diff --git a/src/api/ml/z3_rich.ml b/src/api/ml/z3_rich.ml
deleted file mode 100644
index 0c2f95b6b..000000000
--- a/src/api/ml/z3_rich.ml
+++ /dev/null
@@ -1,3399 +0,0 @@
-\(**
- The Z3 ML/Ocaml Interface.
-
- Copyright (C) 2012 Microsoft Corporation
- @author CM Wintersteiger (cwinter) 2012-12-17
-*)
-
-open Z3enums
-
-(* Some helpers. *)
-let null = Z3native.mk_null()
-let is_null o = (Z3native.is_null o)
-
-(* Internal types *)
-type z3_native_context = { m_n_ctx : Z3native.z3_context; m_n_obj_cnt: int; }
-type context = z3_native_context
-
-type z3_native_object = {
- m_ctx : context ;
- mutable m_n_obj : Z3native.ptr ;
- inc_ref : Z3native.z3_context -> Z3native.ptr -> unit;
- dec_ref : Z3native.z3_context -> Z3native.ptr -> unit }
-
-
-(** Internal stuff *)
-module Internal =
-struct
- let dispose_context ctx =
- if ctx.m_n_obj_cnt == 0 then (
- (Z3native.del_context ctx.m_n_ctx)
- ) else (
- Printf.printf "ERROR: NOT DISPOSING CONTEXT (because it still has %d objects alive)\n" ctx.m_n_obj_cnt;
- )
-
- let create_context settings =
- let cfg = Z3native.mk_config in
- let f e = (Z3native.set_param_value cfg (fst e) (snd e)) in
- (List.iter f settings) ;
- let v = Z3native.mk_context_rc cfg in
- Z3native.del_config(cfg) ;
- Z3native.set_ast_print_mode v (int_of_ast_print_mode PRINT_SMTLIB2_COMPLIANT) ;
- Z3native.set_internal_error_handler v ;
- let res = { m_n_ctx = v; m_n_obj_cnt = 0 } in
- let f = fun o -> dispose_context o in
- Gc.finalise f res;
- res
-
- let context_add1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt + 1)
- let context_sub1 ctx = ignore (ctx.m_n_obj_cnt = ctx.m_n_obj_cnt - 1)
- let context_gno ctx = ctx.m_n_ctx
-
-
- let z3obj_gc o = o.m_ctx
- let z3obj_gnc o = (context_gno o.m_ctx)
-
- let z3obj_gno o = o.m_n_obj
- let z3obj_sno o ctx no =
- (context_add1 ctx) ;
- o.inc_ref (context_gno ctx) no ;
- (
- if not (is_null o.m_n_obj) then
- o.dec_ref (context_gno ctx) o.m_n_obj ;
- (context_sub1 ctx)
- ) ;
- o.m_n_obj <- no
-
- let z3obj_dispose o =
- if not (is_null o.m_n_obj) then
- (
- o.dec_ref (z3obj_gnc o) o.m_n_obj ;
- (context_sub1 (z3obj_gc o))
- ) ;
- o.m_n_obj <- null
-
- let z3obj_create o =
- let f = fun o -> (z3obj_dispose o) in
- Gc.finalise f o
-
- let z3obj_nil_ref x y = ()
-
- let z3_native_object_of_ast_ptr : context -> Z3native.ptr -> z3_native_object = fun ctx no ->
- let res : z3_native_object = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.inc_ref ;
- dec_ref = Z3native.dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-end
-
-open Internal
-
-module Log =
-struct
- let open_ filename = ((lbool_of_int (Z3native.open_log filename)) == L_TRUE)
- let close = Z3native.close_log
- let append s = Z3native.append_log s
-end
-
-
-module Version =
-struct
- let major = let (x, _, _, _) = Z3native.get_version in x
- let minor = let (_, x, _, _) = Z3native.get_version in x
- let build = let (_, _, x, _) = Z3native.get_version in x
- let revision = let (_, _, _, x) = Z3native.get_version in x
- let to_string =
- let (mj, mn, bld, rev) = Z3native.get_version in
- string_of_int mj ^ "." ^
- string_of_int mn ^ "." ^
- string_of_int bld ^ "." ^
- string_of_int rev ^ "."
-end
-
-
-let mk_list ( f : int -> 'a ) ( n : int ) =
- let rec mk_list' ( f : int -> 'a ) ( i : int ) ( n : int ) ( tail : 'a list ) : 'a list =
- if (i >= n) then
- tail
- else
- (mk_list' f (i+1) n ((f i) :: tail))
- in
- mk_list' f 0 n []
-
-let list_of_array ( x : _ array ) =
- let f i = (Array.get x i) in
- mk_list f (Array.length x)
-
-let mk_context ( cfg : ( string * string ) list ) =
- create_context cfg
-
-
-module Symbol =
-struct
- (* Symbol types *)
- type int_symbol = z3_native_object
- type string_symbol = z3_native_object
-
- type symbol =
- | S_Int of int_symbol
- | S_Str of string_symbol
-
-
- let create_i ( ctx : context ) ( no : Z3native.ptr ) =
- let res : int_symbol = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = z3obj_nil_ref ;
- dec_ref = z3obj_nil_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let create_s ( ctx : context ) ( no : Z3native.ptr ) =
- let res : string_symbol = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = z3obj_nil_ref ;
- dec_ref = z3obj_nil_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- match (symbol_kind_of_int (Z3native.get_symbol_kind (context_gno ctx) no)) with
- | INT_SYMBOL -> S_Int (create_i ctx no)
- | STRING_SYMBOL -> S_Str (create_s ctx no)
-
- let gc ( x : symbol ) =
- match x with
- | S_Int(n) -> (z3obj_gc n)
- | S_Str(n) -> (z3obj_gc n)
-
- let gnc ( x : symbol ) =
- match x with
- | S_Int(n) -> (z3obj_gnc n)
- | S_Str(n) -> (z3obj_gnc n)
-
- let gno ( x : symbol ) =
- match x with
- | S_Int(n) -> (z3obj_gno n)
- | S_Str(n) -> (z3obj_gno n)
-
- let symbol_lton ( a : symbol list ) =
- let f ( e : symbol ) = (gno e) in
- Array.of_list (List.map f a)
-
- let kind ( o : symbol ) = (symbol_kind_of_int (Z3native.get_symbol_kind (gnc o) (gno o)))
- let is_int_symbol ( o : symbol ) = (kind o) == INT_SYMBOL
- let is_string_symbol ( o : symbol ) = (kind o) == STRING_SYMBOL
- let get_int (o : int_symbol) = Z3native.get_symbol_int (z3obj_gnc o) (z3obj_gno o)
- let get_string (o : string_symbol) = Z3native.get_symbol_string (z3obj_gnc o) (z3obj_gno o)
- let to_string ( o : symbol ) =
- match (kind o) with
- | INT_SYMBOL -> (string_of_int (Z3native.get_symbol_int (gnc o) (gno o)))
- | STRING_SYMBOL -> (Z3native.get_symbol_string (gnc o) (gno o))
-
- let mk_int ( ctx : context ) ( i : int ) =
- S_Int (create_i ctx (Z3native.mk_int_symbol (context_gno ctx) i))
-
- let mk_string ( ctx : context ) ( s : string ) =
- S_Str (create_s ctx (Z3native.mk_string_symbol (context_gno ctx) s))
-
- let mk_ints ( ctx : context ) ( names : int list ) =
- let f elem = mk_int ( ctx : context ) elem in
- (List.map f names)
-
- let mk_strings ( ctx : context ) ( names : string list ) =
- let f elem = mk_string ( ctx : context ) elem in
- (List.map f names)
-end
-
-
-module AST =
-struct
- type ast = z3_native_object
-
- let context_of_ast ( x : ast ) = (z3obj_gc x)
- let nc_of_ast ( x : ast ) = (z3obj_gnc x)
- let ptr_of_ast ( x : ast ) = (z3obj_gno x)
-
- let rec ast_of_ptr : context -> Z3native.ptr -> ast = fun ctx no ->
- match (ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) with
- | FUNC_DECL_AST
- | SORT_AST
- | QUANTIFIER_AST
- | APP_AST
- | NUMERAL_AST
- | VAR_AST -> z3_native_object_of_ast_ptr ctx no
- | UNKNOWN_AST -> raise (Z3native.Exception "Cannot create asts of type unknown")
-
- module ASTVector =
- struct
- type ast_vector = z3_native_object
-
- let ast_vector_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let res : ast_vector = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.ast_vector_inc_ref ;
- dec_ref = Z3native.ast_vector_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let get_size ( x : ast_vector ) =
- Z3native.ast_vector_size (z3obj_gnc x) (z3obj_gno x)
-
- let get ( x : ast_vector ) ( i : int ) =
- ast_of_ptr (z3obj_gc x) (Z3native.ast_vector_get (z3obj_gnc x) (z3obj_gno x) i)
-
- let set ( x : ast_vector ) ( i : int ) ( value : ast ) =
- Z3native.ast_vector_set (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno value)
-
- let resize ( x : ast_vector ) ( new_size : int ) =
- Z3native.ast_vector_resize (z3obj_gnc x) (z3obj_gno x) new_size
-
- let push ( x : ast_vector ) ( a : ast ) =
- Z3native.ast_vector_push (z3obj_gnc x) (z3obj_gno x) (z3obj_gno a)
-
- let translate ( x : ast_vector ) ( to_ctx : context ) =
- ast_vector_of_ptr to_ctx (Z3native.ast_vector_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))
-
- let to_string ( x : ast_vector ) =
- Z3native.ast_vector_to_string (z3obj_gnc x) (z3obj_gno x)
- end
-
- module ASTMap =
- struct
- type ast_map = z3_native_object
-
- let astmap_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let res : ast_map = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.ast_map_inc_ref ;
- dec_ref = Z3native.ast_map_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let contains ( x : ast_map ) ( key : ast ) =
- Z3native.ast_map_contains (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key)
-
- let find ( x : ast_map ) ( key : ast ) =
- ast_of_ptr (z3obj_gc x) (Z3native.ast_map_find (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key))
-
- let insert ( x : ast_map ) ( key : ast ) ( value : ast) =
- Z3native.ast_map_insert (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key) (z3obj_gno value)
-
- let erase ( x : ast_map ) ( key : ast ) =
- Z3native.ast_map_erase (z3obj_gnc x) (z3obj_gno x) (z3obj_gno key)
-
- let reset ( x : ast_map ) =
- Z3native.ast_map_reset (z3obj_gnc x) (z3obj_gno x)
-
- let get_size ( x : ast_map ) =
- Z3native.ast_map_size (z3obj_gnc x) (z3obj_gno x)
-
- let get_keys ( x : ast_map ) =
- let av = ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.ast_map_keys (z3obj_gnc x) (z3obj_gno x)) in
- let f i = (ASTVector.get av i) in
- mk_list f (ASTVector.get_size av)
-
- let to_string ( x : ast_map ) =
- Z3native.ast_map_to_string (z3obj_gnc x) (z3obj_gno x)
- end
-
- let get_hash_code ( x : ast ) = Z3native.get_ast_hash (z3obj_gnc x) (z3obj_gno x)
- let get_id ( x : ast ) = Z3native.get_ast_id (z3obj_gnc x) (z3obj_gno x)
- let get_ast_kind ( x : ast ) = (ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc x) (z3obj_gno x)))
-
- let is_expr ( x : ast ) =
- match get_ast_kind ( x : ast ) with
- | APP_AST
- | NUMERAL_AST
- | QUANTIFIER_AST
- | VAR_AST -> true
- | _ -> false
-
- let is_var ( x : ast ) = (get_ast_kind x) == VAR_AST
- let is_quantifier ( x : ast ) = (get_ast_kind x) == QUANTIFIER_AST
- let is_sort ( x : ast ) = (get_ast_kind x) == SORT_AST
- let is_func_decl ( x : ast ) = (get_ast_kind x) == FUNC_DECL_AST
-
- let to_string ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x)
- let to_sexpr ( x : ast ) = Z3native.ast_to_string (z3obj_gnc x) (z3obj_gno x)
-
-
- let ( = ) ( a : ast ) ( b : ast ) = (a == b) ||
- if (z3obj_gnc a) != (z3obj_gnc b) then
- false
- else
- Z3native.is_eq_ast (z3obj_gnc a) (z3obj_gno a) (z3obj_gno b)
-
- let compare a b =
- if (get_id a) < (get_id b) then -1 else
- if (get_id a) > (get_id b) then 1 else
- 0
-
- let ( < ) (a : ast) (b : ast) = (compare a b)
-
- let translate ( x : ast ) ( to_ctx : context ) =
- if (z3obj_gnc x) == (context_gno to_ctx) then
- x
- else
- ast_of_ptr to_ctx (Z3native.translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))
-
- let wrap_ast ( ctx : context ) ( ptr : Z3native.ptr ) = ast_of_ptr ctx ptr
- let unwrap_ast ( x : ast ) = (z3obj_gno x)
-end
-
-open AST
-
-
-module Sort =
-struct
- type sort = Sort of AST.ast
- type uninterpreted_sort = UninterpretedSort of sort
-
- let sort_of_ptr : context -> Z3native.ptr -> sort = fun ctx no ->
- let q = (z3_native_object_of_ast_ptr ctx no) in
- if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.SORT_AST) then
- raise (Z3native.Exception "Invalid coercion")
- else
- match (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) no)) with
- | ARRAY_SORT
- | BOOL_SORT
- | BV_SORT
- | DATATYPE_SORT
- | INT_SORT
- | REAL_SORT
- | UNINTERPRETED_SORT
- | FINITE_DOMAIN_SORT
- | RELATION_SORT -> Sort(q)
- | UNKNOWN_SORT -> raise (Z3native.Exception "Unknown sort kind encountered")
-
- let ast_of_sort s = match s with Sort(x) -> x
- let sort_of_uninterpreted_sort s = match s with UninterpretedSort(x) -> x
-
- let uninterpreted_sort_of_sort s = match s with Sort(a) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.UNINTERPRETED_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- UninterpretedSort(s)
-
- let gc ( x : sort ) = (match x with Sort(a) -> (z3obj_gc a))
- let gnc ( x : sort ) = (match x with Sort(a) -> (z3obj_gnc a))
- let gno ( x : sort ) = (match x with Sort(a) -> (z3obj_gno a))
-
- let sort_lton ( a : sort list ) =
- let f ( e : sort ) = match e with Sort(a) -> (AST.ptr_of_ast a) in
- Array.of_list (List.map f a)
-
- let ( = ) : sort -> sort -> bool = fun a b ->
- (a == b) ||
- if (gnc a) != (gnc b) then
- false
- else
- (Z3native.is_eq_sort (gnc a) (gno a) (gno b))
-
-
- let get_id ( x : sort ) = Z3native.get_sort_id (gnc x) (gno x)
- let get_sort_kind ( x : sort ) = (sort_kind_of_int (Z3native.get_sort_kind (gnc x) (gno x)))
- let get_name ( x : sort ) = (Symbol.create (gc x) (Z3native.get_sort_name (gnc x) (gno x)))
- let to_string ( x : sort ) = Z3native.sort_to_string (gnc x) (gno x)
-
- let mk_uninterpreted ( ctx : context ) ( s : Symbol.symbol ) =
- let res = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.inc_ref ;
- dec_ref = Z3native.dec_ref } in
- (z3obj_sno res ctx (Z3native.mk_uninterpreted_sort (context_gno ctx) (Symbol.gno s))) ;
- (z3obj_create res) ;
- UninterpretedSort(Sort(res))
-
- let mk_uninterpreted_s ( ctx : context ) ( s : string ) =
- mk_uninterpreted ctx (Symbol.mk_string ( ctx : context ) s)
-end
-
-open Sort
-
-
-module rec FuncDecl :
-sig
- type func_decl = FuncDecl of AST.ast
- val ast_of_func_decl : FuncDecl.func_decl -> AST.ast
- val func_decl_of_ptr : context -> Z3native.ptr -> func_decl
- val gc : func_decl -> context
- val gnc : func_decl -> Z3native.ptr
- val gno : func_decl -> Z3native.ptr
- module Parameter :
- sig
- type parameter =
- P_Int of int
- | P_Dbl of float
- | P_Sym of Symbol.symbol
- | P_Srt of Sort.sort
- | P_Ast of AST.ast
- | P_Fdl of func_decl
- | P_Rat of string
-
- val get_kind : parameter -> Z3enums.parameter_kind
- val get_int : parameter -> int
- val get_float : parameter -> float
- val get_symbol : parameter -> Symbol.symbol
- val get_sort : parameter -> Sort.sort
- val get_ast : parameter -> AST.ast
- val get_func_decl : parameter -> func_decl
- val get_rational : parameter -> string
- end
- val mk_func_decl : context -> Symbol.symbol -> Sort.sort list -> Sort.sort -> func_decl
- val mk_func_decl_s : context -> string -> Sort.sort list -> Sort.sort -> func_decl
- val mk_fresh_func_decl : context -> string -> Sort.sort list -> Sort.sort -> func_decl
- val mk_const_decl : context -> Symbol.symbol -> Sort.sort -> func_decl
- val mk_const_decl_s : context -> string -> Sort.sort -> func_decl
- val mk_fresh_const_decl : context -> string -> Sort.sort -> func_decl
- val ( = ) : func_decl -> func_decl -> bool
- val to_string : func_decl -> string
- val get_id : func_decl -> int
- val get_arity : func_decl -> int
- val get_domain_size : func_decl -> int
- val get_domain : func_decl -> Sort.sort list
- val get_range : func_decl -> Sort.sort
- val get_decl_kind : func_decl -> Z3enums.decl_kind
- val get_name : func_decl -> Symbol.symbol
- val get_num_parameters : func_decl -> int
- val get_parameters : func_decl -> Parameter.parameter list
- val apply : func_decl -> Expr.expr list -> Expr.expr
-end = struct
- type func_decl = FuncDecl of AST.ast
-
- let func_decl_of_ptr : context -> Z3native.ptr -> func_decl = fun ctx no ->
- if ((Z3enums.ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no)) != Z3enums.FUNC_DECL_AST) then
- raise (Z3native.Exception "Invalid coercion")
- else
- FuncDecl(z3_native_object_of_ast_ptr ctx no)
-
- let ast_of_func_decl f = match f with FuncDecl(x) -> x
-
- let create_ndr ( ctx : context ) ( name : Symbol.symbol ) ( domain : sort list ) ( range : sort ) =
- let res = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.inc_ref ;
- dec_ref = Z3native.dec_ref } in
- (z3obj_sno res ctx (Z3native.mk_func_decl (context_gno ctx) (Symbol.gno name) (List.length domain) (sort_lton domain) (Sort.gno range))) ;
- (z3obj_create res) ;
- FuncDecl(res)
-
- let create_pdr ( ctx : context) ( prefix : string ) ( domain : sort list ) ( range : sort ) =
- let res = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.inc_ref ;
- dec_ref = Z3native.dec_ref } in
- (z3obj_sno res ctx (Z3native.mk_fresh_func_decl (context_gno ctx) prefix (List.length domain) (sort_lton domain) (Sort.gno range))) ;
- (z3obj_create res) ;
- FuncDecl(res)
-
- let gc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gc a)
- let gnc ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gnc a)
- let gno ( x : func_decl ) = match x with FuncDecl(a) -> (z3obj_gno a)
-
- module Parameter =
- struct
- type parameter =
- | P_Int of int
- | P_Dbl of float
- | P_Sym of Symbol.symbol
- | P_Srt of Sort.sort
- | P_Ast of AST.ast
- | P_Fdl of func_decl
- | P_Rat of string
-
- let get_kind ( x : parameter ) =
- (match x with
- | P_Int(_) -> PARAMETER_INT
- | P_Dbl(_) -> PARAMETER_DOUBLE
- | P_Sym(_) -> PARAMETER_SYMBOL
- | P_Srt(_) -> PARAMETER_SORT
- | P_Ast(_) -> PARAMETER_AST
- | P_Fdl(_) -> PARAMETER_FUNC_DECL
- | P_Rat(_) -> PARAMETER_RATIONAL)
-
- let get_int ( x : parameter ) =
- match x with
- | P_Int(x) -> x
- | _ -> raise (Z3native.Exception "parameter is not an int")
-
- let get_float ( x : parameter ) =
- match x with
- | P_Dbl(x) -> x
- | _ -> raise (Z3native.Exception "parameter is not a double")
-
- let get_symbol ( x : parameter ) =
- match x with
- | P_Sym(x) -> x
- | _ -> raise (Z3native.Exception "parameter is not a symbol")
-
