is a bit-vector of size n1+n2, where n1 (n2) - is the size of t1 (t2). *) - val mk_concat : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Bit-vector extraction. - - Extract the bits between two limits from a bitvector of - size m to yield a new bitvector of size n, where - n = high - low + 1. *) - val mk_extract : context -> int -> int -> bitvec_expr -> bitvec_expr - - (** Bit-vector sign extension. - - Sign-extends the given bit-vector to the (signed) equivalent bitvector of - size m+i, where \c m is the size of the given bit-vector. *) - val mk_sign_ext : context -> int -> bitvec_expr -> bitvec_expr - - (** Bit-vector zero extension. - - Extend the given bit-vector with zeros to the (unsigned) equivalent - bitvector of size m+i, where \c m is the size of the - given bit-vector. *) - val mk_zero_ext : context -> int -> bitvec_expr -> bitvec_expr - - (** Bit-vector repetition. *) - val mk_repeat : context -> int -> bitvec_expr -> bitvec_expr - - (** Shift left. - - It is equivalent to multiplication by 2^x where \c x is the value of third argument. - - NB. The semantics of shift operations varies between environments. This - definition does not necessarily capture directly the semantics of the - programming language or assembly architecture you are modeling.*) - val mk_shl : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Logical shift right - - It is equivalent to unsigned division by 2^x where \c x is the value of the third argument. - - NB. The semantics of shift operations varies between environments. This - definition does not necessarily capture directly the semantics of the - programming language or assembly architecture you are modeling. - - The arguments must have a bit-vector sort. *) - val mk_lshr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Arithmetic shift right - - It is like logical shift right except that the most significant - bits of the result always copy the most significant bit of the - second argument. - - NB. The semantics of shift operations varies between environments. This - definition does not necessarily capture directly the semantics of the - programming language or assembly architecture you are modeling. - - The arguments must have a bit-vector sort. *) - val mk_ashr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Rotate Left. - Rotate bits of \c t to the left \c i times. *) - val mk_rotate_left : context -> int -> bitvec_expr -> bitvec_expr - - (** Rotate Right. - Rotate bits of \c t to the right \c i times.*) - val mk_rotate_right : context -> int -> bitvec_expr -> bitvec_expr - - (** Rotate Left. - Rotate bits of the second argument to the left.*) - val mk_ext_rotate_left : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Rotate Right. - Rotate bits of the second argument to the right. *) - val mk_ext_rotate_right : context -> bitvec_expr -> bitvec_expr -> bitvec_expr - - (** Create an integer from the bit-vector argument - - If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned. - So the result is non-negative and in the range [0..2^N-1], where - N are the number of bits in the argument. - If \c is_signed is true, \c t1 is treated as a signed bit-vector. - - NB. This function is essentially treated as uninterpreted. - So you cannot expect Z3 to precisely reflect the semantics of this function - when solving constraints with this function.*) - val mk_bv2int : context -> bitvec_expr -> bool -> Arithmetic.Integer.int_expr - - (** Create a predicate that checks that the bit-wise addition does not overflow. - - The arguments must be of bit-vector sort. *) - val mk_add_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr - - (** Create a predicate that checks that the bit-wise addition does not underflow. - - The arguments must be of bit-vector sort. *) - val mk_add_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Create a predicate that checks that the bit-wise subtraction does not overflow. - - The arguments must be of bit-vector sort. *) - val mk_sub_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Create a predicate that checks that the bit-wise subtraction does not underflow. - - The arguments must be of bit-vector sort. *) - val mk_sub_no_underflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr - - (** Create a predicate that checks that the bit-wise signed division does not overflow. - - The arguments must be of bit-vector sort. *) - val mk_sdiv_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Create a predicate that checks that the bit-wise negation does not overflow. - - The arguments must be of bit-vector sort. *) - val mk_neg_no_overflow : context -> bitvec_expr -> Boolean.bool_expr - - (** Create a predicate that checks that the bit-wise multiplication does not overflow. - - The arguments must be of bit-vector sort. *) - val mk_mul_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr - - (** Create a predicate that checks that the bit-wise multiplication does not underflow. - - The arguments must be of bit-vector sort. *) - val mk_mul_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr - - (** Create a bit-vector numeral. *) - val mk_numeral : context -> string -> int -> bitvec_num -end - -(** Functions to manipulate proof expressions *) -module Proof : -sig - (** Indicates whether the term is a Proof for the expression 'true'. *) - val is_true : Expr.expr -> bool - - (** Indicates whether the term is a proof for a fact asserted by the user. *) - val is_asserted : Expr.expr -> bool - - (** Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user. *) - val is_goal : Expr.expr -> bool - - (** Indicates whether the term is proof via modus ponens - - Given a proof for p and a proof for (implies p q), produces a proof for q. - T1: p - T2: (implies p q) - [mp T1 T2]: q - The second antecedents may also be a proof for (iff p q). *) - val is_modus_ponens : Expr.expr -> bool - - (** Indicates whether the term is a proof for (R t t), where R is a reflexive relation. - This proof object has no antecedents. - The only reflexive relations that are used are - equivalence modulo namings, equality and equivalence. - That is, R is either '~', '=' or 'iff'. *) - val is_reflexivity : Expr.expr -> bool - - (** Indicates whether the term is proof by symmetricity of a relation - - Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t). - T1: (R t s) - [symmetry T1]: (R s t) - T1 is the antecedent of this proof object. *) - val is_symmetry : Expr.expr -> bool - - (** Indicates whether the term is a proof by transitivity of a relation - - Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof - for (R t u). - T1: (R t s) - T2: (R s u) - [trans T1 T2]: (R t u) *) - val is_transitivity : Expr.expr -> bool - - (** Indicates whether the term is a proof by condensed transitivity of a relation - - Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1. - It combines several symmetry and transitivity proofs. - Example: - T1: (R a b) - T2: (R c b) - T3: (R c d) - [trans* T1 T2 T3]: (R a d) - R must be a symmetric and transitive relation. - - Assuming that this proof object is a proof for (R s t), then - a proof checker must check if it is possible to prove (R s t) - using the antecedents, symmetry and transitivity. That is, - if there is a path from s to t, if we view every - antecedent (R a b) as an edge between a and b. *) - val is_Transitivity_star : Expr.expr -> bool - - (** Indicates whether the term is a monotonicity proof object. - - T1: (R t_1 s_1) - ... - Tn: (R t_n s_n) - [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n)) - Remark: if t_i == s_i, then the antecedent Ti is suppressed. - That is, reflexivity proofs are supressed to save space. *) - val is_monotonicity : Expr.expr -> bool - - (** Indicates whether the term is a quant-intro proof - - Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)). - T1: (~ p q) - [quant-intro T1]: (~ (forall (x) p) (forall (x) q)) *) - val is_quant_intro : Expr.expr -> bool - - (** Indicates whether the term is a distributivity proof object. - - Given that f (= or) distributes over g (= and), produces a proof for - (= (f a (g c d)) - (g (f a c) (f a d))) - If f and g are associative, this proof also justifies the following equality: - (= (f (g a b) (g c d)) - (g (f a c) (f a d) (f b c) (f b d))) - where each f and g can have arbitrary number of arguments. - - This proof object has no antecedents. - Remark. This rule is used by the CNF conversion pass and - instantiated by f = or, and g = and. *) - val is_distributivity : Expr.expr -> bool - - (** Indicates whether the term is a proof by elimination of AND - - Given a proof for (and l_1 ... l_n), produces a proof for l_i - T1: (and l_1 ... l_n) - [and-elim T1]: l_i *) - val is_and_elimination : Expr.expr -> bool - - (** Indicates whether the term is a proof by eliminiation of not-or - - Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i). - T1: (not (or l_1 ... l_n)) - [not-or-elim T1]: (not l_i) *) - val is_or_elimination : Expr.expr -> bool - - (** Indicates whether the term is a proof by rewriting - - A proof for a local rewriting step (= t s). - The head function symbol of t is interpreted. - - This proof object has no antecedents. - The conclusion of a rewrite rule is either an equality (= t s), - an equivalence (iff t s), or equi-satisfiability (~ t s). - Remark: if f is bool, then = is iff. - - Examples: - (= (+ ( x : expr ) 0) x) - (= (+ ( x : expr ) 1 2) (+ 3 x)) - (iff (or ( x : expr ) false) x) *) - val is_rewrite : Expr.expr -> bool - - (** Indicates whether the term is a proof by rewriting - - A proof for rewriting an expression t into an expression s. - This proof object is used if the parameter PROOF_MODE is 1. - This proof object can have n antecedents. - The antecedents are proofs for equalities used as substitution rules. - The object is also used in a few cases if the parameter PROOF_MODE is 2. - The cases are: - - When applying contextual simplification (CONTEXT_SIMPLIFIER=true) - - When converting bit-vectors to Booleans (BIT2BOOL=true) - - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true) *) - val is_rewrite_star : Expr.expr -> bool - - (** Indicates whether the term is a proof for pulling quantifiers out. - - A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents. *) - val is_pull_quant : Expr.expr -> bool - - (** Indicates whether the term is a proof for pulling quantifiers out. - - A proof for (iff P Q) where Q is in prenex normal form. - This proof object is only used if the parameter PROOF_MODE is 1. - This proof object has no antecedents *) - val is_pull_quant_star : Expr.expr -> bool - - (** Indicates whether the term is a proof for pushing quantifiers in. - - A proof for: - (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m])) - (and (forall (x_1 ... x_m) p_1[x_1 ... x_m]) - ... - (forall (x_1 ... x_m) p_n[x_1 ... x_m]))) - This proof object has no antecedents *) - val is_push_quant : Expr.expr -> bool - - (** Indicates whether the term is a proof for elimination of unused variables. - - A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n]) - (forall (x_1 ... x_n) p[x_1 ... x_n])) - - It is used to justify the elimination of unused variables. - This proof object has no antecedents. *) - val is_elim_unused_vars : Expr.expr -> bool - - (** Indicates whether the term is a proof for destructive equality resolution - - A proof for destructive equality resolution: - (iff (forall (x) (or (not (= ( x : expr ) t)) P[x])) P[t]) - if ( x : expr ) does not occur in t. - - This proof object has no antecedents. - - Several variables can be eliminated simultaneously. *) - val is_der : Expr.expr -> bool - - (** Indicates whether the term is a proof for quantifier instantiation - - A proof of (or (not (forall (x) (P x))) (P