- let get_sort ( x : parameter ) =
- match x with
- | P_Srt(x) -> x
- | _ -> raise (Z3native.Exception "parameter is not a sort")
-
- let get_ast ( x : parameter ) =
- match x with
- | P_Ast(x) -> x
- | _ -> raise (Z3native.Exception "parameter is not an ast")
-
- let get_func_decl ( x : parameter ) =
- match x with
- | P_Fdl(x) -> x
- | _ -> raise (Z3native.Exception "parameter is not a func_decl")
-
- let get_rational ( x : parameter ) =
- match x with
- | P_Rat(x) -> x
- | _ -> raise (Z3native.Exception "parameter is not a rational string")
- end
-
- let mk_func_decl ( ctx : context ) ( name : Symbol.symbol ) ( domain : sort list ) ( range : sort ) =
- create_ndr ctx name domain range
-
- let mk_func_decl_s ( ctx : context ) ( name : string ) ( domain : sort list ) ( range : sort ) =
- mk_func_decl ctx (Symbol.mk_string ctx name) domain range
-
- let mk_fresh_func_decl ( ctx : context ) ( prefix : string ) ( domain : sort list ) ( range : sort ) =
- create_pdr ctx prefix domain range
-
- let mk_const_decl ( ctx : context ) ( name : Symbol.symbol ) ( range : sort ) =
- create_ndr ctx name [] range
-
- let mk_const_decl_s ( ctx : context ) ( name : string ) ( range : sort ) =
- create_ndr ctx (Symbol.mk_string ctx name) [] range
-
- let mk_fresh_const_decl ( ctx : context ) ( prefix : string ) ( range : sort ) =
- create_pdr ctx prefix [] range
-
-
- let ( = ) ( a : func_decl ) ( b : func_decl ) = (a == b) ||
- if (gnc a) != (gnc b) then
- false
- else
- (Z3native.is_eq_func_decl (gnc a) (gno a) (gno b))
-
- let to_string ( x : func_decl ) = Z3native.func_decl_to_string (gnc x) (gno x)
-
- let get_id ( x : func_decl ) = Z3native.get_func_decl_id (gnc x) (gno x)
-
- let get_arity ( x : func_decl ) = Z3native.get_arity (gnc x) (gno x)
-
- let get_domain_size ( x : func_decl ) = Z3native.get_domain_size (gnc x) (gno x)
-
- let get_domain ( x : func_decl ) =
- let n = (get_domain_size x) in
- let f i = sort_of_ptr (gc x) (Z3native.get_domain (gnc x) (gno x) i) in
- mk_list f n
-
- let get_range ( x : func_decl ) =
- sort_of_ptr (gc x) (Z3native.get_range (gnc x) (gno x))
-
- let get_decl_kind ( x : func_decl ) = (decl_kind_of_int (Z3native.get_decl_kind (gnc x) (gno x)))
-
- let get_name ( x : func_decl ) = (Symbol.create (gc x) (Z3native.get_decl_name (gnc x) (gno x)))
-
- let get_num_parameters ( x : func_decl ) = (Z3native.get_decl_num_parameters (gnc x) (gno x))
-
- let get_parameters ( x : func_decl ) =
- let n = (get_num_parameters x) in
- let f i = (match (parameter_kind_of_int (Z3native.get_decl_parameter_kind (gnc x) (gno x) i)) with
- | PARAMETER_INT -> Parameter.P_Int (Z3native.get_decl_int_parameter (gnc x) (gno x) i)
- | PARAMETER_DOUBLE -> Parameter.P_Dbl (Z3native.get_decl_double_parameter (gnc x) (gno x) i)
- | PARAMETER_SYMBOL-> Parameter.P_Sym (Symbol.create (gc x) (Z3native.get_decl_symbol_parameter (gnc x) (gno x) i))
- | PARAMETER_SORT -> Parameter.P_Srt (sort_of_ptr (gc x) (Z3native.get_decl_sort_parameter (gnc x) (gno x) i))
- | PARAMETER_AST -> Parameter.P_Ast (AST.ast_of_ptr (gc x) (Z3native.get_decl_ast_parameter (gnc x) (gno x) i))
- | PARAMETER_FUNC_DECL -> Parameter.P_Fdl (func_decl_of_ptr (gc x) (Z3native.get_decl_func_decl_parameter (gnc x) (gno x) i))
- | PARAMETER_RATIONAL -> Parameter.P_Rat (Z3native.get_decl_rational_parameter (gnc x) (gno x) i)
- ) in
- mk_list f n
-
- let apply ( x : func_decl ) ( args : Expr.expr list ) = Expr.expr_of_func_app (gc x) x args
-end
-
-
-and Params :
-sig
- type params = z3_native_object
- module ParamDescrs :
- sig
- type param_descrs
- val param_descrs_of_ptr : context -> Z3native.ptr -> param_descrs
- val validate : param_descrs -> params -> unit
- val get_kind : param_descrs -> Symbol.symbol -> Z3enums.param_kind
- val get_names : param_descrs -> Symbol.symbol list
- val get_size : param_descrs -> int
- val to_string : param_descrs -> string
- end
- val add_bool : params -> Symbol.symbol -> bool -> unit
- val add_int : params -> Symbol.symbol -> int -> unit
- val add_double : params -> Symbol.symbol -> float -> unit
- val add_symbol : params -> Symbol.symbol -> Symbol.symbol -> unit
- val add_s_bool : params -> string -> bool -> unit
- val add_s_int : params -> string -> int -> unit
- val add_s_double : params -> string -> float -> unit
- val add_s_symbol : params -> string -> Symbol.symbol -> unit
- val mk_params : context -> params
- val to_string : params -> string
-end = struct
- type params = z3_native_object
-
- module ParamDescrs =
- struct
- type param_descrs = z3_native_object
-
- let param_descrs_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let res : param_descrs = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.param_descrs_inc_ref ;
- dec_ref = Z3native.param_descrs_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let validate ( x : param_descrs ) ( p : params ) =
- Z3native.params_validate (z3obj_gnc x) (z3obj_gno p) (z3obj_gno x)
-
- let get_kind ( x : param_descrs ) ( name : Symbol.symbol ) =
- (param_kind_of_int (Z3native.param_descrs_get_kind (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name)))
-
- let get_names ( x : param_descrs ) =
- let n = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x) in
- let f i = Symbol.create (z3obj_gc x) (Z3native.param_descrs_get_name (z3obj_gnc x) (z3obj_gno x) i) in
- mk_list f n
-
- let get_size ( x : param_descrs ) = Z3native.param_descrs_size (z3obj_gnc x) (z3obj_gno x)
- let to_string ( x : param_descrs ) = Z3native.param_descrs_to_string (z3obj_gnc x) (z3obj_gno x)
- end
-
- let add_bool ( x : params ) ( name : Symbol.symbol ) ( value : bool ) =
- Z3native.params_set_bool (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
-
- let add_int ( x : params ) (name : Symbol.symbol ) ( value : int ) =
- Z3native.params_set_uint (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
-
- let add_double ( x : params ) ( name : Symbol.symbol ) ( value : float ) =
- Z3native.params_set_double (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) value
-
- let add_symbol ( x : params ) ( name : Symbol.symbol ) ( value : Symbol.symbol ) =
- Z3native.params_set_symbol (z3obj_gnc x) (z3obj_gno x) (Symbol.gno name) (Symbol.gno value)
-
- let add_s_bool ( x : params ) ( name : string ) ( value : bool ) =
- add_bool x (Symbol.mk_string (z3obj_gc x) name) value
-
- let add_s_int ( x : params) ( name : string ) ( value : int ) =
- add_int x (Symbol.mk_string (z3obj_gc x) name) value
-
- let add_s_double ( x : params ) ( name : string ) ( value : float ) =
- add_double x (Symbol.mk_string (z3obj_gc x) name) value
-
- let add_s_symbol ( x : params ) ( name : string ) ( value : Symbol.symbol ) =
- add_symbol x (Symbol.mk_string (z3obj_gc x) name) value
-
- let mk_params ( ctx : context ) =
- let res : params = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.params_inc_ref ;
- dec_ref = Z3native.params_dec_ref } in
- (z3obj_sno res ctx (Z3native.mk_params (context_gno ctx))) ;
- (z3obj_create res) ;
- res
-
- let to_string ( x : params ) = Z3native.params_to_string (z3obj_gnc x) (z3obj_gno x)
-end
-
-(** General expressions (terms) *)
-and Expr :
-sig
- type expr = Expr of AST.ast
- val expr_of_ptr : context -> Z3native.ptr -> expr
- val gc : expr -> context
- val gnc : expr -> Z3native.ptr
- val gno : expr -> Z3native.ptr
- val expr_lton : expr list -> Z3native.ptr array
- val ast_of_expr : expr -> AST.ast
- val expr_of_ast : AST.ast -> expr
- val expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr
- val simplify : expr -> Params.params option -> expr
- val get_simplify_help : context -> string
- val get_simplify_parameter_descrs : context -> Params.ParamDescrs.param_descrs
- val get_func_decl : expr -> FuncDecl.func_decl
- val get_bool_value : expr -> Z3enums.lbool
- val get_num_args : expr -> int
- val get_args : expr -> expr list
- val update : expr -> expr list -> expr
- val substitute : expr -> expr list -> expr list -> expr
- val substitute_one : expr -> expr -> expr -> expr
- val substitute_vars : expr -> expr list -> expr
- val translate : expr -> context -> expr
- val to_string : expr -> string
- val is_numeral : expr -> bool
- val is_well_sorted : expr -> bool
- val get_sort : expr -> Sort.sort
- val is_bool : expr -> bool
- val is_const : expr -> bool
- val is_true : expr -> bool
- val is_false : expr -> bool
- val is_eq : expr -> bool
- val is_distinct : expr -> bool
- val is_ite : expr -> bool
- val is_and : expr -> bool
- val is_or : expr -> bool
- val is_iff : expr -> bool
- val is_xor : expr -> bool
- val is_not : expr -> bool
- val is_implies : expr -> bool
- val is_label : expr -> bool
- val is_label_lit : expr -> bool
- val is_oeq : expr -> bool
- val mk_const : context -> Symbol.symbol -> Sort.sort -> expr
- val mk_const_s : context -> string -> Sort.sort -> expr
- val mk_const_f : context -> FuncDecl.func_decl -> expr
- val mk_fresh_const : context -> string -> Sort.sort -> expr
- val mk_app : context -> FuncDecl.func_decl -> expr list -> expr
- val mk_numeral_string : context -> string -> Sort.sort -> expr
- val mk_numeral_int : context -> int -> Sort.sort -> expr
-end = struct
- type expr = Expr of AST.ast
-
- let c_of_expr e = match e with Expr(a) -> (z3obj_gc a)
- let nc_of_expr e = match e with Expr(a) -> (z3obj_gnc a)
- let ptr_of_expr e = match e with Expr(a) -> (z3obj_gno a)
-
- let expr_of_ptr : context -> Z3native.ptr -> expr = fun ctx no ->
- if ast_kind_of_int (Z3native.get_ast_kind (context_gno ctx) no) == QUANTIFIER_AST then
- Expr(z3_native_object_of_ast_ptr ctx no)
- else
- let s = Z3native.get_sort (context_gno ctx) no in
- let sk = (sort_kind_of_int (Z3native.get_sort_kind (context_gno ctx) s)) in
- if (Z3native.is_algebraic_number (context_gno ctx) no) then
- Expr(z3_native_object_of_ast_ptr ctx no)
- else
- if (Z3native.is_numeral_ast (context_gno ctx) no) then
- if (sk == INT_SORT or sk == REAL_SORT or sk == BV_SORT) then
- Expr(z3_native_object_of_ast_ptr ctx no)
- else
- raise (Z3native.Exception "Unsupported numeral object")
- else
- Expr(z3_native_object_of_ast_ptr ctx no)
-
- let expr_of_ast a =
- let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in
- if (q != Z3enums.APP_AST && q != VAR_AST && q != QUANTIFIER_AST && q != NUMERAL_AST) then
- raise (Z3native.Exception "Invalid coercion")
- else
- Expr(a)
-
- let ast_of_expr e = match e with Expr(a) -> a
-
- let expr_lton ( a : expr list ) =
- let f ( e : expr ) = match e with Expr(a) -> (AST.ptr_of_ast a) in
- Array.of_list (List.map f a)
-
- let expr_of_func_app : context -> FuncDecl.func_decl -> expr list -> expr = fun ctx f args ->
- match f with FuncDecl.FuncDecl(fa) ->
- let o = Z3native.mk_app (context_gno ctx) (AST.ptr_of_ast fa) (List.length args) (expr_lton args) in
- expr_of_ptr ctx o
-
- let simplify ( x : expr ) ( p : Params.params option ) = match p with
- | None -> expr_of_ptr (Expr.gc x) (Z3native.simplify (Expr.gnc x) (Expr.gno x))
- | Some pp -> expr_of_ptr (Expr.gc x) (Z3native.simplify_ex (Expr.gnc x) (Expr.gno x) (z3obj_gno pp))
-
- let get_simplify_help ( ctx : context ) =
- Z3native.simplify_get_help (context_gno ctx)
-
- let get_simplify_parameter_descrs ( ctx : context ) =
- Params.ParamDescrs.param_descrs_of_ptr ctx (Z3native.simplify_get_param_descrs (context_gno ctx))
- let get_func_decl ( x : expr ) = FuncDecl.func_decl_of_ptr (Expr.gc x) (Z3native.get_app_decl (Expr.gnc x) (Expr.gno x))
-
- let get_bool_value ( x : expr ) = lbool_of_int (Z3native.get_bool_value (Expr.gnc x) (Expr.gno x))
-
- let get_num_args ( x : expr ) = Z3native.get_app_num_args (Expr.gnc x) (Expr.gno x)
-
- let get_args ( x : expr ) = let n = (get_num_args x) in
- let f i = expr_of_ptr (Expr.gc x) (Z3native.get_app_arg (Expr.gnc x) (Expr.gno x) i) in
- mk_list f n
-
- let update ( x : expr ) ( args : expr list ) =
- if (List.length args <> (get_num_args x)) then
- raise (Z3native.Exception "Number of arguments does not match")
- else
- expr_of_ptr (Expr.gc x) (Z3native.update_term (Expr.gnc x) (Expr.gno x) (List.length args) (expr_lton args))
-
- let substitute ( x : expr ) from to_ =
- if (List.length from) <> (List.length to_) then
- raise (Z3native.Exception "Argument sizes do not match")
- else
- expr_of_ptr (Expr.gc x) (Z3native.substitute (Expr.gnc x) (Expr.gno x) (List.length from) (expr_lton from) (expr_lton to_))
-
- let substitute_one ( x : expr ) from to_ =
- substitute ( x : expr ) [ from ] [ to_ ]
-
- let substitute_vars ( x : expr ) to_ =
- expr_of_ptr (Expr.gc x) (Z3native.substitute_vars (Expr.gnc x) (Expr.gno x) (List.length to_) (expr_lton to_))
-
- let translate ( x : expr ) to_ctx =
- if (Expr.gc x) == to_ctx then
- x
- else
- expr_of_ptr to_ctx (Z3native.translate (Expr.gnc x) (Expr.gno x) (context_gno to_ctx))
-
- let to_string ( x : expr ) = Z3native.ast_to_string (Expr.gnc x) (Expr.gno x)
-
- let is_numeral ( x : expr ) = (Z3native.is_numeral_ast (Expr.gnc x) (Expr.gno x))
-
- let is_well_sorted ( x : expr ) = Z3native.is_well_sorted (Expr.gnc x) (Expr.gno x)
-
- let get_sort ( x : expr ) = sort_of_ptr (Expr.gc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x))
-
- let is_bool ( x : expr ) = (match x with Expr(a) -> (AST.is_expr a)) &&
- (Z3native.is_eq_sort (Expr.gnc x)
- (Z3native.mk_bool_sort (Expr.gnc x))
- (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))
-
- let is_const ( x : expr ) = (match x with Expr(a) -> (AST.is_expr a)) &&
- (get_num_args x) == 0 &&
- (FuncDecl.get_domain_size (get_func_decl x)) == 0
-
- let is_true ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_TRUE)
- let is_false ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_FALSE)
- let is_eq ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_EQ)
- let is_distinct ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_DISTINCT)
- let is_ite ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_ITE)
- let is_and ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_AND)
- let is_or ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_OR)
- let is_iff ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_IFF)
- let is_xor ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_XOR)
- let is_not ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_NOT)
- let is_implies ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_IMPLIES)
- let is_label ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_LABEL)
- let is_label_lit ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_LABEL_LIT)
- let is_oeq ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_OEQ)
-
- let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( range : sort ) =
- expr_of_ptr ctx (Z3native.mk_const (context_gno ctx) (Symbol.gno name) (Sort.gno range))
-
- let mk_const_s ( ctx : context ) ( name : string ) ( range : sort ) =
- mk_const ctx (Symbol.mk_string ctx name) range
-
- let mk_const_f ( ctx : context ) ( f : FuncDecl.func_decl ) = Expr.expr_of_func_app ctx f []
-
- let mk_fresh_const ( ctx : context ) ( prefix : string ) ( range : sort ) =
- expr_of_ptr ctx (Z3native.mk_fresh_const (context_gno ctx) prefix (Sort.gno range))
-
- let mk_app ( ctx : context ) ( f : FuncDecl.func_decl ) ( args : expr list ) = expr_of_func_app ctx f args
-
- let mk_numeral_string ( ctx : context ) ( v : string ) ( ty : sort ) =
- expr_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (Sort.gno ty))
-
- let mk_numeral_int ( ctx : context ) ( v : int ) ( ty : sort ) =
- expr_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (Sort.gno ty))
-end
-
-open FuncDecl
-open Expr
-
-module Boolean =
-struct
- type bool_sort = BoolSort of Sort.sort
- type bool_expr = BoolExpr of Expr.expr
-
- let bool_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let a = (AST.ast_of_ptr ctx no) in
- BoolExpr(Expr.Expr(a))
-
- let bool_expr_of_expr e =
- match e with Expr.Expr(a) ->
- let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in
- if (q != Z3enums.BOOL_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- BoolExpr(e)
-
- let bool_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- BoolSort(sort_of_ptr ctx no)
-
- let sort_of_bool_sort s = match s with BoolSort(x) -> x
-
- let bool_sort_of_sort s = match s with Sort(a) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.BOOL_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- BoolSort(s)
-
- let expr_of_bool_expr e = match e with BoolExpr(x) -> x
-
- let gc ( x : bool_expr ) = match x with BoolExpr(e) -> (Expr.c_of_expr e)
- let gnc ( x : bool_expr ) = match x with BoolExpr(e) -> (Expr.nc_of_expr e)
- let gno ( x : bool_expr ) = match x with BoolExpr(e) -> (Expr.ptr_of_expr e)
-
- let mk_sort ( ctx : context ) =
- BoolSort(sort_of_ptr ctx (Z3native.mk_bool_sort (context_gno ctx)))
-
- let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
- let s = (match (mk_sort ctx) with BoolSort(q) -> q) in
- BoolExpr(Expr.mk_const ctx name s)
-
- let mk_const_s ( ctx : context ) ( name : string ) =
- mk_const ctx (Symbol.mk_string ctx name)
-