a)) *) - val is_quant_inst : Expr.expr -> bool - - (** Indicates whether the term is a hypthesis marker. - Mark a hypothesis in a natural deduction style proof. *) - val is_hypothesis : Expr.expr -> bool - - (** Indicates whether the term is a proof by lemma - - T1: false - [lemma T1]: (or (not l_1) ... (not l_n)) - - This proof object has one antecedent: a hypothetical proof for false. - It converts the proof in a proof for (or (not l_1) ... (not l_n)), - when T1 contains the hypotheses: l_1, ..., l_n. *) - val is_lemma : Expr.expr -> bool - - (** Indicates whether the term is a proof by unit resolution - - T1: (or l_1 ... l_n l_1' ... l_m') - T2: (not l_1) - ... - T(n+1): (not l_n) - [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m') *) - val is_unit_resolution : Expr.expr -> bool - - (** Indicates whether the term is a proof by iff-true - - T1: p - [iff-true T1]: (iff p true) *) - val is_iff_true : Expr.expr -> bool - - (** Indicates whether the term is a proof by iff-false - - T1: (not p) - [iff-false T1]: (iff p false) *) - val is_iff_false : Expr.expr -> bool - - (** Indicates whether the term is a proof by commutativity - - [comm]: (= (f a b) (f b a)) - - f is a commutative operator. - - This proof object has no antecedents. - Remark: if f is bool, then = is iff. *) - val is_commutativity : Expr.expr -> bool - - (** Indicates whether the term is a proof for Tseitin-like axioms - - Proof object used to justify Tseitin's like axioms: - - (or (not (and p q)) p) - (or (not (and p q)) q) - (or (not (and p q r)) p) - (or (not (and p q r)) q) - (or (not (and p q r)) r) - ... - (or (and p q) (not p) (not q)) - (or (not (or p q)) p q) - (or (or p q) (not p)) - (or (or p q) (not q)) - (or (not (iff p q)) (not p) q) - (or (not (iff p q)) p (not q)) - (or (iff p q) (not p) (not q)) - (or (iff p q) p q) - (or (not (ite a b c)) (not a) b) - (or (not (ite a b c)) a c) - (or (ite a b c) (not a) (not b)) - (or (ite a b c) a (not c)) - (or (not (not a)) (not a)) - (or (not a) a) - - This proof object has no antecedents. - Note: all axioms are propositional tautologies. - Note also that 'and' and 'or' can take multiple arguments. - You can recover the propositional tautologies by - unfolding the Boolean connectives in the axioms a small - bounded number of steps (=3). *) - val is_def_axiom : Expr.expr -> bool - - (** Indicates whether the term is a proof for introduction of a name - - Introduces a name for a formula/term. - Suppose e is an expression with free variables x, and def-intro - introduces the name n(x). The possible cases are: - - When e is of Boolean type: - [def-intro]: (and (or n (not e)) (or (not n) e)) - - or: - [def-intro]: (or (not n) e) - when e only occurs positively. - - When e is of the form (ite cond th el): - [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el))) - - Otherwise: - [def-intro]: (= n e) *) - val is_def_intro : Expr.expr -> bool - - (** Indicates whether the term is a proof for application of a definition - - [apply-def T1]: F ~ n - F is 'equivalent' to n, given that T1 is a proof that - n is a name for F. *) - val is_apply_def : Expr.expr -> bool - - (** Indicates whether the term is a proof iff-oeq - - T1: (iff p q) - [iff~ T1]: (~ p q) *) - val is_iff_oeq : Expr.expr -> bool - - (** Indicates whether the term is a proof for a positive NNF step - - Proof for a (positive) NNF step. Example: - - T1: (not s_1) ~ r_1 - T2: (not s_2) ~ r_2 - T3: s_1 ~ r_1' - T4: s_2 ~ r_2' - [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2) - (and (or r_1 r_2') (or r_1' r_2))) - - The negation normal form steps NNF_POS and NNF_NEG are used in the following cases: - (a) When creating the NNF of a positive force quantifier. - The quantifier is retained (unless the bound variables are eliminated). - Example - T1: q ~ q_new - [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new)) - - (b) When recursively creating NNF over Boolean formulas, where the top-level - connective is changed during NNF conversion. The relevant Boolean connectives - for NNF_POS are 'implies', 'iff', 'xor', 'ite'. - NNF_NEG furthermore handles the case where negation is pushed - over Boolean connectives 'and' and 'or'. *) - val is_nnf_pos : Expr.expr -> bool - - (** Indicates whether the term is a proof for a negative NNF step - - Proof for a (negative) NNF step. Examples: - - T1: (not s_1) ~ r_1 - ... - Tn: (not s_n) ~ r_n - [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n) - and - T1: (not s_1) ~ r_1 - ... - Tn: (not s_n) ~ r_n - [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n) - and - T1: (not s_1) ~ r_1 - T2: (not s_2) ~ r_2 - T3: s_1 ~ r_1' - T4: s_2 ~ r_2' - [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2)) - (and (or r_1 r_2) (or r_1' r_2'))) *) - val is_nnf_neg : Expr.expr -> bool - - (** Indicates whether the term is a proof for (~ P Q) here Q is in negation normal form. - - A proof for (~ P Q) where Q is in negation normal form. - - This proof object is only used if the parameter PROOF_MODE is 1. - - This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO. *) - val is_nnf_star : Expr.expr -> bool - - (** Indicates whether the term is a proof for (~ P Q) where Q is in conjunctive normal form. - - A proof for (~ P Q) where Q is in conjunctive normal form. - This proof object is only used if the parameter PROOF_MODE is 1. - This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO. *) - val is_cnf_star : Expr.expr -> bool - - (** Indicates whether the term is a proof for a Skolemization step - - Proof for: - - [sk]: (~ (not (forall ( x : expr ) (p ( x : expr ) y))) (not (p (sk y) y))) - [sk]: (~ (exists ( x : expr ) (p ( x : expr ) y)) (p (sk y) y)) - - This proof object has no antecedents. *) - val is_skolemize : Expr.expr -> bool - - (** Indicates whether the term is a proof by modus ponens for equi-satisfiability. - - Modus ponens style