- let mk_true ( ctx : context ) =
- bool_expr_of_ptr ctx (Z3native.mk_true (context_gno ctx))
-
- let mk_false ( ctx : context ) =
- bool_expr_of_ptr ctx (Z3native.mk_false (context_gno ctx))
-
- let mk_val ( ctx : context ) ( value : bool ) =
- if value then mk_true ctx else mk_false ctx
-
- let mk_eq ( ctx : context ) ( x : expr ) ( y : expr ) =
- bool_expr_of_ptr ctx (Z3native.mk_eq (context_gno ctx) (Expr.gno x) (Expr.gno y))
-
- let mk_distinct ( ctx : context ) ( args : expr list ) =
- bool_expr_of_ptr ctx (Z3native.mk_distinct (context_gno ctx) (List.length args) (expr_lton args))
-
- let mk_not ( ctx : context ) ( a : bool_expr ) =
- bool_expr_of_ptr ctx (Z3native.mk_not (context_gno ctx) (gno a))
-
- let mk_ite ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) ( t3 : bool_expr ) =
- bool_expr_of_ptr ctx (Z3native.mk_ite (context_gno ctx) (gno t1) (gno t2) (gno t3))
-
- let mk_iff ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) =
- bool_expr_of_ptr ctx (Z3native.mk_iff (context_gno ctx) (gno t1) (gno t2))
-
- let mk_implies ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) =
- bool_expr_of_ptr ctx (Z3native.mk_implies (context_gno ctx) (gno t1) (gno t2))
-
- let mk_xor ( ctx : context ) ( t1 : bool_expr ) ( t2 : bool_expr ) =
- bool_expr_of_ptr ctx (Z3native.mk_xor (context_gno ctx) (gno t1) (gno t2))
-
- let mk_and ( ctx : context ) ( args : bool_expr list ) =
- let f x = (Expr.gno (expr_of_bool_expr x)) in
- bool_expr_of_ptr ctx (Z3native.mk_and (context_gno ctx) (List.length args) (Array.of_list (List.map f args)))
-
- let mk_or ( ctx : context ) ( args : bool_expr list ) =
- let f x = (Expr.gno (expr_of_bool_expr x)) in
- bool_expr_of_ptr ctx (Z3native.mk_or (context_gno ctx) (List.length args) (Array.of_list(List.map f args)))
-end
-
-
-module Quantifier =
-struct
- type quantifier = Quantifier of expr
-
- let expr_of_quantifier e = match e with Quantifier(x) -> x
-
- let quantifier_of_expr e =
- match e with Expr.Expr(a) ->
- let q = (Z3enums.ast_kind_of_int (Z3native.get_ast_kind (z3obj_gnc a) (z3obj_gno a))) in
- if (q != Z3enums.QUANTIFIER_AST) then
- raise (Z3native.Exception "Invalid coercion")
- else
- Quantifier(e)
-
- let gc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gc e)
- let gnc ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gnc e)
- let gno ( x : quantifier ) = match (x) with Quantifier(e) -> (Expr.gno e)
-
- module Pattern =
- struct
- type pattern = Pattern of ast
-
- let ast_of_pattern e = match e with Pattern(x) -> x
-
- let pattern_of_ast a =
- (* CMW: Unchecked ok? *)
- Pattern(a)
-
- let gc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gc a)
- let gnc ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gnc a)
- let gno ( x : pattern ) = match (x) with Pattern(a) -> (z3obj_gno a)
-
- let get_num_terms ( x : pattern ) =
- Z3native.get_pattern_num_terms (gnc x) (gno x)
-
- let get_terms ( x : pattern ) =
- let n = (get_num_terms x) in
- let f i = (expr_of_ptr (gc x) (Z3native.get_pattern (gnc x) (gno x) i)) in
- mk_list f n
-
- let to_string ( x : pattern ) = Z3native.pattern_to_string (gnc x) (gno x)
- end
-
- let get_index ( x : expr ) =
- if not (AST.is_var (match x with Expr.Expr(a) -> a)) then
- raise (Z3native.Exception "Term is not a bound variable.")
- else
- Z3native.get_index_value (Expr.gnc x) (Expr.gno x)
-
- let is_universal ( x : quantifier ) =
- Z3native.is_quantifier_forall (gnc x) (gno x)
-
- let is_existential ( x : quantifier ) = not (is_universal x)
-
- let get_weight ( x : quantifier ) = Z3native.get_quantifier_weight (gnc x) (gno x)
-
- let get_num_patterns ( x : quantifier ) = Z3native.get_quantifier_num_patterns (gnc x) (gno x)
-
- let get_patterns ( x : quantifier ) =
- let n = (get_num_patterns x) in
- let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_pattern_ast (gnc x) (gno x) i)) in
- mk_list f n
-
- let get_num_no_patterns ( x : quantifier ) = Z3native.get_quantifier_num_no_patterns (gnc x) (gno x)
-
- let get_no_patterns ( x : quantifier ) =
- let n = (get_num_patterns x) in
- let f i = Pattern.Pattern (z3_native_object_of_ast_ptr (gc x) (Z3native.get_quantifier_no_pattern_ast (gnc x) (gno x) i)) in
- mk_list f n
-
- let get_num_bound ( x : quantifier ) = Z3native.get_quantifier_num_bound (gnc x) (gno x)
-
- let get_bound_variable_names ( x : quantifier ) =
- let n = (get_num_bound x) in
- let f i = (Symbol.create (gc x) (Z3native.get_quantifier_bound_name (gnc x) (gno x) i)) in
- mk_list f n
-
- let get_bound_variable_sorts ( x : quantifier ) =
- let n = (get_num_bound x) in
- let f i = (sort_of_ptr (gc x) (Z3native.get_quantifier_bound_sort (gnc x) (gno x) i)) in
- mk_list f n
-
- let get_body ( x : quantifier ) =
- Boolean.bool_expr_of_ptr (gc x) (Z3native.get_quantifier_body (gnc x) (gno x))
-
- let mk_bound ( ctx : context ) ( index : int ) ( ty : sort ) =
- expr_of_ptr ctx (Z3native.mk_bound (context_gno ctx) index (Sort.gno ty))
-
- let mk_pattern ( ctx : context ) ( terms : expr list ) =
- if (List.length terms) == 0 then
- raise (Z3native.Exception "Cannot create a pattern from zero terms")
- else
- Pattern.Pattern(z3_native_object_of_ast_ptr ctx (Z3native.mk_pattern (context_gno ctx) (List.length terms) (expr_lton terms)))
-
- let mk_forall ( ctx : context ) ( sorts : sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
- if (List.length sorts) != (List.length names) then
- raise (Z3native.Exception "Number of sorts does not match number of names")
- else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) true
- (match weight with | None -> 1 | Some(x) -> x)
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (List.length sorts) (sort_lton sorts)
- (Symbol.symbol_lton names)
- (Expr.gno body)))
- else
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) true
- (match weight with | None -> 1 | Some(x) -> x)
- (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
- (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (List.length nopatterns) (expr_lton nopatterns)
- (List.length sorts) (sort_lton sorts)
- (Symbol.symbol_lton names)
- (Expr.gno body)))
-
- let mk_forall_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
- if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) true
- (match weight with | None -> 1 | Some(x) -> x)
- (List.length bound_constants) (expr_lton bound_constants)
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (Expr.gno body)))
- else
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) true
- (match weight with | None -> 1 | Some(x) -> x)
- (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
- (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
- (List.length bound_constants) (expr_lton bound_constants)
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (List.length nopatterns) (expr_lton nopatterns)
- (Expr.gno body)))
-
- let mk_exists ( ctx : context ) ( sorts : sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
- if (List.length sorts) != (List.length names) then
- raise (Z3native.Exception "Number of sorts does not match number of names")
- else if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier (context_gno ctx) false
- (match weight with | None -> 1 | Some(x) -> x)
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (List.length sorts) (sort_lton sorts)
- (Symbol.symbol_lton names)
- (Expr.gno body)))
- else
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_ex (context_gno ctx) false
- (match weight with | None -> 1 | Some(x) -> x)
- (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
- (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (List.length nopatterns) (expr_lton nopatterns)
- (List.length sorts) (sort_lton sorts)
- (Symbol.symbol_lton names)
- (Expr.gno body)))
-
- let mk_exists_const ( ctx : context ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
- if ((List.length nopatterns) == 0 && quantifier_id == None && skolem_id == None) then
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const (context_gno ctx) false
- (match weight with | None -> 1 | Some(x) -> x)
- (List.length bound_constants) (expr_lton bound_constants)
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (Expr.gno body)))
- else
- Quantifier(expr_of_ptr ctx (Z3native.mk_quantifier_const_ex (context_gno ctx) false
- (match weight with | None -> 1 | Some(x) -> x)
- (match quantifier_id with | None -> null | Some(x) -> (Symbol.gno x))
- (match skolem_id with | None -> null | Some(x) -> (Symbol.gno x))
- (List.length bound_constants) (expr_lton bound_constants)
- (List.length patterns) (let f x = (AST.ptr_of_ast (Pattern.ast_of_pattern x)) in (Array.of_list (List.map f patterns)))
- (List.length nopatterns) (expr_lton nopatterns)
- (Expr.gno body)))
-
- let mk_quantifier ( ctx : context ) ( universal : bool ) ( sorts : sort list ) ( names : Symbol.symbol list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
- if (universal) then
- (mk_forall ctx sorts names body weight patterns nopatterns quantifier_id skolem_id)
- else
- (mk_exists ctx sorts names body weight patterns nopatterns quantifier_id skolem_id)
-
- let mk_quantifier ( ctx : context ) ( universal : bool ) ( bound_constants : expr list ) ( body : expr ) ( weight : int option ) ( patterns : Pattern.pattern list ) ( nopatterns : expr list ) ( quantifier_id : Symbol.symbol option ) ( skolem_id : Symbol.symbol option ) =
- if (universal) then
- mk_forall_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id
- else
- mk_exists_const ctx bound_constants body weight patterns nopatterns quantifier_id skolem_id
-end
-
-
-module Array_ =
-struct
- type array_sort = ArraySort of sort
- type array_expr = ArrayExpr of expr
-
- let array_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let e = (expr_of_ptr ctx no) in
- ArrayExpr(e)
-
- let array_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let s = (sort_of_ptr ctx no) in
- ArraySort(s)
-
- let sort_of_array_sort s = match s with ArraySort(x) -> x
-
- let array_sort_of_sort s = match s with Sort(a) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.ARRAY_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- ArraySort(s)
-
- let array_expr_of_expr e =
- match e with Expr(a) ->
- let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in
- if (q != Z3enums.ARRAY_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- ArrayExpr(e)
-
- let expr_of_array_expr e = match e with ArrayExpr(x) -> x
-
- let sgc ( x : array_sort ) = match (x) with ArraySort(Sort(s)) -> (z3obj_gc s)
- let sgnc ( x : array_sort ) = match (x) with ArraySort(Sort(s)) -> (z3obj_gnc s)
- let sgno ( x : array_sort ) = match (x) with ArraySort(Sort(s)) -> (z3obj_gno s)
-
- let egc ( x : array_expr ) = match (x) with ArrayExpr(Expr(e)) -> (z3obj_gc e)
- let egnc ( x : array_expr ) = match (x) with ArrayExpr(Expr(e)) -> (z3obj_gnc e)
- let egno ( x : array_expr ) = match (x) with ArrayExpr(Expr(e)) -> (z3obj_gno e)
-
- let mk_sort ( ctx : context ) ( domain : sort ) ( range : sort ) =
- array_sort_of_ptr ctx (Z3native.mk_array_sort (context_gno ctx) (Sort.gno domain) (Sort.gno range))
-
- let is_store ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_STORE)
- let is_select ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SELECT)
- let is_constant_array ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONST_ARRAY)
- let is_default_array ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_DEFAULT)
- let is_array_map ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ARRAY_MAP)
- let is_as_array ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_AS_ARRAY)
- let is_array ( x : expr ) =
- (Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
- ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == ARRAY_SORT)
-
- let get_domain ( x : array_sort ) = Sort.sort_of_ptr (sgc x) (Z3native.get_array_sort_domain (sgnc x) (sgno x))
- let get_range ( x : array_sort ) = Sort.sort_of_ptr (sgc x) (Z3native.get_array_sort_range (sgnc x) (sgno x))
-
- let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( domain : sort ) ( range : sort ) =
- ArrayExpr(Expr.mk_const ctx name (match (mk_sort ctx domain range) with ArraySort(s) -> s))
-
- let mk_const_s ( ctx : context ) ( name : string ) ( domain : sort ) ( range : sort ) =
- mk_const ctx (Symbol.mk_string ctx name) domain range
-
- let mk_select ( ctx : context ) ( a : array_expr ) ( i : expr ) =
- array_expr_of_ptr ctx (Z3native.mk_select (context_gno ctx) (egno a) (Expr.gno i))
-
- let mk_store ( ctx : context ) ( a : array_expr ) ( i : expr ) ( v : expr ) =
- array_expr_of_ptr ctx (Z3native.mk_store (context_gno ctx) (egno a) (Expr.gno i) (Expr.gno v))
-
- let mk_const_array ( ctx : context ) ( domain : sort ) ( v : expr ) =
- array_expr_of_ptr ctx (Z3native.mk_const_array (context_gno ctx) (Sort.gno domain) (Expr.gno v))
-
- let mk_map ( ctx : context ) ( f : func_decl ) ( args : array_expr list ) =
- let m x = (Expr.gno (expr_of_array_expr x)) in
- array_expr_of_ptr ctx (Z3native.mk_map (context_gno ctx) (FuncDecl.gno f) (List.length args) (Array.of_list (List.map m args)))
-
- let mk_term_array ( ctx : context ) ( arg : array_expr ) =
- array_expr_of_ptr ctx (Z3native.mk_array_default (context_gno ctx) (egno arg))
-end
-
-
-module Set =
-struct
- type set_sort = SetSort of sort
-
- let set_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let s = (sort_of_ptr ctx no) in
- SetSort(s)
-
- let sort_of_set_sort s = match s with SetSort(x) -> x
-
- let mk_sort ( ctx : context ) ( ty : sort ) =
- set_sort_of_ptr ctx (Z3native.mk_set_sort (context_gno ctx) (Sort.gno ty))
-
- let is_union ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_UNION)
- let is_intersect ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_INTERSECT)
- let is_difference ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_DIFFERENCE)
- let is_complement ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_COMPLEMENT)
- let is_subset ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SET_SUBSET)
-
-
- let mk_empty ( ctx : context ) ( domain : sort ) =
- (expr_of_ptr ctx (Z3native.mk_empty_set (context_gno ctx) (Sort.gno domain)))
-
- let mk_full ( ctx : context ) ( domain : sort ) =
- expr_of_ptr ctx (Z3native.mk_full_set (context_gno ctx) (Sort.gno domain))
-
- let mk_set_add ( ctx : context ) ( set : expr ) ( element : expr ) =
- expr_of_ptr ctx (Z3native.mk_set_add (context_gno ctx) (Expr.gno set) (Expr.gno element))
-
- let mk_del ( ctx : context ) ( set : expr ) ( element : expr ) =
- expr_of_ptr ctx (Z3native.mk_set_del (context_gno ctx) (Expr.gno set) (Expr.gno element))
-
- let mk_union ( ctx : context ) ( args : expr list ) =
- expr_of_ptr ctx (Z3native.mk_set_union (context_gno ctx) (List.length args) (expr_lton args))
-
- let mk_intersection ( ctx : context ) ( args : expr list ) =
- expr_of_ptr ctx (Z3native.mk_set_intersect (context_gno ctx) (List.length args) (expr_lton args))
-
- let mk_difference ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) =
- expr_of_ptr ctx (Z3native.mk_set_difference (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2))
-
- let mk_complement ( ctx : context ) ( arg : expr ) =
- expr_of_ptr ctx (Z3native.mk_set_complement (context_gno ctx) (Expr.gno arg))
-
- let mk_membership ( ctx : context ) ( elem : expr ) ( set : expr ) =
- expr_of_ptr ctx (Z3native.mk_set_member (context_gno ctx) (Expr.gno elem) (Expr.gno set))
-
- let mk_subset ( ctx : context ) ( arg1 : expr ) ( arg2 : expr ) =
- expr_of_ptr ctx (Z3native.mk_set_subset (context_gno ctx) (Expr.gno arg1) (Expr.gno arg2))
-
-end
-
-
-module FiniteDomain =
-struct
- type finite_domain_sort = FiniteDomainSort of sort
-
- let sort_of_finite_domain_sort s = match s with FiniteDomainSort(x) -> x
-
- let finite_domain_sort_of_sort s = match s with Sort(a) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.FINITE_DOMAIN_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- FiniteDomainSort(s)
-
- let gc ( x : finite_domain_sort ) = match (x) with FiniteDomainSort(Sort(s)) -> (z3obj_gc s)
- let gnc ( x : finite_domain_sort ) = match (x) with FiniteDomainSort(Sort(s)) -> (z3obj_gnc s)
- let gno ( x : finite_domain_sort ) = match (x) with FiniteDomainSort(Sort(s))-> (z3obj_gno s)
-
- let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) =
- let s = (sort_of_ptr ctx (Z3native.mk_finite_domain_sort (context_gno ctx) (Symbol.gno name) size)) in
- FiniteDomainSort(s)
-
- let mk_sort_s ( ctx : context ) ( name : string ) ( size : int ) =
- mk_sort ctx (Symbol.mk_string ctx name) size
-
-
- let is_finite_domain ( x : expr ) =
- let nc = (Expr.gnc x) in
- (Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
- (sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == FINITE_DOMAIN_SORT)
-
- let is_lt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_FD_LT)
-
- let get_size ( x : finite_domain_sort ) =
- let (r, v) = (Z3native.get_finite_domain_sort_size (gnc x) (gno x)) in
- if r then v
- else raise (Z3native.Exception "Conversion failed.")
-end
-
-
-module Relation =
-struct
- type relation_sort = RelationSort of sort
-
- let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let s = (sort_of_ptr ctx no) in
- RelationSort(s)
-
- let sort_of_relation_sort s = match s with RelationSort(x) -> x
-
- let relation_sort_of_sort s = match s with Sort(a) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.RELATION_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- RelationSort(s)
-
- let gc ( x : relation_sort ) = match (x) with RelationSort(Sort(s)) -> (z3obj_gc s)
- let gnc ( x : relation_sort ) = match (x) with RelationSort(Sort(s)) -> (z3obj_gnc s)
- let gno ( x : relation_sort ) = match (x) with RelationSort(Sort(s))-> (z3obj_gno s)
-
-
- let is_relation ( x : expr ) =
- let nc = (Expr.gnc x) in
- ((Z3native.is_app (Expr.gnc x) (Expr.gno x)) &&
- (sort_kind_of_int (Z3native.get_sort_kind nc (Z3native.get_sort nc (Expr.gno x))) == RELATION_SORT))
-
- let is_store ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_STORE)
- let is_empty ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_EMPTY)
- let is_is_empty ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_IS_EMPTY)
- let is_join ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_JOIN)
- let is_union ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_UNION)
- let is_widen ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_WIDEN)
- let is_project ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_PROJECT)
- let is_filter ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_FILTER)
- let is_negation_filter ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_NEGATION_FILTER)
- let is_rename ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_RENAME)
- let is_complement ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_COMPLEMENT)
- let is_select ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_SELECT)
- let is_clone ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_RA_CLONE)
-
- let get_arity ( x : relation_sort ) = Z3native.get_relation_arity (gnc x) (gno x)
-
- let get_column_sorts ( x : relation_sort ) =
- let n = get_arity x in
- let f i = (sort_of_ptr (gc x) (Z3native.get_relation_column (gnc x) (gno x) i)) in
- mk_list f n
-
-end
-
-
-module Datatype =
-struct
- type datatype_sort = DatatypeSort of sort
- type datatype_expr = DatatypeExpr of expr
-
- let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let s = (sort_of_ptr ctx no) in
- DatatypeSort(s)
-
- let sort_of_datatype_sort s = match s with DatatypeSort(x) -> x
-
- let datatype_sort_of_sort s = match s with Sort(a) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.DATATYPE_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- DatatypeSort(s)
-
- let datatype_expr_of_expr e =
- match e with Expr(a) ->
- let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in
- if (q != Z3enums.DATATYPE_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- DatatypeExpr(e)
-
- let expr_of_datatype_expr e = match e with DatatypeExpr(x) -> x
-
- let sgc ( x : datatype_sort ) = match (x) with DatatypeSort(Sort(s)) -> (z3obj_gc s)
- let sgnc ( x : datatype_sort ) = match (x) with DatatypeSort(Sort(s)) -> (z3obj_gnc s)
- let sgno ( x : datatype_sort ) = match (x) with DatatypeSort(Sort(s))-> (z3obj_gno s)
-
- module Constructor =
- struct
- type constructor = z3_native_object
-
- let _sizes = Hashtbl.create 0
-
- let create ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : sort list ) ( sort_refs : int list ) =
- let n = (List.length field_names) in
- if n != (List.length sorts) then
- raise (Z3native.Exception "Number of field names does not match number of sorts")
- else
- if n != (List.length sort_refs) then
- raise (Z3native.Exception "Number of field names does not match number of sort refs")
- else
- let ptr = (Z3native.mk_constructor (context_gno ctx) (Symbol.gno name)
- (Symbol.gno recognizer)
- n
- (Symbol.symbol_lton field_names)
- (sort_lton sorts)
- (Array.of_list sort_refs)) in
- let no : constructor = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = z3obj_nil_ref ;
- dec_ref = z3obj_nil_ref} in
- (z3obj_sno no ctx ptr) ;
- (z3obj_create no) ;
- let f = fun o -> Z3native.del_constructor (z3obj_gnc o) (z3obj_gno o) in
- Gc.finalise f no ;
- Hashtbl.add _sizes no n ;
- no
-
- let get_num_fields ( x : constructor ) = Hashtbl.find _sizes x
-
- let get_constructor_decl ( x : constructor ) =
- let (a, _, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
- func_decl_of_ptr (z3obj_gc x) a
-
- let get_tester_decl ( x : constructor ) =
- let (_, b, _) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
- func_decl_of_ptr (z3obj_gc x) b
-
- let get_accessor_decls ( x : constructor ) =
- let (_, _, c) = (Z3native.query_constructor (z3obj_gnc x) (z3obj_gno x) (get_num_fields x)) in
- let f i = func_decl_of_ptr (z3obj_gc x) (Array.get c i) in
- mk_list f (Array.length c)
-
- end
-
- module ConstructorList =
- struct
- type constructor_list = z3_native_object
-
- let create ( ctx : context ) ( c : Constructor.constructor list ) =
- let res : constructor_list = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = z3obj_nil_ref ;
- dec_ref = z3obj_nil_ref} in
- let f x =(z3obj_gno x) in
- (z3obj_sno res ctx (Z3native.mk_constructor_list (context_gno ctx) (List.length c) (Array.of_list (List.map f c)))) ;
- (z3obj_create res) ;
- let f = fun o -> Z3native.del_constructor_list (z3obj_gnc o) (z3obj_gno o) in
- Gc.finalise f res;
- res
- end
-
- let mk_constructor ( ctx : context ) ( name : Symbol.symbol ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : sort list ) ( sort_refs : int list ) =
- Constructor.create ctx name recognizer field_names sorts sort_refs
-
-
- let mk_constructor_s ( ctx : context ) ( name : string ) ( recognizer : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( sorts : sort list ) ( sort_refs : int list ) =
- mk_constructor ctx (Symbol.mk_string ctx name) recognizer field_names sorts sort_refs
-
- let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( constructors : Constructor.constructor list ) =
- let f x = (z3obj_gno x) in
- let (x,_) = (Z3native.mk_datatype (context_gno ctx) (Symbol.gno name) (List.length constructors) (Array.of_list (List.map f constructors))) in
- sort_of_ptr ctx x
-
- let mk_sort_s ( ctx : context ) ( name : string ) ( constructors : Constructor.constructor list ) =
- mk_sort ctx (Symbol.mk_string ctx name) constructors
-
- let mk_sorts ( ctx : context ) ( names : Symbol.symbol list ) ( c : Constructor.constructor list list ) =
- let n = (List.length names) in
- let f e = (AST.ptr_of_ast (ConstructorList.create ctx e)) in
- let cla = (Array.of_list (List.map f c)) in
- let (r, a) = (Z3native.mk_datatypes (context_gno ctx) n (Symbol.symbol_lton names) cla) in
- let g i = (sort_of_ptr ctx (Array.get r i)) in
- mk_list g (Array.length r)
-
- let mk_sorts_s ( ctx : context ) ( names : string list ) ( c : Constructor.constructor list list ) =
- mk_sorts ctx
- (
- let f e = (Symbol.mk_string ctx e) in
- List.map f names
- )
- c
-
- let get_num_constructors ( x : datatype_sort ) = Z3native.get_datatype_sort_num_constructors (sgnc x) (sgno x)
-
- let get_constructors ( x : datatype_sort ) =
- let n = (get_num_constructors x) in
- let f i = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) i) in
- mk_list f n
-
- let get_recognizers ( x : datatype_sort ) =
- let n = (get_num_constructors x) in
- let f i = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) i) in
- mk_list f n
-
- let get_accessors ( x : datatype_sort ) =
- let n = (get_num_constructors x) in
- let f i = (
- let fd = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) i) in
- let ds = Z3native.get_domain_size (FuncDecl.gnc fd) (FuncDecl.gno fd) in
- let g j = func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor_accessor (sgnc x) (sgno x) i j) in
- mk_list g ds
- ) in
- mk_list f n
-end
-
-
-module Enumeration =
-struct
- type enum_sort = EnumSort of sort
-
- let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) ( cdecls : Z3native.z3_func_decl list ) ( tdecls : Z3native.z3_func_decl list ) =
- let s = (sort_of_ptr ctx no) in
- let res = EnumSort(s) in
- res
-
- let sort_of_enum_sort s = match s with EnumSort(x) -> x
-
- let sgc ( x : enum_sort ) = match (x) with EnumSort(Sort(s)) -> (z3obj_gc s)
- let sgnc ( x : enum_sort ) = match (x) with EnumSort(Sort(s)) -> (z3obj_gnc s)
- let sgno ( x : enum_sort ) = match (x) with EnumSort(Sort(s))-> (z3obj_gno s)
-
- let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( enum_names : Symbol.symbol list ) =
- let (a, b, c) = (Z3native.mk_enumeration_sort (context_gno ctx) (Symbol.gno name) (List.length enum_names) (Symbol.symbol_lton enum_names)) in
- sort_of_ptr ctx a (list_of_array b) (list_of_array c)
-
- let mk_sort_s ( ctx : context ) ( name : string ) ( enum_names : string list ) =
- mk_sort ctx (Symbol.mk_string ctx name) (Symbol.mk_strings ctx enum_names)
-
- let get_const_decls ( x : enum_sort ) =
- let n = Z3native.get_datatype_sort_num_constructors (sgnc x) (sgno x) in
- let f i = (func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) i)) in
- mk_list f n
-
- let get_tester_decls ( x : enum_sort ) =
- let n = Z3native.get_datatype_sort_num_constructors (sgnc x) (sgno x) in
- let f i = (func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) i)) in
- mk_list f n
-
-end
-
-
-module List_ =
-struct
- type list_sort = ListSort of sort
-
- let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) ( nildecl : Z3native.ptr ) ( is_nildecl : Z3native.ptr ) ( consdecl : Z3native.ptr ) ( is_consdecl : Z3native.ptr ) ( headdecl : Z3native.ptr ) ( taildecl : Z3native.ptr ) =
- let s = (sort_of_ptr ctx no) in
- let res = ListSort(s) in
- res
-
- let sort_of_list_sort s = match s with ListSort(x) -> x
-
- let sgc ( x : list_sort ) = match (x) with ListSort(Sort(s)) -> (z3obj_gc s)
- let sgnc ( x : list_sort ) = match (x) with ListSort(Sort(s)) -> (z3obj_gnc s)
- let sgno ( x : list_sort ) = match (x) with ListSort(Sort(s))-> (z3obj_gno s)
-
- let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( elem_sort : sort ) =
- let (r, a, b, c, d, e, f) = (Z3native.mk_list_sort (context_gno ctx) (Symbol.gno name) (Sort.gno elem_sort)) in
- sort_of_ptr ctx r a b c d e f
-
- let mk_list_s ( ctx : context ) (name : string) elem_sort =
- mk_sort ctx (Symbol.mk_string ctx name) elem_sort
-
- let get_nil_decl ( x : list_sort ) =
- func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) 0)
-
- let get_is_nil_decl ( x : list_sort ) =
- func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) 0)
-
- let get_cons_decl ( x : list_sort ) =
- func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor (sgnc x) (sgno x) 1)
-
- let get_is_cons_decl ( x : list_sort ) =
- func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_recognizer (sgnc x) (sgno x) 1)
-
- let get_head_decl ( x : list_sort ) =
- func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor_accessor (sgnc x) (sgno x) 1 0)
-
- let get_tail_decl ( x : list_sort ) =
- func_decl_of_ptr (sgc x) (Z3native.get_datatype_sort_constructor_accessor (sgnc x) (sgno x) 1 1)
-
- let nil ( x : list_sort ) = expr_of_func_app (sgc x) (get_nil_decl x) []
-end
-
-
-module Tuple =
-struct
- type tuple_sort = TupleSort of sort
-
- let sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- let s = (sort_of_ptr ctx no) in
- TupleSort(s)
-
- let sort_of_tuple_sort s = match s with TupleSort(x) -> x
-
- let sgc ( x : tuple_sort ) = match (x) with TupleSort(Sort(s)) -> (z3obj_gc s)
- let sgnc ( x : tuple_sort ) = match (x) with TupleSort(Sort(s)) -> (z3obj_gnc s)
- let sgno ( x : tuple_sort ) = match (x) with TupleSort(Sort(s))-> (z3obj_gno s)
-
- let mk_sort ( ctx : context ) ( name : Symbol.symbol ) ( field_names : Symbol.symbol list ) ( field_sorts : sort list ) =
- let (r, _, _) = (Z3native.mk_tuple_sort (context_gno ctx) (Symbol.gno name) (List.length field_names) (Symbol.symbol_lton field_names) (sort_lton field_sorts)) in
- sort_of_ptr ctx r
-
- let get_mk_decl ( x : tuple_sort ) =
- func_decl_of_ptr (sgc x) (Z3native.get_tuple_sort_mk_decl (sgnc x) (sgno x))
-
- let get_num_fields ( x : tuple_sort ) = Z3native.get_tuple_sort_num_fields (sgnc x) (sgno x)
-
- let get_field_decls ( x : tuple_sort ) =
- let n = get_num_fields x in
- let f i = func_decl_of_ptr (sgc x) (Z3native.get_tuple_sort_field_decl (sgnc x) (sgno x) i) in
- mk_list f n
-end
-
-
-module rec Arithmetic :
-sig
- type arith_sort = ArithSort of Sort.sort
- type arith_expr = ArithExpr of Expr.expr
-
- val sort_of_arith_sort : arith_sort -> Sort.sort
- val arith_sort_of_sort : Sort.sort -> arith_sort
- val expr_of_arith_expr : arith_expr -> Expr.expr
- val arith_expr_of_expr : Expr.expr -> arith_expr
-
- module rec Integer :
- sig
- type int_sort = IntSort of arith_sort
- type int_expr = IntExpr of arith_expr
- type int_num = IntNum of int_expr
-
- val int_expr_of_ptr : context -> Z3native.ptr -> int_expr
- val int_num_of_ptr : context -> Z3native.ptr -> int_num
-
- val arith_sort_of_int_sort : Integer.int_sort -> arith_sort
- val int_sort_of_arith_sort : arith_sort -> int_sort
- val arith_expr_of_int_expr : int_expr -> arith_expr
- val int_expr_of_int_num : int_num -> int_expr
- val int_expr_of_arith_expr : arith_expr -> int_expr
- val int_num_of_int_expr : int_expr -> int_num
-
- val mk_sort : context -> int_sort
- val get_int : int_num -> int
- val to_string : int_num -> string
- val mk_const : context -> Symbol.symbol -> int_expr
- val mk_const_s : context -> string -> int_expr
- val mk_mod : context -> int_expr -> int_expr -> int_expr
- val mk_rem : context -> int_expr -> int_expr -> int_expr
- val mk_numeral_s : context -> string -> int_num
- val mk_numeral_i : context -> int -> int_num
- val mk_int2real : context -> int_expr -> Real.real_expr
- val mk_int2bv : context -> int -> int_expr -> BitVector.bitvec_expr
- end
- and Real :
- sig
- type real_sort = RealSort of arith_sort
- type real_expr = RealExpr of arith_expr
- type rat_num = RatNum of real_expr
-
- val real_expr_of_ptr : context -> Z3native.ptr -> real_expr
- val rat_num_of_ptr : context -> Z3native.ptr -> rat_num
-
- val arith_sort_of_real_sort : Arithmetic.Real.real_sort -> Arithmetic.arith_sort
- val real_sort_of_arith_sort : Arithmetic.arith_sort -> Arithmetic.Real.real_sort
- val arith_expr_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.arith_expr
- val real_expr_of_rat_num : Arithmetic.Real.rat_num -> Arithmetic.Real.real_expr
- val real_expr_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.Real.real_expr
- val rat_num_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.Real.rat_num
-
- val mk_sort : context -> real_sort
- val get_numerator : rat_num -> Integer.int_num
- val get_denominator : rat_num -> Integer.int_num
- val to_decimal_string : rat_num -> int -> string
- val to_string : rat_num -> string
- val mk_const : context -> Symbol.symbol -> real_expr
- val mk_const_s : context -> string -> real_expr
- val mk_numeral_nd : context -> int -> int -> rat_num
- val mk_numeral_s : context -> string -> rat_num
- val mk_numeral_i : context -> int -> rat_num
- val mk_is_integer : context -> real_expr -> Boolean.bool_expr
- val mk_real2int : context -> real_expr -> Integer.int_expr
- end
- and AlgebraicNumber :
- sig
- type algebraic_num = AlgebraicNum of arith_expr
-
- val arith_expr_of_algebraic_num : algebraic_num -> arith_expr
- val algebraic_num_of_arith_expr : arith_expr -> algebraic_num
-
- val to_upper : algebraic_num -> int -> Real.rat_num
- val to_lower : algebraic_num -> int -> Real.rat_num
- val to_decimal_string : algebraic_num -> int -> string
- val to_string : algebraic_num -> string
- end
-
- val is_int : Expr.expr -> bool
- val is_arithmetic_numeral : Expr.expr -> bool
- val is_le : Expr.expr -> bool
- val is_ge : Expr.expr -> bool
- val is_lt : Expr.expr -> bool
- val is_gt : Expr.expr -> bool
- val is_add : Expr.expr -> bool
- val is_sub : Expr.expr -> bool
- val is_uminus : Expr.expr -> bool
- val is_mul : Expr.expr -> bool
- val is_div : Expr.expr -> bool
- val is_idiv : Expr.expr -> bool
- val is_remainder : Expr.expr -> bool
- val is_modulus : Expr.expr -> bool
- val is_inttoreal : Expr.expr -> bool
- val is_real_to_int : Expr.expr -> bool
- val is_real_is_int : Expr.expr -> bool
- val is_real : Expr.expr -> bool
- val is_int_numeral : Expr.expr -> bool
- val is_rat_num : Expr.expr -> bool
- val is_algebraic_number : Expr.expr -> bool
- val mk_add : context -> arith_expr list -> arith_expr
- val mk_mul : context -> arith_expr list -> arith_expr
- val mk_sub : context -> arith_expr list -> arith_expr
- val mk_unary_minus : context -> arith_expr -> arith_expr
- val mk_div : context -> arith_expr -> arith_expr -> arith_expr
- val mk_power : context -> arith_expr -> arith_expr -> arith_expr
- val mk_lt : context -> arith_expr -> arith_expr -> Boolean.bool_expr
- val mk_le : context -> arith_expr -> arith_expr -> Boolean.bool_expr
- val mk_gt : context -> arith_expr -> arith_expr -> Boolean.bool_expr
- val mk_ge : context -> arith_expr -> arith_expr -> Boolean.bool_expr
-end = struct
- type arith_sort = ArithSort of sort
- type arith_expr = ArithExpr of expr
-
- let arith_expr_of_expr e =
- match e with Expr(a) ->
- let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in
- if (q != Z3enums.INT_SORT && q != Z3enums.REAL_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- ArithExpr(e)
-
- let arith_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- arith_expr_of_expr (expr_of_ptr ctx no)
-
- let sort_of_arith_sort s = match s with ArithSort(x) -> x
- let expr_of_arith_expr e = match e with ArithExpr(x) -> x
-
- let arith_sort_of_sort s = match s with Sort(a) ->
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) in
- if (q != Z3enums.INT_SORT && q != Z3enums.REAL_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- ArithSort(s)