rule for equi-satisfiability. - T1: p - T2: (~ p q) - [mp~ T1 T2]: q *) - val is_modus_ponens_oeq : Expr.expr -> bool - - (** Indicates whether the term is a proof for theory lemma - - Generic proof for theory lemmas. - - The theory lemma function comes with one or more parameters. - The first parameter indicates the name of the theory. - For the theory of arithmetic, additional parameters provide hints for - checking the theory lemma. - The hints for arithmetic are: - - farkas - followed by rational coefficients. Multiply the coefficients to the - inequalities in the lemma, add the (negated) inequalities and obtain a contradiction. - - triangle-eq - Indicates a lemma related to the equivalence: - (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1))) - - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test. *) - val is_theory_lemma : Expr.expr -> bool -end - -(** Goals - - A goal (aka problem). A goal is essentially a - of formulas, that can be solved and/or transformed using - tactics and solvers. *) -module Goal : -sig - type goal - - (** The precision of the goal. - - Goals can be transformed using over and under approximations. - An under approximation is applied when the objective is to find a model for a given goal. - An over approximation is applied when the objective is to find a proof for a given goal. *) - val get_precision : goal -> Z3enums.goal_prec - - (** Indicates whether the goal is precise. *) - val is_precise : goal -> bool - - (** Indicates whether the goal is an under-approximation. *) - val is_underapproximation : goal -> bool - - (** Indicates whether the goal is an over-approximation. *) - val is_overapproximation : goal -> bool - - (** Indicates whether the goal is garbage (i.e., the product of over- and under-approximations). *) - val is_garbage : goal -> bool - - (** Adds the constraints to the given goal. *) - val assert_ : goal -> Boolean.bool_expr list -> unit - - (** Indicates whether the goal contains `false'. *) - val is_inconsistent : goal -> bool - - (** The depth of the goal. - This tracks how many transformations were applied to it. *) - val get_depth : goal -> int - - (** Erases all formulas from the given goal. *) - val reset : goal -> unit - - (** The number of formulas in the goal. *) - val get_size : goal -> int - - (** The formulas in the goal. *) - val get_formulas : goal -> Boolean.bool_expr list - - (** The number of formulas, subformulas and terms in the goal. *) - val get_num_exprs : goal -> int - - (** Indicates whether the goal is empty, and it is precise or the product of an under approximation. *) - val is_decided_sat : goal -> bool - - (** Indicates whether the goal contains `false', and it is precise or the product of an over approximation. *) - val is_decided_unsat : goal -> bool - - (** Translates (copies) the Goal to another context.. *) - val translate : goal -> context -> goal - - (** Simplifies the goal. Essentially invokes the `simplify' tactic on the goal. *) - val simplify : goal -> Params.params option -> goal - - (** Creates a new Goal. - - Note that the Context must have been created with proof generation support if - the fourth argument is set to true here. *) - val mk_goal : context -> bool -> bool -> bool -> goal - - (** A string representation of the Goal. *) - val to_string : goal -> string -end - -(** Models - - A Model contains interpretations (assignments) of constants and functions. *) -module Model : -sig - type model - - (** Function interpretations - - A function interpretation is represented as a finite map and an 'else'. - Each entry in the finite map represents the value of a function given a set of arguments. *) - module FuncInterp : - sig - type func_interp - - (** Function interpretations entries - - An Entry object represents an element in the finite map used to a function interpretation. *) - module FuncEntry : - sig - type func_entry - - (** Return the (symbolic) value of this entry. - *) - val get_value : func_entry -> Expr.expr - - (** The number of arguments of the entry. - *) - val get_num_args : func_entry -> int - - (** The arguments of the function entry. - *) - val get_args : func_entry -> Expr.expr list - - (** A string representation of the function entry. - *) - val to_string : func_entry -> string - end - - (** The number of entries in the function interpretation. *) - val get_num_entries : func_interp -> int - - (** The entries in the function interpretation *) - val get_entries : func_interp -> FuncEntry.func_entry list - - (** The (symbolic) `else' value of the function interpretation. *) - val get_else : func_interp -> Expr.expr - - (** The arity of the function interpretation *) - val get_arity : func_interp -> int - - (** A string representation of the function interpretation. *) - val to_string : func_interp -> string - end - - (** Retrieves the interpretation (the assignment) of a func_decl in the model. - An expression if the function has an interpretation in the model, null otherwise. *) - val get_const_interp : model -> FuncDecl.func_decl -> Expr.expr option - - (** Retrieves the interpretation (the assignment) of an expression in the model. - An expression if the constant has an interpretation in the model, null otherwise. *) - val get_const_interp_e : model -> Expr.expr -> Expr.expr option - - (** Retrieves the interpretation (the assignment) of a non-constant func_decl in the model. - A FunctionInterpretation if the function has an interpretation in the model, null otherwise. *) - val get_func_interp : model -> FuncDecl.func_decl -> FuncInterp.func_interp option - - (** The number of constant interpretations in the model. *) - val get_num_consts : model -> int - - (** The function declarations of the constants in the model. *) - val get_const_decls : model -> FuncDecl.func_decl list - - (** The number of function interpretations in the model. *) - val