-
- let arith_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- arith_sort_of_sort (sort_of_ptr ctx no)
-
- let sgc ( x : arith_sort ) = match (x) with ArithSort(Sort(s)) -> (z3obj_gc s)
- let sgnc ( x : arith_sort ) = match (x) with ArithSort(Sort(s)) -> (z3obj_gnc s)
- let sgno ( x : arith_sort ) = match (x) with ArithSort(Sort(s)) -> (z3obj_gno s)
- let egc ( x : arith_expr ) = match (x) with ArithExpr(e) -> (Expr.gc e)
- let egnc ( x : arith_expr ) = match (x) with ArithExpr(e) -> (Expr.gnc e)
- let egno ( x : arith_expr ) = match (x) with ArithExpr(e) -> (Expr.gno e)
-
- module rec Integer :
- sig
- type int_sort = IntSort of arith_sort
- type int_expr = IntExpr of arith_expr
- type int_num = IntNum of int_expr
-
- val int_expr_of_ptr : context -> Z3native.ptr -> int_expr
- val int_num_of_ptr : context -> Z3native.ptr -> int_num
-
- val arith_sort_of_int_sort : Integer.int_sort -> arith_sort
- val int_sort_of_arith_sort : arith_sort -> int_sort
- val arith_expr_of_int_expr : int_expr -> arith_expr
- val int_expr_of_int_num : int_num -> int_expr
- val int_expr_of_arith_expr : arith_expr -> int_expr
- val int_num_of_int_expr : int_expr -> int_num
-
- val mk_sort : context -> int_sort
- val get_int : int_num -> int
- val to_string : int_num -> string
- val mk_const : context -> Symbol.symbol -> int_expr
- val mk_const_s : context -> string -> int_expr
- val mk_mod : context -> int_expr -> int_expr -> int_expr
- val mk_rem : context -> int_expr -> int_expr -> int_expr
- val mk_numeral_s : context -> string -> int_num
- val mk_numeral_i : context -> int -> int_num
- val mk_int2real : context -> int_expr -> Real.real_expr
- val mk_int2bv : context -> int -> int_expr -> BitVector.bitvec_expr
- end = struct
- type int_sort = IntSort of arith_sort
- type int_expr = IntExpr of arith_expr
- type int_num = IntNum of int_expr
-
- let int_expr_of_arith_expr e =
- match e with ArithExpr(Expr(a)) ->
- let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in
- if (q != Z3enums.INT_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- IntExpr(e)
-
- let int_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- int_expr_of_arith_expr (arith_expr_of_expr (Expr.expr_of_ptr ctx no))
-
- let int_num_of_int_expr e =
- match e with IntExpr(ArithExpr(Expr(a))) ->
- if (not (Z3native.is_numeral_ast (z3obj_gnc a) (z3obj_gno a))) then
- raise (Z3native.Exception "Invalid coercion")
- else
- IntNum(e)
-
- let int_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- int_num_of_int_expr (int_expr_of_ptr ctx no)
-
- let arith_sort_of_int_sort s = match s with IntSort(x) -> x
- let arith_expr_of_int_expr e = match e with IntExpr(x) -> x
- let int_expr_of_int_num e = match e with IntNum(x) -> x
-
- let int_sort_of_arith_sort s = match s with ArithSort(Sort(a)) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.INT_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- IntSort(s)
-
- let int_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- int_sort_of_arith_sort (arith_sort_of_sort (Sort.sort_of_ptr ctx no))
-
- let sgc ( x : int_sort ) = match (x) with IntSort(s) -> (sgc s)
- let sgnc ( x : int_sort ) = match (x) with IntSort(s) -> (sgnc s)
- let sgno ( x : int_sort ) = match (x) with IntSort(s) -> (sgno s)
- let egc ( x : int_expr ) = match (x) with IntExpr(e) -> (egc e)
- let egnc ( x : int_expr ) = match (x) with IntExpr(e) -> (egnc e)
- let egno ( x : int_expr ) = match (x) with IntExpr(e) -> (egno e)
- let ngc ( x : int_num ) = match (x) with IntNum(e) -> (egc e)
- let ngnc ( x : int_num ) = match (x) with IntNum(e) -> (egnc e)
- let ngno ( x : int_num ) = match (x) with IntNum(e) -> (egno e)
-
- let mk_sort ( ctx : context ) =
- int_sort_of_ptr ctx (Z3native.mk_int_sort (context_gno ctx))
-
- let get_int ( x : int_num ) =
- let (r, v) = Z3native.get_numeral_int (ngnc x) (ngno x) in
- if r then v
- else raise (Z3native.Exception "Conversion failed.")
-
- let to_string ( x : int_num ) = Z3native.get_numeral_string (ngnc x) (ngno x)
-
- let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
- IntExpr(ArithExpr(Expr.mk_const ctx name (match (mk_sort ctx) with IntSort(ArithSort(s)) -> s)))
-
- let mk_const_s ( ctx : context ) ( name : string ) =
- mk_const ctx (Symbol.mk_string ctx name)
-
- let mk_mod ( ctx : context ) ( t1 : int_expr ) ( t2 : int_expr ) =
- int_expr_of_ptr ctx (Z3native.mk_mod (context_gno ctx) (egno t1) (egno t2))
-
- let mk_rem ( ctx : context ) ( t1 : int_expr ) ( t2 : int_expr ) =
- int_expr_of_ptr ctx (Z3native.mk_rem (context_gno ctx) (egno t1) (egno t2))
-
- let mk_numeral_s ( ctx : context ) ( v : string ) =
- int_num_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (sgno (mk_sort ctx)))
-
- let mk_numeral_i ( ctx : context ) ( v : int ) =
- int_num_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (sgno (mk_sort ctx)))
-
- let mk_int2real ( ctx : context ) ( t : int_expr ) =
- Real.real_expr_of_arith_expr (arith_expr_of_expr (Expr.expr_of_ptr ctx (Z3native.mk_int2real (context_gno ctx) (egno t))))
-
- let mk_int2bv ( ctx : context ) ( n : int ) ( t : int_expr ) =
- BitVector.bitvec_expr_of_expr (Expr.expr_of_ptr ctx (Z3native.mk_int2bv (context_gno ctx) n (egno t)))
- end
-
- and Real :
- sig
- type real_sort = RealSort of arith_sort
- type real_expr = RealExpr of arith_expr
- type rat_num = RatNum of real_expr
-
- val real_expr_of_ptr : context -> Z3native.ptr -> real_expr
- val rat_num_of_ptr : context -> Z3native.ptr -> rat_num
-
- val arith_sort_of_real_sort : real_sort -> arith_sort
- val real_sort_of_arith_sort : arith_sort -> real_sort
- val arith_expr_of_real_expr : real_expr -> arith_expr
- val real_expr_of_rat_num : rat_num -> real_expr
- val real_expr_of_arith_expr : arith_expr -> real_expr
- val rat_num_of_real_expr : real_expr -> rat_num
-
- val mk_sort : context -> real_sort
- val get_numerator : rat_num -> Integer.int_num
- val get_denominator : rat_num -> Integer.int_num
- val to_decimal_string : rat_num -> int -> string
- val to_string : rat_num -> string
- val mk_const : context -> Symbol.symbol -> real_expr
- val mk_const_s : context -> string -> real_expr
- val mk_numeral_nd : context -> int -> int -> rat_num
- val mk_numeral_s : context -> string -> rat_num
- val mk_numeral_i : context -> int -> rat_num
- val mk_is_integer : context -> real_expr -> Boolean.bool_expr
- val mk_real2int : context -> real_expr -> Integer.int_expr
- end = struct
- type real_sort = RealSort of arith_sort
- type real_expr = RealExpr of arith_expr
- type rat_num = RatNum of real_expr
-
- let arith_sort_of_real_sort s = match s with RealSort(x) -> x
- let arith_expr_of_real_expr e = match e with RealExpr(x) -> x
- let real_expr_of_rat_num e = match e with RatNum(x) -> x
-
- let real_expr_of_arith_expr e =
- match e with ArithExpr(Expr(a)) ->
- let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in
- if (q != Z3enums.REAL_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- RealExpr(e)
-
- let real_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- real_expr_of_arith_expr (arith_expr_of_expr (Expr.expr_of_ptr ctx no))
-
- let rat_num_of_real_expr e =
- match e with RealExpr(ArithExpr(Expr(a))) ->
- if (not (Z3native.is_numeral_ast (z3obj_gnc a) (z3obj_gno a))) then
- raise (Z3native.Exception "Invalid coercion")
- else
- RatNum(e)
-
- let rat_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- rat_num_of_real_expr (real_expr_of_ptr ctx no)
-
- let real_sort_of_arith_sort s = match s with ArithSort(Sort(a)) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.REAL_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- RealSort(s)
-
- let real_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- real_sort_of_arith_sort (arith_sort_of_sort (sort_of_ptr ctx no))
-
- let sgc ( x : real_sort ) = match (x) with RealSort(s) -> (sgc s)
- let sgnc ( x : real_sort ) = match (x) with RealSort(s) -> (sgnc s)
- let sgno ( x : real_sort ) = match (x) with RealSort(s) -> (sgno s)
- let egc ( x : real_expr ) = match (x) with RealExpr(e) -> (egc e)
- let egnc ( x : real_expr ) = match (x) with RealExpr(e) -> (egnc e)
- let egno ( x : real_expr ) = match (x) with RealExpr(e) -> (egno e)
- let ngc ( x : rat_num ) = match (x) with RatNum(e) -> (egc e)
- let ngnc ( x : rat_num ) = match (x) with RatNum(e) -> (egnc e)
- let ngno ( x : rat_num ) = match (x) with RatNum(e) -> (egno e)
-
-
- let mk_sort ( ctx : context ) =
- real_sort_of_ptr ctx (Z3native.mk_real_sort (context_gno ctx))
-
- let get_numerator ( x : rat_num ) =
- Integer.int_num_of_ptr (ngc x) (Z3native.get_numerator (ngnc x) (ngno x))
-
- let get_denominator ( x : rat_num ) =
- Integer.int_num_of_ptr (ngc x) (Z3native.get_denominator (ngnc x) (ngno x))
-
- let to_decimal_string ( x : rat_num ) ( precision : int ) =
- Z3native.get_numeral_decimal_string (ngnc x) (ngno x) precision
-
- let to_string ( x : rat_num ) = Z3native.get_numeral_string (ngnc x) (ngno x)
-
- let mk_const ( ctx : context ) ( name : Symbol.symbol ) =
- RealExpr(ArithExpr(Expr.mk_const ctx name (match (mk_sort ctx) with RealSort(ArithSort(s)) -> s)))
-
- let mk_const_s ( ctx : context ) ( name : string ) =
- mk_const ctx (Symbol.mk_string ctx name)
-
- let mk_numeral_nd ( ctx : context ) ( num : int ) ( den : int) =
- if (den == 0) then
- raise (Z3native.Exception "Denominator is zero")
- else
- rat_num_of_ptr ctx (Z3native.mk_real (context_gno ctx) num den)
-
- let mk_numeral_s ( ctx : context ) ( v : string ) =
- rat_num_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (sgno (mk_sort ctx)))
-
- let mk_numeral_i ( ctx : context ) ( v : int ) =
- rat_num_of_ptr ctx (Z3native.mk_int (context_gno ctx) v (sgno (mk_sort ctx)))
-
- let mk_is_integer ( ctx : context ) ( t : real_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_is_int (context_gno ctx) (egno t)))
-
- let mk_real2int ( ctx : context ) ( t : real_expr ) =
- Integer.int_expr_of_arith_expr (arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_real2int (context_gno ctx) (egno t))))
- end
-
- and AlgebraicNumber :
- sig
- type algebraic_num = AlgebraicNum of arith_expr
-
- val arith_expr_of_algebraic_num : algebraic_num -> arith_expr
- val algebraic_num_of_arith_expr : arith_expr -> algebraic_num
-
- val to_upper : algebraic_num -> int -> Real.rat_num
- val to_lower : algebraic_num -> int -> Real.rat_num
- val to_decimal_string : algebraic_num -> int -> string
- val to_string : algebraic_num -> string
- end = struct
- type algebraic_num = AlgebraicNum of arith_expr
-
- let arith_expr_of_algebraic_num e = match e with AlgebraicNum(x) -> x
-
- let algebraic_num_of_arith_expr e =
- match e with ArithExpr(Expr(a)) ->
- if (not (Z3native.is_algebraic_number (z3obj_gnc a) (z3obj_gno a))) then
- raise (Z3native.Exception "Invalid coercion")
- else
- AlgebraicNum(e)
-
- let algebraic_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- algebraic_num_of_arith_expr (arith_expr_of_expr (expr_of_ptr ctx no))
-
- let ngc ( x : algebraic_num ) = match (x) with AlgebraicNum(e) -> (egc e)
- let ngnc ( x : algebraic_num ) = match (x) with AlgebraicNum(e) -> (egnc e)
- let ngno ( x : algebraic_num ) = match (x) with AlgebraicNum(e) -> (egno e)
-
-
- let to_upper ( x : algebraic_num ) ( precision : int ) =
- Real.rat_num_of_ptr (ngc x) (Z3native.get_algebraic_number_upper (ngnc x) (ngno x) precision)
-
- let to_lower ( x : algebraic_num ) precision =
- Real.rat_num_of_ptr (ngc x) (Z3native.get_algebraic_number_lower (ngnc x) (ngno x) precision)
-
- let to_decimal_string ( x : algebraic_num ) ( precision : int ) =
- Z3native.get_numeral_decimal_string (ngnc x) (ngno x) precision
-
- let to_string ( x : algebraic_num ) = Z3native.get_numeral_string (ngnc x) (ngno x)
- end
-
- let is_int ( x : expr ) =
- (Z3native.is_numeral_ast (Expr.gnc x) (Expr.gno x)) &&
- ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == INT_SORT)
-
- let is_arithmetic_numeral ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ANUM)
-
- let is_le ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LE)
-
- let is_ge ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GE)
-
- let is_lt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_LT)
-
- let is_gt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_GT)
-
- let is_add ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ADD)
-
- let is_sub ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SUB)
-
- let is_uminus ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UMINUS)
-
- let is_mul ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MUL)
-
- let is_div ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_DIV)
-
- let is_idiv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IDIV)
-
- let is_remainder ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REM)
-
- let is_modulus ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_MOD)
-
- let is_inttoreal ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_REAL)
-
- let is_real_to_int ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_TO_INT)
-
- let is_real_is_int ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_IS_INT)
-
- let is_real ( x : expr ) =
- ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == REAL_SORT)
- let is_int_numeral ( x : expr ) = (Expr.is_numeral x) && (is_int x)
-
- let is_rat_num ( x : expr ) = (Expr.is_numeral x) && (is_real x)
-
- let is_algebraic_number ( x : expr ) = Z3native.is_algebraic_number (Expr.gnc x) (Expr.gno x)
-
- let mk_add ( ctx : context ) ( t : arith_expr list ) =
- let f x = (Expr.gno (expr_of_arith_expr x)) in
- arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_add (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))
-
- let mk_mul ( ctx : context ) ( t : arith_expr list ) =
- let f x = (Expr.gno (expr_of_arith_expr x)) in
- arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_mul (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))
-
- let mk_sub ( ctx : context ) ( t : arith_expr list ) =
- let f x = (Expr.gno (expr_of_arith_expr x)) in
- arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_sub (context_gno ctx) (List.length t) (Array.of_list (List.map f t))))
-
- let mk_unary_minus ( ctx : context ) ( t : arith_expr ) =
- arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_unary_minus (context_gno ctx) (egno t)))
-
- let mk_div ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) =
- arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_div (context_gno ctx) (egno t1) (egno t2)))
-
- let mk_power ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) =
- arith_expr_of_expr (expr_of_ptr ctx (Z3native.mk_power (context_gno ctx) (egno t1) (egno t2)))
-
- let mk_lt ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_lt (context_gno ctx) (egno t1) (egno t2)))
-
- let mk_le ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_le (context_gno ctx) (egno t1) (egno t2)))
-
- let mk_gt ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_gt (context_gno ctx) (egno t1) (egno t2)))
-
- let mk_ge ( ctx : context ) ( t1 : arith_expr ) ( t2 : arith_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_ge (context_gno ctx) (egno t1) (egno t2)))
-end
-
-
-and BitVector :
-sig
- type bitvec_sort = BitVecSort of Sort.sort
- type bitvec_expr = BitVecExpr of Expr.expr
- type bitvec_num = BitVecNum of bitvec_expr
-
- val sort_of_bitvec_sort : BitVector.bitvec_sort -> Sort.sort
- val bitvec_sort_of_sort : Sort.sort -> BitVector.bitvec_sort
- val expr_of_bitvec_expr : BitVector.bitvec_expr -> Expr.expr
- val bitvec_expr_of_bitvec_num : BitVector.bitvec_num -> BitVector.bitvec_expr
- val bitvec_expr_of_expr : Expr.expr -> BitVector.bitvec_expr
- val bitvec_num_of_bitvec_expr : BitVector.bitvec_expr -> BitVector.bitvec_num
-
- val mk_sort : context -> int -> bitvec_sort
- val is_bv : Expr.expr -> bool
- val is_bv_numeral : Expr.expr -> bool
- val is_bv_bit1 : Expr.expr -> bool
- val is_bv_bit0 : Expr.expr -> bool
- val is_bv_uminus : Expr.expr -> bool
- val is_bv_add : Expr.expr -> bool
- val is_bv_sub : Expr.expr -> bool
- val is_bv_mul : Expr.expr -> bool
- val is_bv_sdiv : Expr.expr -> bool
- val is_bv_udiv : Expr.expr -> bool
- val is_bv_SRem : Expr.expr -> bool
- val is_bv_urem : Expr.expr -> bool
- val is_bv_smod : Expr.expr -> bool
- val is_bv_sdiv0 : Expr.expr -> bool
- val is_bv_udiv0 : Expr.expr -> bool
- val is_bv_srem0 : Expr.expr -> bool
- val is_bv_urem0 : Expr.expr -> bool
- val is_bv_smod0 : Expr.expr -> bool
- val is_bv_ule : Expr.expr -> bool
- val is_bv_sle : Expr.expr -> bool
- val is_bv_uge : Expr.expr -> bool
- val is_bv_sge : Expr.expr -> bool
- val is_bv_ult : Expr.expr -> bool
- val is_bv_slt : Expr.expr -> bool
- val is_bv_ugt : Expr.expr -> bool
- val is_bv_sgt : Expr.expr -> bool
- val is_bv_and : Expr.expr -> bool
- val is_bv_or : Expr.expr -> bool
- val is_bv_not : Expr.expr -> bool
- val is_bv_xor : Expr.expr -> bool
- val is_bv_nand : Expr.expr -> bool
- val is_bv_nor : Expr.expr -> bool
- val is_bv_xnor : Expr.expr -> bool
- val is_bv_concat : Expr.expr -> bool
- val is_bv_signextension : Expr.expr -> bool
- val is_bv_zeroextension : Expr.expr -> bool
- val is_bv_extract : Expr.expr -> bool
- val is_bv_repeat : Expr.expr -> bool
- val is_bv_reduceor : Expr.expr -> bool
- val is_bv_reduceand : Expr.expr -> bool
- val is_bv_comp : Expr.expr -> bool
- val is_bv_shiftleft : Expr.expr -> bool
- val is_bv_shiftrightlogical : Expr.expr -> bool
- val is_bv_shiftrightarithmetic : Expr.expr -> bool
- val is_bv_rotateleft : Expr.expr -> bool
- val is_bv_rotateright : Expr.expr -> bool
- val is_bv_rotateleftextended : Expr.expr -> bool
- val is_bv_rotaterightextended : Expr.expr -> bool
- val is_int_to_bv : Expr.expr -> bool
- val is_bv_to_int : Expr.expr -> bool
- val is_bv_carry : Expr.expr -> bool
- val is_bv_xor3 : Expr.expr -> bool
- val get_size : bitvec_sort -> int
- val get_int : bitvec_num -> int
- val to_string : bitvec_num -> string