get_num_funcs : model -> int - - (** The function declarations of the function interpretations in the model. *) - val get_func_decls : model -> FuncDecl.func_decl list - - (** All symbols that have an interpretation in the model. *) - val get_decls : model -> FuncDecl.func_decl list - - (** A ModelEvaluationFailedException is thrown when an expression cannot be evaluated by the model. *) - exception ModelEvaluationFailedException of string - - (** Evaluates an expression in the current model. - - This function may fail if the argument contains quantifiers, - is partial (MODEL_PARTIAL enabled), or if it is not well-sorted. - In this case a ModelEvaluationFailedException is thrown. - *) - val eval : model -> Expr.expr -> bool -> Expr.expr - - (** Alias for eval. *) - val evaluate : model -> Expr.expr -> bool -> Expr.expr - - (** The number of uninterpreted sorts that the model has an interpretation for. *) - val get_num_sorts : model -> int - - (** The uninterpreted sorts that the model has an interpretation for. - - Z3 also provides an intepretation for uninterpreted sorts used in a formula. - The interpretation for a sort is a finite set of distinct values. We say this finite set is - the "universe" of the sort. - {!get_num_sorts} - {!sort_universe} *) - val get_sorts : model -> Sort.sort list - - (** The finite set of distinct values that represent the interpretation of a sort. - {!get_sorts} - @returns A list of expressions, where each is an element of the universe of the sort *) - val sort_universe : model -> Sort.sort -> AST.ast list - - (** Conversion of models to strings. - A string representation of the model. *) - val to_string : model -> string -end - -(** Probes - - Probes are used to inspect a goal (aka problem) and collect information that may be used to decide - which solver and/or preprocessing step will be used. - The complete list of probes may be obtained using the procedures Context.NumProbes - and Context.ProbeNames. - It may also be obtained using the command (help-tactics) in the SMT 2.0 front-end. -*) -module Probe : -sig - type probe - - (** Execute the probe over the goal. - A probe always produce a double value. - "Boolean" probes return 0.0 for false, and a value different from 0.0 for true. *) - val apply : probe -> Goal.goal -> float - - (** The number of supported Probes. *) - val get_num_probes : context -> int - - (** The names of all supported Probes. *) - val get_probe_names : context -> string list - - (** Returns a string containing a description of the probe with the given name. *) - val get_probe_description : context -> string -> string - - (** Creates a new Probe. *) - val mk_probe : context -> string -> probe - - (** Create a probe that always evaluates to a float value. *) - val const : context -> float -> probe - - (** Create a probe that evaluates to "true" when the value returned by the first argument - is less than the value returned by second argument *) - val lt : context -> probe -> probe -> probe - - (** Create a probe that evaluates to "true" when the value returned by the first argument - is greater than the value returned by second argument *) - val gt : context -> probe -> probe -> probe - - (** Create a probe that evaluates to "true" when the value returned by the first argument - is less than or equal the value returned by second argument *) - val le : context -> probe -> probe -> probe - - (** Create a probe that evaluates to "true" when the value returned by the first argument - is greater than or equal the value returned by second argument *) - val ge : context -> probe -> probe -> probe - - - (** Create a probe that evaluates to "true" when the value returned by the first argument - is equal the value returned by second argument *) - val eq : context -> probe -> probe -> probe - - (** Create a probe that evaluates to "true" when both of two probes evaluate to "true". *) - val and_ : context -> probe -> probe -> probe - - (** Create a probe that evaluates to "true" when either of two probes evaluates to "true". *) - val or_ : context -> probe -> probe -> probe - - (** Create a probe that evaluates to "true" when another probe does not evaluate to "true". *) - val not_ : context -> probe -> probe -end - -(** Tactics - - Tactics are the basic building block for creating custom solvers for specific problem domains. - The complete list of tactics may be obtained using Context.get_num_tactics - and Context.get_tactic_names. - It may also be obtained using the command (help-tactics) in the SMT 2.0 front-end. -*) -module Tactic : -sig - type tactic - - (** Tactic application results - - ApplyResult objects represent the result of an application of a - tactic to a goal. It contains the subgoals that were produced. *) - module ApplyResult : - sig - type apply_result - - (** The number of Subgoals. *) - val get_num_subgoals : apply_result -> int - - (** Retrieves the subgoals from the apply_result. *) - val get_subgoals : apply_result -> Goal.goal list - - (** Retrieves a subgoal from the apply_result. *) - val get_subgoal : apply_result -> int -> Goal.goal - - (** Convert a model for a subgoal into a model for the original - goal g, that the ApplyResult was obtained from. - #return A model for g *) - val convert_model : apply_result -> int -> Model.model -> Model.model - - (** A string representation of the ApplyResult. *) - val to_string : apply_result -> string - end - - (** A string containing a description of parameters accepted by the tactic. *) - val get_help : tactic -> string - - (** Retrieves parameter descriptions for Tactics. *) - val get_param_descrs : tactic -> Params.ParamDescrs.param_descrs - - (** Apply the tactic to the goal. *) - val apply : tactic -> Goal.goal -> Params.params option -> ApplyResult.apply_result - - (** The number of supported tactics. *) - val get_num_tactics : context -> int - - (** The names of all supported tactics. *) - val get_tactic_names : context -> string list - - (** Returns a string containing a description of the tactic with the given name. *) - val get_tactic_description : context -> string -> string - - (** Creates a new Tactic. *) - val mk_tactic : context -> string -> tactic - - (** Create a tactic that applies one tactic to a Goal and - then another one to every subgoal produced by the first one. *) - val and_then : context -> tactic -> tactic -> tactic list -> tactic - - (** Create a tactic that first applies one tactic to a Goal and - if it fails then returns the result of another tactic applied to the Goal. *) - val or_else : context -> tactic -> tactic -> tactic - - (** Create a tactic that applies one tactic to a goal for some time (in milliseconds). - - If the tactic does not terminate within the timeout, then it fails. *) - val try_for : context -> tactic -> int -> tactic - - (** Create a tactic that applies one tactic to a given goal if the probe - evaluates to true. - - If the probe evaluates to false, then the new tactic behaves like the skip tactic. *) - val when_ : context -> Probe.probe -> tactic -> tactic - - (** Create a tactic that applies a tactic to a given goal if the probe - evaluates to true and another tactic otherwise. *) - val cond : context -> Probe.probe -> tactic -> tactic -> tactic - - (** Create a tactic that keeps applying one tactic until the goal is not - modified anymore or the maximum number of iterations is reached. *) - val repeat : context -> tactic -> int -> tactic - - (** Create a tactic that just returns the given goal. *) - val skip : context -> tactic - - (** Create a tactic always fails. *) - val fail : context -> tactic - - (** Create a tactic that fails if the probe evaluates to false. *) - val fail_if : context -> Probe.probe -> tactic - - (** Create a tactic that fails if the goal is not triviall satisfiable (i.e., empty) - or trivially unsatisfiable (i.e., contains `false'). *) - val fail_if_not_decided : context -> tactic - - (** Create a tactic that applies a tactic using the given set of parameters. *) - val using_params : context -> tactic -> Params.params -> tactic - - (** Create a tactic that applies a tactic using the given set of parameters. - Alias for UsingParams*) - val with_ : context -> tactic -> Params.params -> tactic - - (** Create a tactic that applies the given tactics in parallel. *) - val par_or : context -> tactic list -> tactic - - (** Create a tactic that applies a tactic to a given goal and then another tactic - to every subgoal produced by the first one. The subgoals are processed in parallel. *) - val par_and_then : context -> tactic -> tactic -> tactic - - (** Interrupt the execution of a Z3 procedure. - This procedure can be used to interrupt: solvers, simplifiers and tactics. *) - val interrupt : context -> unit -end - -(** Solvers *) -module Solver : -sig - type solver - type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE - - val string_of_status : status -> string - - (** Objects that track statistical information about solvers. *) - module Statistics : - sig - type statistics - - (** Statistical data is organized into pairs of \[Key, Entry\], where every - Entry is either a floating point or integer value. - *) - module Entry : - sig - type statistics_entry - - (** The key of the entry. *) - val get_key : statistics_entry -> string - - (** The int-value of the entry. *) - val get_int : statistics_entry -> int - - (** The float-value of the entry. *) - val get_float : statistics_entry -> float - - (** True if the entry is uint-valued. *) - val is_int : statistics_entry -> bool - - (** True if the entry is double-valued. *) - val is_float : statistics_entry -> bool - - (** The string representation of the the entry's value. *) - val to_string_value : statistics_entry -> string - - (** The string representation of the entry (key and value) *) - val to_string : statistics_entry -> string - end - - (** A string representation of the statistical data. *) - val to_string : statistics -> string - - (** The number of statistical data. *) - val get_size : statistics -> int - - (** The data entries. *) - val get_entries : statistics -> Entry.statistics_entry list - - (** The statistical counters. *) - val get_keys : statistics -> string list - - (** The value of a particular statistical counter. *) - val get : statistics -> string -> Entry.statistics_entry option - end - - (** A string that describes all available solver parameters. *) - val get_help : solver -> string - - (** Sets the solver parameters. *) - val set_parameters : solver -> Params.params -> unit - - (** Retrieves parameter descriptions for solver. *) - val get_param_descrs : solver -> Params.ParamDescrs.param_descrs - - (** The current number of backtracking points (scopes). - {!pop} - {!push} *) - val get_num_scopes : solver -> int - - (** Creates a backtracking point. - {!pop} *) - val push : solver -> unit - - (** Backtracks a number of backtracking points. - Note that an exception is thrown if the integer is not smaller than {!get_num_scopes} - {!push} *) - val pop : solver -> int -> unit - - (** Resets the Solver. - This removes all assertions from the solver. *) - val reset : solver -> unit - - (** Assert a constraint (or multiple) into the solver. *) - val assert_ : solver -> Boolean.bool_expr list -> unit - - (** * Assert multiple constraints (cs) into the solver, and track them (in the - * unsat) core - * using the Boolean constants in ps. - * - * This API is an alternative to {!check} with assumptions for - * extracting unsat cores. - * Both APIs can be used in the same solver. The unsat core will contain a - * combination - * of the Boolean variables provided using {!assert_and_track} - * and the Boolean literals - * provided using {!check} with assumptions. *) - val assert_and_track_a : solver -> Boolean.bool_expr list -> Boolean.bool_expr list -> unit - - (** * Assert a constraint (c) into the solver, and track it (in the unsat) core - * using the Boolean constant p. - * - * This API is an alternative to {!check} with assumptions for - * extracting unsat cores. - * Both APIs can be used in the same solver. The unsat core will contain a - * combination - * of the Boolean variables provided using {!assert_and_track} - * and the Boolean literals - * provided using {!check} with assumptions. *) - val assert_and_track : solver -> Boolean.bool_expr -> Boolean.bool_expr -> unit - - (** The number of assertions in the solver. *) - val get_num_assertions : solver -> int - - (** The set of asserted formulas. *) - val get_assertions : solver -> Boolean.bool_expr list - - (** Checks whether the assertions in the solver are consistent or not. - - {!Model} - {!get_unsat_core} - {!Proof} *) - val check : solver -> Boolean.bool_expr list -> status - - (** The model of the last Check. - - The result is None if Check was not invoked before, - if its results was not SATISFIABLE, or if model production is not enabled. *) - val get_model : solver -> Model.model option - - (** The proof of the last Check. - - The result is null if Check was not invoked before, - if its results was not UNSATISFIABLE, or if proof production is disabled. *) - val get_proof : solver -> Expr.expr option - - (** The unsat core of the last Check. - - The unsat core is a subset of Assertions - The result is empty if Check was not invoked before, - if its results was not UNSATISFIABLE, or if core production is disabled. *) - val get_unsat_core : solver -> AST.ast list - - (** A brief justification of why the last call to Check returned UNKNOWN. *) - val get_reason_unknown : solver -> string - - (** Solver statistics. *) - val get_statistics : solver -> Statistics.statistics - - (** Creates a new (incremental) solver. - - This solver also uses a set of builtin tactics for handling the first - check-sat command, and check-sat commands that take more than a given - number of milliseconds to be solved. *) - val mk_solver : context -> Symbol.symbol option -> solver - - (** Creates a new (incremental) solver. - {!mk_solver} *) - val mk_solver_s : context -> string -> solver - - (** Creates a new (incremental) solver. *) - val mk_simple_solver : context -> solver - - (** Creates a solver that is implemented using the given tactic. - - The solver supports the commands Push and Pop, but it - will always solve each check from scratch. *) - val mk_solver_t : context -> Tactic.tactic -> solver - - (** A string representation of the solver. *) - val to_string : solver -> string -end - -(** Fixedpoint solving *) -module Fixedpoint : -sig - type fixedpoint - - (** A string that describes all available fixedpoint solver parameters. *) - val get_help : fixedpoint -> string - - (** Sets the fixedpoint solver parameters. *) - val set_params : fixedpoint -> Params.params -> unit - - (** Retrieves parameter descriptions for Fixedpoint solver. *) - val get_param_descrs : fixedpoint -> Params.ParamDescrs.param_descrs - - (** Assert a constraints into the fixedpoint solver. *) - val assert_ : fixedpoint -> Boolean.bool_expr list -> unit - - (** Register predicate as recursive relation. *) - val register_relation : fixedpoint -> FuncDecl.func_decl -> unit - - (** Add rule into the fixedpoint solver. *) - val add_rule : fixedpoint -> Boolean.bool_expr -> Symbol.symbol option -> unit - - (** Add table fact to the fixedpoint solver. *) - val add_fact : fixedpoint -> FuncDecl.func_decl -> int list -> unit - - (** Query the fixedpoint solver. - A query is a conjunction of constraints. The constraints may include the recursively defined relations. - The query is satisfiable if there is an instance of the query variables and a derivation for it. - The query is unsatisfiable if there are no derivations satisfying the query variables. *) - val query : fixedpoint -> Boolean.bool_expr -> Solver.status - - (** Query the fixedpoint solver. - A query is an array of relations. - The query is satisfiable if there is an instance of some relation that is non-empty. - The query is unsatisfiable if there are no derivations satisfying any of the relations. *) - val query_r : fixedpoint -> FuncDecl.func_decl list -> Solver.status - - (** Creates a backtracking point. - {!pop} *) - val push : fixedpoint -> unit - - (** Backtrack one backtracking point. - - Note that an exception is thrown if Pop is called without a corresponding Push - {!push} *) - val pop : fixedpoint -> unit - - (** Update named rule into in the fixedpoint solver. *) - val update_rule : fixedpoint -> Boolean.bool_expr -> Symbol.symbol -> unit - - (** Retrieve satisfying instance or instances of solver, - or definitions for the recursive predicates that show unsatisfiability. *) - val get_answer : fixedpoint -> Expr.expr option - - (** Retrieve explanation why fixedpoint engine returned status Unknown. *) - val get_reason_unknown : fixedpoint -> string - - (** Retrieve the number of levels explored for a given predicate. *) - val get_num_levels : fixedpoint -> FuncDecl.func_decl -> int - - (** Retrieve the cover of a predicate. *) - val get_cover_delta : fixedpoint -> int -> FuncDecl.func_decl -> Expr.expr option - - (** Add property about the predicate. - The property is added at level. *) - val add_cover : fixedpoint -> int -> FuncDecl.func_decl -> Expr.expr -> unit - - (** Retrieve internal string representation of fixedpoint object. *) - val to_string : fixedpoint -> string - - (** Instrument the Datalog engine on which table representation to use for recursive predicate. *) - val set_predicate_representation : fixedpoint -> FuncDecl.func_decl -> Symbol.symbol list -> unit - - (** Convert benchmark given as set of axioms, rules and queries to a string. *) - val to_string_q : fixedpoint -> Boolean.bool_expr list -> string - - (** Retrieve set of rules added to fixedpoint context. *) - val get_rules : fixedpoint -> Boolean.bool_expr list - - (** Retrieve set of assertions added to fixedpoint context. *) - val get_assertions : fixedpoint -> Boolean.bool_expr list - - (** Create a Fixedpoint context. *) - val mk_fixedpoint : context -> fixedpoint -end - -(** Global and context options - - Note: This module contains functions that set parameters/options for context - objects as well as functions that set options that are used globally, across - contexts.