- val mk_const : context -> Symbol.symbol -> int -> bitvec_expr
- val mk_const_s : context -> string -> int -> bitvec_expr
- val mk_not : context -> bitvec_expr -> Expr.expr
- val mk_redand : context -> bitvec_expr -> Expr.expr
- val mk_redor : context -> bitvec_expr -> Expr.expr
- val mk_and : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_or : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_xor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_nand : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_nor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_xnor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_neg : context -> bitvec_expr -> bitvec_expr
- val mk_add : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_sub : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_mul : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_udiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_sdiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_urem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_srem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_smod : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_ult : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_slt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_ule : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_sle : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_uge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_sge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_ugt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_sgt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_concat : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_extract : context -> int -> int -> bitvec_expr -> bitvec_expr
- val mk_sign_ext : context -> int -> bitvec_expr -> bitvec_expr
- val mk_zero_ext : context -> int -> bitvec_expr -> bitvec_expr
- val mk_repeat : context -> int -> bitvec_expr -> bitvec_expr
- val mk_shl : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_lshr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_ashr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_rotate_left : context -> int -> bitvec_expr -> bitvec_expr
- val mk_rotate_right : context -> int -> bitvec_expr -> bitvec_expr
- val mk_ext_rotate_left : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_ext_rotate_right : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
- val mk_bv2int : context -> bitvec_expr -> bool -> Arithmetic.Integer.int_expr
- val mk_add_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr
- val mk_add_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_sub_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_sub_no_underflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr
- val mk_sdiv_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_neg_no_overflow : context -> bitvec_expr -> Boolean.bool_expr
- val mk_mul_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr
- val mk_mul_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
- val mk_numeral : context -> string -> int -> bitvec_num
-end = struct
- type bitvec_sort = BitVecSort of sort
- type bitvec_expr = BitVecExpr of expr
- type bitvec_num = BitVecNum of bitvec_expr
-
- let sort_of_bitvec_sort s = match s with BitVecSort(x) -> x
-
- let bitvec_sort_of_sort s = match s with Sort(a) ->
- if ((Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) (z3obj_gno a))) != Z3enums.BV_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- BitVecSort(s)
-
- let bitvec_sort_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- bitvec_sort_of_sort (sort_of_ptr ctx no)
-
- let bitvec_expr_of_expr e =
- match e with Expr(a) ->
- let s = Z3native.get_sort (z3obj_gnc a) (z3obj_gno a) in
- let q = (Z3enums.sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc a) s)) in
- if (q != Z3enums.BV_SORT) then
- raise (Z3native.Exception "Invalid coercion")
- else
- BitVecExpr(e)
-
- let bitvec_expr_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- bitvec_expr_of_expr (expr_of_ptr ctx no)
-
- let bitvec_num_of_bitvec_expr e =
- match e with BitVecExpr(Expr(a)) ->
- if (not (Z3native.is_numeral_ast (z3obj_gnc a) (z3obj_gno a))) then
- raise (Z3native.Exception "Invalid coercion")
- else
- BitVecNum(e)
-
- let bitvec_num_of_ptr ( ctx : context ) ( no : Z3native.ptr ) =
- bitvec_num_of_bitvec_expr (bitvec_expr_of_expr (expr_of_ptr ctx no))
-
- let expr_of_bitvec_expr e = match e with BitVecExpr(x) -> x
- let bitvec_expr_of_bitvec_num e = match e with BitVecNum(x) -> x
-
-
- let sgc ( x : bitvec_sort ) = match (x) with BitVecSort(s) -> (Sort.gc s)
- let sgnc ( x : bitvec_sort ) = match (x) with BitVecSort(s) -> (Sort.gnc s)
- let sgno ( x : bitvec_sort ) = match (x) with BitVecSort(s) -> (Sort.gno s)
- let egc ( x : bitvec_expr ) = match (x) with BitVecExpr(e) -> (Expr.gc e)
- let egnc ( x : bitvec_expr ) = match (x) with BitVecExpr(e) -> (Expr.gnc e)
- let egno ( x : bitvec_expr ) = match (x) with BitVecExpr(e) -> (Expr.gno e)
- let ngc ( x : bitvec_num ) = match (x) with BitVecNum(e) -> (egc e)
- let ngnc ( x : bitvec_num ) = match (x) with BitVecNum(e) -> (egnc e)
- let ngno ( x : bitvec_num ) = match (x) with BitVecNum(e) -> (egno e)
-
-
- let mk_sort ( ctx : context ) size =
- bitvec_sort_of_ptr ctx (Z3native.mk_bv_sort (context_gno ctx) size)
- let is_bv ( x : expr ) =
- ((sort_kind_of_int (Z3native.get_sort_kind (Expr.gnc x) (Z3native.get_sort (Expr.gnc x) (Expr.gno x)))) == BV_SORT)
- let is_bv_numeral ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNUM)
- let is_bv_bit1 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT1)
- let is_bv_bit0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BIT0)
- let is_bv_uminus ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNEG)
- let is_bv_add ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BADD)
- let is_bv_sub ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSUB)
- let is_bv_mul ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BMUL)
- let is_bv_sdiv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV)
- let is_bv_udiv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV)
- let is_bv_SRem ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM)
- let is_bv_urem ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM)
- let is_bv_smod ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD)
- let is_bv_sdiv0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSDIV0)
- let is_bv_udiv0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUDIV0)
- let is_bv_srem0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSREM0)
- let is_bv_urem0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BUREM0)
- let is_bv_smod0 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSMOD0)
- let is_bv_ule ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULEQ)
- let is_bv_sle ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLEQ)
- let is_bv_uge ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGEQ)
- let is_bv_sge ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGEQ)
- let is_bv_ult ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ULT)
- let is_bv_slt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SLT)
- let is_bv_ugt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_UGT)
- let is_bv_sgt ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SGT)
- let is_bv_and ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BAND)
- let is_bv_or ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BOR)
- let is_bv_not ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOT)
- let is_bv_xor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXOR)
- let is_bv_nand ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNAND)
- let is_bv_nor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BNOR)
- let is_bv_xnor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BXNOR)
- let is_bv_concat ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CONCAT)
- let is_bv_signextension ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_SIGN_EXT)
- let is_bv_zeroextension ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ZERO_EXT)
- let is_bv_extract ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXTRACT)
- let is_bv_repeat ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_REPEAT)
- let is_bv_reduceor ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDOR)
- let is_bv_reduceand ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BREDAND)
- let is_bv_comp ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BCOMP)
- let is_bv_shiftleft ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BSHL)
- let is_bv_shiftrightlogical ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BLSHR)
- let is_bv_shiftrightarithmetic ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BASHR)
- let is_bv_rotateleft ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_LEFT)
- let is_bv_rotateright ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_ROTATE_RIGHT)
- let is_bv_rotateleftextended ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_LEFT)
- let is_bv_rotaterightextended ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_EXT_ROTATE_RIGHT)
- let is_int_to_bv ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_INT2BV)
- let is_bv_to_int ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_BV2INT)
- let is_bv_carry ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_CARRY)
- let is_bv_xor3 ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_XOR3)
- let get_size (x : bitvec_sort ) = Z3native.get_bv_sort_size (sgnc x) (sgno x)
- let get_int ( x : bitvec_num ) =
- let (r, v) = Z3native.get_numeral_int (ngnc x) (ngno x) in
- if r then v
- else raise (Z3native.Exception "Conversion failed.")
- let to_string ( x : bitvec_num ) = Z3native.get_numeral_string (ngnc x) (ngno x)
- let mk_const ( ctx : context ) ( name : Symbol.symbol ) ( size : int ) =
- BitVecExpr(Expr.mk_const ctx name (match (BitVector.mk_sort ctx size) with BitVecSort(s) -> s))
- let mk_const_s ( ctx : context ) ( name : string ) ( size : int ) =
- mk_const ctx (Symbol.mk_string ctx name) size
- let mk_not ( ctx : context ) ( t : bitvec_expr ) =
- expr_of_ptr ctx (Z3native.mk_bvnot (context_gno ctx) (egno t))
- let mk_redand ( ctx : context ) ( t : bitvec_expr) =
- expr_of_ptr ctx (Z3native.mk_bvredand (context_gno ctx) (egno t))
- let mk_redor ( ctx : context ) ( t : bitvec_expr) =
- expr_of_ptr ctx (Z3native.mk_bvredor (context_gno ctx) (egno t))
- let mk_and ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvand (context_gno ctx) (egno t1) (egno t2))
- let mk_or ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvor (context_gno ctx) (egno t1) (egno t2))
- let mk_xor ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvxor (context_gno ctx) (egno t1) (egno t2))
- let mk_nand ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvnand (context_gno ctx) (egno t1) (egno t2))
- let mk_nor ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvnor (context_gno ctx) (egno t1) (egno t2))
- let mk_xnor ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvxnor (context_gno ctx) (egno t1) (egno t2))
- let mk_neg ( ctx : context ) ( t : bitvec_expr) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvneg (context_gno ctx) (egno t))
- let mk_add ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvadd (context_gno ctx) (egno t1) (egno t2))
- let mk_sub ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvsub (context_gno ctx) (egno t1) (egno t2))
- let mk_mul ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvmul (context_gno ctx) (egno t1) (egno t2))
- let mk_udiv ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvudiv (context_gno ctx) (egno t1) (egno t2))
- let mk_sdiv ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvsdiv (context_gno ctx) (egno t1) (egno t2))
- let mk_urem ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvurem (context_gno ctx) (egno t1) (egno t2))
- let mk_srem ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvsrem (context_gno ctx) (egno t1) (egno t2))
- let mk_smod ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvsmod (context_gno ctx) (egno t1) (egno t2))
- let mk_ult ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvult (context_gno ctx) (egno t1) (egno t2)))
- let mk_slt ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvslt (context_gno ctx) (egno t1) (egno t2)))
- let mk_ule ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvule (context_gno ctx) (egno t1) (egno t2)))
- let mk_sle ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsle (context_gno ctx) (egno t1) (egno t2)))
- let mk_uge ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvuge (context_gno ctx) (egno t1) (egno t2)))
- let mk_sge ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsge (context_gno ctx) (egno t1) (egno t2)))
- let mk_ugt ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvugt (context_gno ctx) (egno t1) (egno t2)))
- let mk_sgt ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsgt (context_gno ctx) (egno t1) (egno t2)))
- let mk_concat ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_concat (context_gno ctx) (egno t1) (egno t2))
- let mk_extract ( ctx : context ) ( high : int ) ( low : int ) ( t : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_extract (context_gno ctx) high low (egno t))
- let mk_sign_ext ( ctx : context ) ( i : int ) ( t : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_sign_ext (context_gno ctx) i (egno t))
- let mk_zero_ext ( ctx : context ) ( i : int ) ( t : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_zero_ext (context_gno ctx) i (egno t))
- let mk_repeat ( ctx : context ) ( i : int ) ( t : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_repeat (context_gno ctx) i (egno t))
- let mk_shl ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvshl (context_gno ctx) (egno t1) (egno t2))
- let mk_lshr ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvlshr (context_gno ctx) (egno t1) (egno t2))
- let mk_ashr ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_bvashr (context_gno ctx) (egno t1) (egno t2))
- let mk_rotate_left ( ctx : context ) ( i : int ) ( t : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_rotate_left (context_gno ctx) i (egno t))
- let mk_rotate_right ( ctx : context ) ( i : int ) ( t : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_rotate_right (context_gno ctx) i (egno t))
- let mk_ext_rotate_left ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_ext_rotate_left (context_gno ctx) (egno t1) (egno t2))
- let mk_ext_rotate_right ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- bitvec_expr_of_ptr ctx (Z3native.mk_ext_rotate_right (context_gno ctx) (egno t1) (egno t2))
- let mk_bv2int ( ctx : context ) ( t : bitvec_expr ) ( signed : bool ) =
- Arithmetic.Integer.int_expr_of_ptr ctx (Z3native.mk_bv2int (context_gno ctx) (egno t) signed)
- let mk_add_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvadd_no_overflow (context_gno ctx) (egno t1) (egno t2) signed))
- let mk_add_no_underflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvadd_no_underflow (context_gno ctx) (egno t1) (egno t2)))
- let mk_sub_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsub_no_overflow (context_gno ctx) (egno t1) (egno t2)))
- let mk_sub_no_underflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsub_no_underflow (context_gno ctx) (egno t1) (egno t2) signed))
- let mk_sdiv_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvsdiv_no_overflow (context_gno ctx) (egno t1) (egno t2)))
- let mk_neg_no_overflow ( ctx : context ) ( t : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvneg_no_overflow (context_gno ctx) (egno t)))
- let mk_mul_no_overflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) ( signed : bool) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvmul_no_overflow (context_gno ctx) (egno t1) (egno t2) signed))
- let mk_mul_no_underflow ( ctx : context ) ( t1 : bitvec_expr ) ( t2 : bitvec_expr ) =
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.mk_bvmul_no_underflow (context_gno ctx) (egno t1) (egno t2)))
- let mk_numeral ( ctx : context ) ( v : string ) ( size : int) =
- bitvec_num_of_ptr ctx (Z3native.mk_numeral (context_gno ctx) v (sgno (BitVector.mk_sort ctx size)))
-end
-
-
-module Proof =
-struct
- let is_true ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRUE)
- let is_asserted ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ASSERTED)
- let is_goal ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_GOAL)
- let is_modus_ponens ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS)
- let is_reflexivity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REFLEXIVITY)
- let is_symmetry ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SYMMETRY)
- let is_transitivity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY)
- let is_Transitivity_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TRANSITIVITY_STAR)
- let is_monotonicity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MONOTONICITY)
- let is_quant_intro ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INTRO)
- let is_distributivity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DISTRIBUTIVITY)
- let is_and_elimination ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_AND_ELIM)
- let is_or_elimination ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NOT_OR_ELIM)
- let is_rewrite ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE)
- let is_rewrite_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_REWRITE_STAR)
- let is_pull_quant ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT)
- let is_pull_quant_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PULL_QUANT_STAR)
- let is_push_quant ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_PUSH_QUANT)
- let is_elim_unused_vars ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_ELIM_UNUSED_VARS)