*) -module Options : -sig - (** Update a mutable configuration parameter. - - The list of all configuration parameters can be obtained using the Z3 executable: - z3.exe -ini? - Only a few configuration parameters are mutable once the context is created. - An exception is thrown when trying to modify an immutable parameter. - {!get_param_value} *) - val update_param_value : context -> string -> string -> unit - - (** Get a configuration parameter. - - Returns None if the parameter value does not exist. - {!update_param_value} *) - val get_param_value : context -> string -> string option - - (** Selects the format used for pretty-printing expressions. - - The default mode for pretty printing expressions is to produce - SMT-LIB style output where common subexpressions are printed - at each occurrence. The mode is called PRINT_SMTLIB_FULL. - To print shared common subexpressions only once, - use the PRINT_LOW_LEVEL mode. - To print in way that conforms to SMT-LIB standards and uses let - expressions to share common sub-expressions use PRINT_SMTLIB_COMPLIANT. - {!AST.to_string} - {!Quantifier.Pattern.to_string} - {!FuncDecl.to_string} - {!Sort.to_string} *) - val set_print_mode : context -> Z3enums.ast_print_mode -> unit - - (** Enable/disable printing of warning messages to the console. - - Note that this function is static and effects the behaviour of - all contexts globally. *) - val toggle_warning_messages : bool -> unit -end - -(** Functions for handling SMT and SMT2 expressions and files *) -module SMT : -sig - (** Convert a benchmark into an SMT-LIB formatted string. - - @return A string representation of the benchmark. *) - val benchmark_to_smtstring : context -> string -> string -> string -> string -> Boolean.bool_expr list -> Boolean.bool_expr -> string - - (** Parse the given string using the SMT-LIB parser. - - The symbol table of the parser can be initialized using the given sorts and declarations. - The symbols in the arrays in the third and fifth argument - don't need to match the names of the sorts and declarations in the arrays in the fourth - and sixth argument. This is a useful feature since we can use arbitrary names to - reference sorts and declarations. *) - val parse_smtlib_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> unit - - (** Parse the given file using the SMT-LIB parser. - {!parse_smtlib_string} *) - val parse_smtlib_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> unit - - (** The number of SMTLIB formulas parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_num_smtlib_formulas : context -> int - - (** The formulas parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_smtlib_formulas : context -> Boolean.bool_expr list - - (** The number of SMTLIB assumptions parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_num_smtlib_assumptions : context -> int - - (** The assumptions parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_smtlib_assumptions : context -> Boolean.bool_expr list - - (** The number of SMTLIB declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_num_smtlib_decls : context -> int - - (** The declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_smtlib_decls : context -> FuncDecl.func_decl list - - (** The number of SMTLIB sorts parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_num_smtlib_sorts : context -> int - - (** The sort declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *) - val get_smtlib_sorts : context -> Sort.sort list - - (** Parse the given string using the SMT-LIB2 parser. - - {!parse_smtlib_string} - @return A conjunction of assertions in the scope (up to push/pop) at the end of the string. *) - val parse_smtlib2_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Boolean.bool_expr - - (** Parse the given file using the SMT-LIB2 parser. - {!parse_smtlib2_string} *) - val parse_smtlib2_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Boolean.bool_expr -end - -(** Set a global (or module) parameter, which is shared by all Z3 contexts. - - When a Z3 module is initialized it will use the value of these parameters - when Z3_params objects are not provided. - The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'. - The character '.' is a delimiter (more later). - The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'. - Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION". - This function can be used to set parameters for a specific Z3 module. - This can be done by using .. - For example: - (set_global_param "pp.decimal" "true") - will set the parameter "decimal" in the module "pp" to true. -*) -val set_global_param : string -> string -> unit - -(** Get a global (or module) parameter. - - Returns None if the parameter does not exist. - The caller must invoke #Z3_global_param_del_value to delete the value returned at \c param_value. - This function cannot be invoked simultaneously from different threads without synchronization. - The result string stored in param_value is stored in a shared location. -*) -val get_global_param : string -> string option - -(** Restore the value of all global (and module) parameters. - - This command will not affect already created objects (such as tactics and solvers) - {!set_global_param} -*) -val global_param_reset_all : unit