- let is_der ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DER)
- let is_quant_inst ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_QUANT_INST)
- let is_hypothesis ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_HYPOTHESIS)
- let is_lemma ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_LEMMA)
- let is_unit_resolution ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_UNIT_RESOLUTION)
- let is_iff_true ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_TRUE)
- let is_iff_false ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_FALSE)
- let is_commutativity ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_COMMUTATIVITY) (* *)
- let is_def_axiom ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_AXIOM)
- let is_def_intro ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_DEF_INTRO)
- let is_apply_def ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_APPLY_DEF)
- let is_iff_oeq ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_IFF_OEQ)
- let is_nnf_pos ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_POS)
- let is_nnf_neg ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_NEG)
- let is_nnf_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_NNF_STAR)
- let is_cnf_star ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_CNF_STAR)
- let is_skolemize ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_SKOLEMIZE)
- let is_modus_ponens_oeq ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_MODUS_PONENS_OEQ)
- let is_theory_lemma ( x : expr ) = (FuncDecl.get_decl_kind (Expr.get_func_decl x) == OP_PR_TH_LEMMA)
-end
-
-
-module Goal =
-struct
- type goal = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : goal = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.goal_inc_ref ;
- dec_ref = Z3native.goal_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let get_precision ( x : goal ) =
- goal_prec_of_int (Z3native.goal_precision (z3obj_gnc x) (z3obj_gno x))
-
- let is_precise ( x : goal ) =
- (get_precision x) == GOAL_PRECISE
-
- let is_underapproximation ( x : goal ) =
- (get_precision x) == GOAL_UNDER
-
- let is_overapproximation ( x : goal ) =
- (get_precision x) == GOAL_OVER
-
- let is_garbage ( x : goal ) =
- (get_precision x) == GOAL_UNDER_OVER
-
- let assert_ ( x : goal ) ( constraints : Boolean.bool_expr list ) =
- let f e = Z3native.goal_assert (z3obj_gnc x) (z3obj_gno x) (Boolean.gno e) in
- ignore (List.map f constraints) ;
- ()
-
- let is_inconsistent ( x : goal ) =
- Z3native.goal_inconsistent (z3obj_gnc x) (z3obj_gno x)
-
- let get_depth ( x : goal ) = Z3native.goal_depth (z3obj_gnc x) (z3obj_gno x)
-
- let reset ( x : goal ) = Z3native.goal_reset (z3obj_gnc x) (z3obj_gno x)
-
- let get_size ( x : goal ) = Z3native.goal_size (z3obj_gnc x) (z3obj_gno x)
-
- let get_formulas ( x : goal ) =
- let n = get_size x in
- let f i = (Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x)
- (Z3native.goal_formula (z3obj_gnc x) (z3obj_gno x) i))) in
- mk_list f n
-
- let get_num_exprs ( x : goal ) = Z3native.goal_num_exprs (z3obj_gnc x) (z3obj_gno x)
-
- let is_decided_sat ( x : goal ) =
- Z3native.goal_is_decided_sat (z3obj_gnc x) (z3obj_gno x)
-
- let is_decided_unsat ( x : goal ) =
- Z3native.goal_is_decided_unsat (z3obj_gnc x) (z3obj_gno x)
-
- let translate ( x : goal ) ( to_ctx : context ) =
- create to_ctx (Z3native.goal_translate (z3obj_gnc x) (z3obj_gno x) (context_gno to_ctx))
-
- let simplify ( x : goal ) ( p : Params.params option ) =
- let tn = Z3native.mk_tactic (z3obj_gnc x) "simplify" in
- Z3native.tactic_inc_ref (z3obj_gnc x) tn ;
- let arn = match p with
- | None -> Z3native.tactic_apply (z3obj_gnc x) tn (z3obj_gno x)
- | Some(pn) -> Z3native.tactic_apply_ex (z3obj_gnc x) tn (z3obj_gno x) (z3obj_gno pn)
- in
- Z3native.apply_result_inc_ref (z3obj_gnc x) arn ;
- let sg = Z3native.apply_result_get_num_subgoals (z3obj_gnc x) arn in
- let res = if sg == 0 then
- raise (Z3native.Exception "No subgoals")
- else
- Z3native.apply_result_get_subgoal (z3obj_gnc x) arn 0 in
- Z3native.apply_result_dec_ref (z3obj_gnc x) arn ;
- Z3native.tactic_dec_ref (z3obj_gnc x) tn ;
- create (z3obj_gc x) res
-
- let mk_goal ( ctx : context ) ( models : bool ) ( unsat_cores : bool ) ( proofs : bool ) =
- create ctx (Z3native.mk_goal (context_gno ctx) models unsat_cores proofs)
-
- let to_string ( x : goal ) = Z3native.goal_to_string (z3obj_gnc x) (z3obj_gno x)
-end
-
-
-module Model =
-struct
- type model = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : model = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.model_inc_ref ;
- dec_ref = Z3native.model_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- module FuncInterp =
- struct
- type func_interp = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : func_interp = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.func_interp_inc_ref ;
- dec_ref = Z3native.func_interp_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- module FuncEntry =
- struct
- type func_entry = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : func_entry = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.func_entry_inc_ref ;
- dec_ref = Z3native.func_entry_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let get_value ( x : func_entry ) =
- expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_value (z3obj_gnc x) (z3obj_gno x))
-
- let get_num_args ( x : func_entry ) = Z3native.func_entry_get_num_args (z3obj_gnc x) (z3obj_gno x)
-
- let get_args ( x : func_entry ) =
- let n = (get_num_args x) in
- let f i = (expr_of_ptr (z3obj_gc x) (Z3native.func_entry_get_arg (z3obj_gnc x) (z3obj_gno x) i)) in
- mk_list f n
-
- let to_string ( x : func_entry ) =
- let a = (get_args x) in
- let f c p = (p ^ (Expr.to_string c) ^ ", ") in
- "[" ^ List.fold_right f a ((Expr.to_string (get_value x)) ^ "]")
- end
-
- let get_num_entries ( x: func_interp ) = Z3native.func_interp_get_num_entries (z3obj_gnc x) (z3obj_gno x)
-
- let get_entries ( x : func_interp ) =
- let n = (get_num_entries x) in
- let f i = (FuncEntry.create (z3obj_gc x) (Z3native.func_interp_get_entry (z3obj_gnc x) (z3obj_gno x) i)) in
- mk_list f n
-
- let get_else ( x : func_interp ) = expr_of_ptr (z3obj_gc x) (Z3native.func_interp_get_else (z3obj_gnc x) (z3obj_gno x))
-
- let get_arity ( x : func_interp ) = Z3native.func_interp_get_arity (z3obj_gnc x) (z3obj_gno x)
-
- let to_string ( x : func_interp ) =
- let f c p = (
- let n = (FuncEntry.get_num_args c) in
- p ^
- let g c p = (p ^ (Expr.to_string c) ^ ", ") in
- (if n > 1 then "[" else "") ^
- (List.fold_right
- g
- (FuncEntry.get_args c)
- ((if n > 1 then "]" else "") ^ " -> " ^ (Expr.to_string (FuncEntry.get_value c)) ^ ", "))
- ) in
- List.fold_right f (get_entries x) ("else -> " ^ (Expr.to_string (get_else x)) ^ "]")
- end
-
- let get_const_interp ( x : model ) ( f : func_decl ) =
- if (FuncDecl.get_arity f) != 0 ||
- (sort_kind_of_int (Z3native.get_sort_kind (FuncDecl.gnc f) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) == ARRAY_SORT then
- raise (Z3native.Exception "Non-zero arity functions and arrays have FunctionInterpretations as a model. Use FuncInterp.")
- else
- let np = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in
- if (Z3native.is_null np) then
- None
- else
- Some (expr_of_ptr (z3obj_gc x) np)
-
- let get_const_interp_e ( x : model ) ( a : expr ) = get_const_interp x (Expr.get_func_decl a)
-
-
- let rec get_func_interp ( x : model ) ( f : func_decl ) =
- let sk = (sort_kind_of_int (Z3native.get_sort_kind (z3obj_gnc x) (Z3native.get_range (FuncDecl.gnc f) (FuncDecl.gno f)))) in
- if (FuncDecl.get_arity f) == 0 then
- let n = Z3native.model_get_const_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) in
- if (Z3native.is_null n) then
- None
- else
- match sk with
- | ARRAY_SORT ->
- if not (Z3native.is_as_array (z3obj_gnc x) n) then
- raise (Z3native.Exception "Argument was not an array constant")
- else
- let fd = Z3native.get_as_array_func_decl (z3obj_gnc x) n in
- get_func_interp x (func_decl_of_ptr (z3obj_gc x) fd)
- | _ -> raise (Z3native.Exception "Constant functions do not have a function interpretation; use ConstInterp");
- else
- let n = (Z3native.model_get_func_interp (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f)) in
- if (Z3native.is_null n) then None else Some (FuncInterp.create (z3obj_gc x) n)
-
- (** The number of constants that have an interpretation in the model. *)
- let get_num_consts ( x : model ) = Z3native.model_get_num_consts (z3obj_gnc x) (z3obj_gno x)
-
- let get_const_decls ( x : model ) =
- let n = (get_num_consts x) in
- let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in
- mk_list f n
-
- let get_num_funcs ( x : model ) = Z3native.model_get_num_funcs (z3obj_gnc x) (z3obj_gno x)
-
- let get_func_decls ( x : model ) =
- let n = (get_num_consts x) in
- let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in
- mk_list f n
-
- let get_decls ( x : model ) =
- let n_funcs = (get_num_funcs x) in
- let n_consts = (get_num_consts x ) in
- let f i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_func_decl (z3obj_gnc x) (z3obj_gno x) i) in
- let g i = func_decl_of_ptr (z3obj_gc x) (Z3native.model_get_const_decl (z3obj_gnc x) (z3obj_gno x) i) in
- (mk_list f n_funcs) @ (mk_list g n_consts)
-
- exception ModelEvaluationFailedException of string
-
- let eval ( x : model ) ( t : expr ) ( completion : bool ) =
- let (r, v) = (Z3native.model_eval (z3obj_gnc x) (z3obj_gno x) (Expr.gno t) completion) in
- if not r then
- raise (ModelEvaluationFailedException "evaluation failed")
- else
- expr_of_ptr (z3obj_gc x) v
-
- let evaluate ( x : model ) ( t : expr ) ( completion : bool ) =
- eval x t completion
-
- let get_num_sorts ( x : model ) = Z3native.model_get_num_sorts (z3obj_gnc x) (z3obj_gno x)
-
- let get_sorts ( x : model ) =
- let n = (get_num_sorts x) in
- let f i = (sort_of_ptr (z3obj_gc x) (Z3native.model_get_sort (z3obj_gnc x) (z3obj_gno x) i)) in
- mk_list f n
-
- let sort_universe ( x : model ) ( s : sort ) =
- let n_univ = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.model_get_sort_universe (z3obj_gnc x) (z3obj_gno x) (Sort.gno s)) in
- let n = (AST.ASTVector.get_size n_univ) in
- let f i = (AST.ASTVector.get n_univ i) in
- mk_list f n
-
- let to_string ( x : model ) = Z3native.model_to_string (z3obj_gnc x) (z3obj_gno x)
-end
-
-
-module Probe =
-struct
- type probe = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : probe = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.probe_inc_ref ;
- dec_ref = Z3native.probe_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
-
- let apply ( x : probe ) ( g : Goal.goal ) =
- Z3native.probe_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g)
-
- let get_num_probes ( ctx : context ) =
- Z3native.get_num_probes (context_gno ctx)
-
- let get_probe_names ( ctx : context ) =
- let n = (get_num_probes ctx) in
- let f i = (Z3native.get_probe_name (context_gno ctx) i) in
- mk_list f n
-
- let get_probe_description ( ctx : context ) ( name : string ) =
- Z3native.probe_get_descr (context_gno ctx) name
-
- let mk_probe ( ctx : context ) ( name : string ) =
- (create ctx (Z3native.mk_probe (context_gno ctx) name))
-
- let const ( ctx : context ) ( v : float ) =
- (create ctx (Z3native.probe_const (context_gno ctx) v))
-
- let lt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
- (create ctx (Z3native.probe_lt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
-
- let gt ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
- (create ctx (Z3native.probe_gt (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
-
- let le ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
- (create ctx (Z3native.probe_le (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
-
- let ge ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
- (create ctx (Z3native.probe_ge (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
-
- let eq ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
- (create ctx (Z3native.probe_eq (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
-
- let and_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
- (create ctx (Z3native.probe_and (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
-
- let or_ ( ctx : context ) ( p1 : probe ) ( p2 : probe ) =
- (create ctx (Z3native.probe_or (context_gno ctx) (z3obj_gno p1) (z3obj_gno p2)))
-
- let not_ ( ctx : context ) ( p : probe ) =
- (create ctx (Z3native.probe_not (context_gno ctx) (z3obj_gno p)))
-end
-
-
-module Tactic =
-struct
- type tactic = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : tactic = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.tactic_inc_ref ;
- dec_ref = Z3native.tactic_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- module ApplyResult =
- struct
- type apply_result = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : apply_result = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.apply_result_inc_ref ;
- dec_ref = Z3native.apply_result_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let get_num_subgoals ( x : apply_result ) =
- Z3native.apply_result_get_num_subgoals (z3obj_gnc x) (z3obj_gno x)
-
- let get_subgoals ( x : apply_result ) =
- let n = (get_num_subgoals x) in
- let f i = Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i) in
- mk_list f n
-
- let get_subgoal ( x : apply_result ) ( i : int ) =
- Goal.create (z3obj_gc x) (Z3native.apply_result_get_subgoal (z3obj_gnc x) (z3obj_gno x) i)
-
- let convert_model ( x : apply_result ) ( i : int ) ( m : Model.model ) =
- Model.create (z3obj_gc x) (Z3native.apply_result_convert_model (z3obj_gnc x) (z3obj_gno x) i (z3obj_gno m))
-
- let to_string ( x : apply_result ) = Z3native.apply_result_to_string (z3obj_gnc x) (z3obj_gno x)
- end
-
- let get_help ( x : tactic ) = Z3native.tactic_get_help (z3obj_gnc x) (z3obj_gno x)
-
- let get_param_descrs ( x : tactic ) =
- Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.tactic_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
-
- let apply ( x : tactic ) ( g : Goal.goal ) ( p : Params.params option ) =
- match p with
- | None -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g)))
- | Some (pn) -> (ApplyResult.create (z3obj_gc x) (Z3native.tactic_apply_ex (z3obj_gnc x) (z3obj_gno x) (z3obj_gno g) (z3obj_gno pn)))
-
- let get_num_tactics ( ctx : context ) = Z3native.get_num_tactics (context_gno ctx)
-
- let get_tactic_names ( ctx : context ) =
- let n = (get_num_tactics ctx ) in
- let f i = (Z3native.get_tactic_name (context_gno ctx) i) in
- mk_list f n
-
- let get_tactic_description ( ctx : context ) ( name : string ) =
- Z3native.tactic_get_descr (context_gno ctx) name
-
- let mk_tactic ( ctx : context ) ( name : string ) =
- create ctx (Z3native.mk_tactic (context_gno ctx) name)
-
- let and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) ( ts : tactic list ) =
- let f p c = (match p with
- | None -> (Some (z3obj_gno c))
- | Some(x) -> (Some (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno c) x))) in
- match (List.fold_left f None ts) with
- | None ->
- create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))
- | Some(x) ->
- let o = (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t2) x) in
- create ctx (Z3native.tactic_and_then (context_gno ctx) (z3obj_gno t1) o)
-
- let or_else ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) =
- create ctx (Z3native.tactic_or_else (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))
-
- let try_for ( ctx : context ) ( t : tactic ) ( ms : int ) =
- create ctx (Z3native.tactic_try_for (context_gno ctx) (z3obj_gno t) ms)
-
- let when_ ( ctx : context ) ( p : Probe.probe ) ( t : tactic ) =
- create ctx (Z3native.tactic_when (context_gno ctx) (z3obj_gno p) (z3obj_gno t))
-
- let cond ( ctx : context ) ( p : Probe.probe ) ( t1 : tactic ) ( t2 : tactic ) =
- create ctx (Z3native.tactic_cond (context_gno ctx) (z3obj_gno p) (z3obj_gno t1) (z3obj_gno t2))
-
- let repeat ( ctx : context ) ( t : tactic ) ( max : int ) =
- create ctx (Z3native.tactic_repeat (context_gno ctx) (z3obj_gno t) max)
-
- let skip ( ctx : context ) =
- create ctx (Z3native.tactic_skip (context_gno ctx))
-
- let fail ( ctx : context ) =
- create ctx (Z3native.tactic_fail (context_gno ctx))
-
- let fail_if ( ctx : context ) ( p : Probe.probe ) =
- create ctx (Z3native.tactic_fail_if (context_gno ctx) (z3obj_gno p))
-
- let fail_if_not_decided ( ctx : context ) =
- create ctx (Z3native.tactic_fail_if_not_decided (context_gno ctx))
-
- let using_params ( ctx : context ) ( t : tactic ) ( p : Params.params ) =
- create ctx (Z3native.tactic_using_params (context_gno ctx) (z3obj_gno t) (z3obj_gno p))
-
- let with_ ( ctx : context ) ( t : tactic ) ( p : Params.params ) =
- using_params ctx t p
-
- let par_or ( ctx : context ) ( t : tactic list ) =
- let f e = (z3obj_gno e) in
- create ctx (Z3native.tactic_par_or (context_gno ctx) (List.length t) (Array.of_list (List.map f t)))
-
- let par_and_then ( ctx : context ) ( t1 : tactic ) ( t2 : tactic ) =
- create ctx (Z3native.tactic_par_and_then (context_gno ctx) (z3obj_gno t1) (z3obj_gno t2))
-
- let interrupt ( ctx : context ) =
- Z3native.interrupt (context_gno ctx)
-end
-
-
-module Solver =
-struct
- type solver = z3_native_object
- type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : solver = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.solver_inc_ref ;
- dec_ref = Z3native.solver_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
- let string_of_status ( s : status) = match s with
- | UNSATISFIABLE -> "unsatisfiable"
- | SATISFIABLE -> "satisfiable"
- | _ -> "unknown"
-
- module Statistics =
- struct
- type statistics = z3_native_object
-
- let create ( ctx : context ) ( no : Z3native.ptr ) =
- let res : statistics = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.stats_inc_ref ;
- dec_ref = Z3native.stats_dec_ref } in
- (z3obj_sno res ctx no) ;
- (z3obj_create res) ;
- res
-
-
- module Entry =
- struct
- type statistics_entry = {
- mutable m_key : string;
- mutable m_is_int : bool ;
- mutable m_is_float : bool ;
- mutable m_int : int ;
- mutable m_float : float }
-
- let create_si k v =
- let res : statistics_entry = {
- m_key = k ;
- m_is_int = true ;
- m_is_float = false ;
- m_int = v ;
- m_float = 0.0
- } in
- res
-
- let create_sd k v =
- let res : statistics_entry = {
- m_key = k ;
- m_is_int = false ;
- m_is_float = true ;
- m_int = 0 ;
- m_float = v
- } in
- res
-
-
- let get_key (x : statistics_entry) = x.m_key
- let get_int (x : statistics_entry) = x.m_int
- let get_float (x : statistics_entry) = x.m_float
- let is_int (x : statistics_entry) = x.m_is_int
- let is_float (x : statistics_entry) = x.m_is_float
- let to_string_value (x : statistics_entry) =
- if (is_int x) then
- string_of_int (get_int x)
- else if (is_float x) then
- string_of_float (get_float x)
- else
- raise (Z3native.Exception "Unknown statistical entry type")
- let to_string ( x : statistics_entry ) = (get_key x) ^ ": " ^ (to_string_value x)
- end
-
- let to_string ( x : statistics ) = Z3native.stats_to_string (z3obj_gnc x) (z3obj_gno x)
-
- let get_size ( x : statistics ) = Z3native.stats_size (z3obj_gnc x) (z3obj_gno x)
-
- let get_entries ( x : statistics ) =
- let n = (get_size x ) in
- let f i = (
- let k = Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i in
- if (Z3native.stats_is_uint (z3obj_gnc x) (z3obj_gno x) i) then
- (Entry.create_si k (Z3native.stats_get_uint_value (z3obj_gnc x) (z3obj_gno x) i))
- else
- (Entry.create_sd k (Z3native.stats_get_double_value (z3obj_gnc x) (z3obj_gno x) i))
- ) in
- mk_list f n
-
- let get_keys ( x : statistics ) =
- let n = (get_size x) in
- let f i = (Z3native.stats_get_key (z3obj_gnc x) (z3obj_gno x) i) in
- mk_list f n
-
- let get ( x : statistics ) ( key : string ) =
- let f p c = (if ((Entry.get_key c) == key) then (Some c) else p) in
- List.fold_left f None (get_entries x)
- end
-
- let get_help ( x : solver ) = Z3native.solver_get_help (z3obj_gnc x) (z3obj_gno x)
-
- let set_parameters ( x : solver ) ( p : Params.params )=
- Z3native.solver_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p)
-
- let get_param_descrs ( x : solver ) =
- Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.solver_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
-
- let get_num_scopes ( x : solver ) = Z3native.solver_get_num_scopes (z3obj_gnc x) (z3obj_gno x)
-
- let push ( x : solver ) = Z3native.solver_push (z3obj_gnc x) (z3obj_gno x)
-
- let pop ( x : solver ) ( n : int ) = Z3native.solver_pop (z3obj_gnc x) (z3obj_gno x) n
-
- let reset ( x : solver ) = Z3native.solver_reset (z3obj_gnc x) (z3obj_gno x)
-
- let assert_ ( x : solver ) ( constraints : Boolean.bool_expr list ) =
- let f e = (Z3native.solver_assert (z3obj_gnc x) (z3obj_gno x) (Boolean.gno e)) in
- ignore (List.map f constraints)
-
- let assert_and_track_a ( x : solver ) ( cs : Boolean.bool_expr list ) ( ps : Boolean.bool_expr list ) =
- if ((List.length cs) != (List.length ps)) then
- raise (Z3native.Exception "Argument size mismatch")
- else
- let f a b = (Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Boolean.gno a) (Boolean.gno b)) in
- ignore (List.iter2 f cs ps)
-
- let assert_and_track ( x : solver ) ( c : Boolean.bool_expr ) ( p : Boolean.bool_expr ) =
- Z3native.solver_assert_and_track (z3obj_gnc x) (z3obj_gno x) (Boolean.gno c) (Boolean.gno p)
-
- let get_num_assertions ( x : solver ) =
- let a = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in
- (AST.ASTVector.get_size a)
-
- let get_assertions ( x : solver ) =
- let a = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.solver_get_assertions (z3obj_gnc x) (z3obj_gno x)) in
- let n = (AST.ASTVector.get_size a) in
- let f i = Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x) (z3obj_gno (AST.ASTVector.get a i))) in
- mk_list f n
-
- let check ( x : solver ) ( assumptions : Boolean.bool_expr list ) =
- let r =
- if ((List.length assumptions) == 0) then
- lbool_of_int (Z3native.solver_check (z3obj_gnc x) (z3obj_gno x))
- else
- let f x = (Expr.gno (Boolean.expr_of_bool_expr x)) in
- lbool_of_int (Z3native.solver_check_assumptions (z3obj_gnc x) (z3obj_gno x) (List.length assumptions) (Array.of_list (List.map f assumptions)))
- in
- match r with
- | L_TRUE -> SATISFIABLE
- | L_FALSE -> UNSATISFIABLE
- | _ -> UNKNOWN
-
- let get_model ( x : solver ) =
- let q = Z3native.solver_get_model (z3obj_gnc x) (z3obj_gno x) in
- if (Z3native.is_null q) then
- None
- else
- Some (Model.create (z3obj_gc x) q)
-
- let get_proof ( x : solver ) =
- let q = Z3native.solver_get_proof (z3obj_gnc x) (z3obj_gno x) in
- if (Z3native.is_null q) then
- None
- else
- Some (expr_of_ptr (z3obj_gc x) q)
-
- let get_unsat_core ( x : solver ) =
- let cn = AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.solver_get_unsat_core (z3obj_gnc x) (z3obj_gno x)) in
- let n = (AST.ASTVector.get_size cn) in
- let f i = (AST.ASTVector.get cn i) in
- mk_list f n
-
- let get_reason_unknown ( x : solver ) = Z3native.solver_get_reason_unknown (z3obj_gnc x) (z3obj_gno x)
-
- let get_statistics ( x : solver ) =
- (Statistics.create (z3obj_gc x) (Z3native.solver_get_statistics (z3obj_gnc x) (z3obj_gno x)))
-
- let mk_solver ( ctx : context ) ( logic : Symbol.symbol option ) =
- match logic with
- | None -> (create ctx (Z3native.mk_solver (context_gno ctx)))
- | Some (x) -> (create ctx (Z3native.mk_solver_for_logic (context_gno ctx) (Symbol.gno x)))
-
- let mk_solver_s ( ctx : context ) ( logic : string ) =
- mk_solver ctx (Some (Symbol.mk_string ctx logic))
-
- let mk_simple_solver ( ctx : context ) =
- (create ctx (Z3native.mk_simple_solver (context_gno ctx)))
-
- let mk_solver_t ( ctx : context ) ( t : Tactic.tactic ) =
- (create ctx (Z3native.mk_solver_from_tactic (context_gno ctx) (z3obj_gno t)))
-
- let to_string ( x : solver ) = Z3native.solver_to_string (z3obj_gnc x) (z3obj_gno x)
-end
-
-
-module Fixedpoint =
-struct
- type fixedpoint = z3_native_object
-
- let create ( ctx : context ) =
- let res : fixedpoint = { m_ctx = ctx ;
- m_n_obj = null ;
- inc_ref = Z3native.fixedpoint_inc_ref ;
- dec_ref = Z3native.fixedpoint_dec_ref } in
- (z3obj_sno res ctx (Z3native.mk_fixedpoint (context_gno ctx))) ;
- (z3obj_create res) ;
- res
-
-
- let get_help ( x : fixedpoint ) =
- Z3native.fixedpoint_get_help (z3obj_gnc x) (z3obj_gno x)
-
- let set_params ( x : fixedpoint ) ( p : Params.params )=
- Z3native.fixedpoint_set_params (z3obj_gnc x) (z3obj_gno x) (z3obj_gno p)
-
- let get_param_descrs ( x : fixedpoint ) =
- Params.ParamDescrs.param_descrs_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_param_descrs (z3obj_gnc x) (z3obj_gno x))
-
- let assert_ ( x : fixedpoint ) ( constraints : Boolean.bool_expr list ) =
- let f e = (Z3native.fixedpoint_assert (z3obj_gnc x) (z3obj_gno x) (Boolean.gno e)) in
- ignore (List.map f constraints) ;
- ()
-
- let register_relation ( x : fixedpoint ) ( f : func_decl ) =
- Z3native.fixedpoint_register_relation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f)
-
- let add_rule ( x : fixedpoint ) ( rule : Boolean.bool_expr ) ( name : Symbol.symbol option ) =
- match name with
- | None -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Boolean.gno rule) null
- | Some(y) -> Z3native.fixedpoint_add_rule (z3obj_gnc x) (z3obj_gno x) (Boolean.gno rule) (Symbol.gno y)
-
- let add_fact ( x : fixedpoint ) ( pred : func_decl ) ( args : int list ) =
- Z3native.fixedpoint_add_fact (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno pred) (List.length args) (Array.of_list args)
-
- let query ( x : fixedpoint ) ( query : Boolean.bool_expr ) =
- match (lbool_of_int (Z3native.fixedpoint_query (z3obj_gnc x) (z3obj_gno x) (Boolean.gno query))) with
- | L_TRUE -> Solver.SATISFIABLE
- | L_FALSE -> Solver.UNSATISFIABLE
- | _ -> Solver.UNKNOWN
-
- let query_r ( x : fixedpoint ) ( relations : func_decl list ) =
- let f x = ptr_of_ast (ast_of_func_decl x) in
- match (lbool_of_int (Z3native.fixedpoint_query_relations (z3obj_gnc x) (z3obj_gno x) (List.length relations) (Array.of_list (List.map f relations)))) with
- | L_TRUE -> Solver.SATISFIABLE
- | L_FALSE -> Solver.UNSATISFIABLE
- | _ -> Solver.UNKNOWN
-
- let push ( x : fixedpoint ) =
- Z3native.fixedpoint_push (z3obj_gnc x) (z3obj_gno x)
-
- let pop ( x : fixedpoint ) =
- Z3native.fixedpoint_pop (z3obj_gnc x) (z3obj_gno x)
-
- let update_rule ( x : fixedpoint ) ( rule : Boolean.bool_expr ) ( name : Symbol.symbol ) =
- Z3native.fixedpoint_update_rule (z3obj_gnc x) (z3obj_gno x) (Boolean.gno rule) (Symbol.gno name)
-
- let get_answer ( x : fixedpoint ) =
- let q = (Z3native.fixedpoint_get_answer (z3obj_gnc x) (z3obj_gno x)) in
- if (Z3native.is_null q) then
- None
- else
- Some (expr_of_ptr (z3obj_gc x) q)
-
- let get_reason_unknown ( x : fixedpoint ) =
- Z3native.fixedpoint_get_reason_unknown (z3obj_gnc x) (z3obj_gno x)
-
- let get_num_levels ( x : fixedpoint ) ( predicate : func_decl ) =
- Z3native.fixedpoint_get_num_levels (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno predicate)
-
- let get_cover_delta ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) =
- let q = (Z3native.fixedpoint_get_cover_delta (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate)) in
- if (Z3native.is_null q) then
- None
- else
- Some (expr_of_ptr (z3obj_gc x) q)
-
- let add_cover ( x : fixedpoint ) ( level : int ) ( predicate : func_decl ) ( property : expr ) =
- Z3native.fixedpoint_add_cover (z3obj_gnc x) (z3obj_gno x) level (FuncDecl.gno predicate) (Expr.gno property)
-
- let to_string ( x : fixedpoint ) = Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) 0 [||]
-
- let set_predicate_representation ( x : fixedpoint ) ( f : func_decl ) ( kinds : Symbol.symbol list ) =
- Z3native.fixedpoint_set_predicate_representation (z3obj_gnc x) (z3obj_gno x) (FuncDecl.gno f) (List.length kinds) (Symbol.symbol_lton kinds)
-
- let to_string_q ( x : fixedpoint ) ( queries : Boolean.bool_expr list ) =
- let f x = ptr_of_expr (Boolean.expr_of_bool_expr x) in
- Z3native.fixedpoint_to_string (z3obj_gnc x) (z3obj_gno x) (List.length queries) (Array.of_list (List.map f queries))
-
- let get_rules ( x : fixedpoint ) =
- let v = (AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_rules (z3obj_gnc x) (z3obj_gno x))) in
- let n = (AST.ASTVector.get_size v) in
- let f i = Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x) (z3obj_gno (AST.ASTVector.get v i))) in
- mk_list f n
-
- let get_assertions ( x : fixedpoint ) =
- let v = (AST.ASTVector.ast_vector_of_ptr (z3obj_gc x) (Z3native.fixedpoint_get_assertions (z3obj_gnc x) (z3obj_gno x))) in
- let n = (AST.ASTVector.get_size v) in
- let f i = Boolean.bool_expr_of_expr (expr_of_ptr (z3obj_gc x) (z3obj_gno (AST.ASTVector.get v i))) in
- mk_list f n
-
- let mk_fixedpoint ( ctx : context ) = create ctx
-end
-
-module Options =
-struct
-
- let update_param_value ( ctx : context ) ( id : string) ( value : string )=
- Z3native.update_param_value (context_gno ctx) id value
-
- let get_param_value ( ctx : context ) ( id : string ) =
- let (r, v) = (Z3native.get_param_value (context_gno ctx) id) in
- if not r then
- None
- else
- Some v
-
- let set_print_mode ( ctx : context ) ( value : ast_print_mode ) =
- Z3native.set_ast_print_mode (context_gno ctx) (int_of_ast_print_mode value)
-
- let toggle_warning_messages ( enabled: bool ) =
- Z3native.toggle_warning_messages enabled
-end
-
-
-module SMT =
-struct
- let benchmark_to_smtstring ( ctx : context ) ( name : string ) ( logic : string ) ( status : string ) ( attributes : string ) ( assumptions : Boolean.bool_expr list ) ( formula : Boolean.bool_expr ) =
- Z3native.benchmark_to_smtlib_string (context_gno ctx) name logic status attributes
- (List.length assumptions) (let f x = ptr_of_expr (Boolean.expr_of_bool_expr x) in (Array.of_list (List.map f assumptions)))
- (Boolean.gno formula)
-
- let parse_smtlib_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
- let csn = (List.length sort_names) in
- let cs = (List.length sorts) in
- let cdn = (List.length decl_names) in
- let cd = (List.length decls) in
- if (csn != cs || cdn != cd) then
- raise (Z3native.Exception "Argument size mismatch")
- else
- Z3native.parse_smtlib_string (context_gno ctx) str
- cs
- (Symbol.symbol_lton sort_names)
- (sort_lton sorts)
- cd
- (Symbol.symbol_lton decl_names)
- (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))
-
- let parse_smtlib_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
- let csn = (List.length sort_names) in
- let cs = (List.length sorts) in
- let cdn = (List.length decl_names) in
- let cd = (List.length decls) in
- if (csn != cs || cdn != cd) then
- raise (Z3native.Exception "Argument size mismatch")
- else
- Z3native.parse_smtlib_file (context_gno ctx) file_name
- cs
- (Symbol.symbol_lton sort_names)
- (sort_lton sorts)
- cd
- (Symbol.symbol_lton decl_names)
- (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))
-
- let get_num_smtlib_formulas ( ctx : context ) = Z3native.get_smtlib_num_formulas (context_gno ctx)
-
- let get_smtlib_formulas ( ctx : context ) =
- let n = (get_num_smtlib_formulas ctx ) in
- let f i = Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.get_smtlib_formula (context_gno ctx) i)) in
- mk_list f n
-
- let get_num_smtlib_assumptions ( ctx : context ) = Z3native.get_smtlib_num_assumptions (context_gno ctx)
-
- let get_smtlib_assumptions ( ctx : context ) =
- let n = (get_num_smtlib_assumptions ctx ) in
- let f i = Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.get_smtlib_assumption (context_gno ctx) i)) in
- mk_list f n
-
- let get_num_smtlib_decls ( ctx : context ) = Z3native.get_smtlib_num_decls (context_gno ctx)
-
- let get_smtlib_decls ( ctx : context ) =
- let n = (get_num_smtlib_decls ctx) in
- let f i = func_decl_of_ptr ctx (Z3native.get_smtlib_decl (context_gno ctx) i) in
- mk_list f n
-
- let get_num_smtlib_sorts ( ctx : context ) = Z3native.get_smtlib_num_sorts (context_gno ctx)
-
- let get_smtlib_sorts ( ctx : context ) =
- let n = (get_num_smtlib_sorts ctx) in
- let f i = (sort_of_ptr ctx (Z3native.get_smtlib_sort (context_gno ctx) i)) in
- mk_list f n
-
- let parse_smtlib2_string ( ctx : context ) ( str : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
- let csn = (List.length sort_names) in
- let cs = (List.length sorts) in
- let cdn = (List.length decl_names) in
- let cd = (List.length decls) in
- if (csn != cs || cdn != cd) then
- raise (Z3native.Exception "Argument size mismatch")
- else
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) str
- cs
- (Symbol.symbol_lton sort_names)
- (sort_lton sorts)
- cd
- (Symbol.symbol_lton decl_names)
- (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))))
-
- let parse_smtlib2_file ( ctx : context ) ( file_name : string ) ( sort_names : Symbol.symbol list ) ( sorts : sort list ) ( decl_names : Symbol.symbol list ) ( decls : func_decl list ) =
- let csn = (List.length sort_names) in
- let cs = (List.length sorts) in
- let cdn = (List.length decl_names) in
- let cd = (List.length decls) in
- if (csn != cs || cdn != cd) then
- raise (Z3native.Exception "Argument size mismatch")
- else
- Boolean.bool_expr_of_expr (expr_of_ptr ctx (Z3native.parse_smtlib2_string (context_gno ctx) file_name
- cs
- (Symbol.symbol_lton sort_names)
- (sort_lton sorts)
- cd
- (Symbol.symbol_lton decl_names)
- (let f x = FuncDecl.gno x in (Array.of_list (List.map f decls)))))
-end
-
-
-let set_global_param ( id : string ) ( value : string ) =
- (Z3native.global_param_set id value)
-
-let get_global_param ( id : string ) =
- let (r, v) = (Z3native.global_param_get id) in
- if not r then
- None
- else
- Some v
-
-let global_param_reset_all =
- Z3native.global_param_reset_all
diff --git a/src/api/ml/z3_rich.mli b/src/api/ml/z3_rich.mli
deleted file mode 100644
index f2ecd326d..000000000
--- a/src/api/ml/z3_rich.mli
+++ /dev/null
@@ -1,3071 +0,0 @@
-(**
- The Z3 ML/Ocaml Interface.
-
- Copyright (C) 2012 Microsoft Corporation
- @author CM Wintersteiger (cwinter) 2012-12-17
-
- NOTE: This is the *rich* version of the interface, using more
- type information directly in the type system. Coercion functions
- are provided to tran coerce on type into another where applicable.
-*)
-
-(** Context objects.
-
- Most interactions with Z3 are interpreted in some context; many users will only
- require one such object, but power users may require more than one. To start using
- Z3, do
-
-
- let ctx = (mk_context []) in
- (...)
-
-
- where a list of pairs of strings may be passed to set options on
- the context, e.g., like so:
-
-
- let cfg = [("model", "true"); ("...", "...")] in
- let ctx = (mk_context cfg) in
- (...)
-
-*)
-type context
-
-(** Create a context object *)
-val mk_context : (string * string) list -> context
-
-(** Interaction logging for Z3
- Note that this is a global, static log and if multiple Context
- objects are created, it logs the interaction with all of them. *)
-module Log :
-sig
- (** Open an interaction log file.
- @return True if opening the log file succeeds, false otherwise. *)
- (* CMW: "open" seems to be a reserved keyword? *)
- val open_ : string -> bool
-
- (** Closes the interaction log. *)
- val close : unit
-
- (** Appends a user-provided string to the interaction log. *)
- val append : string -> unit
-end
-
-(** Version information *)
-module Version :
-sig
- (** The major version. *)
- val major : int
-
- (** The minor version. *)
- val minor : int
-
- (** The build version. *)
- val build : int
-
- (** The revision. *)
- val revision : int
-
- (** A string representation of the version information. *)
- val to_string : string
-end
-
-(** Symbols are used to name several term and type constructors *)
-module Symbol :
-sig
- (** Numbered Symbols *)
- type int_symbol
-
- (** Named Symbols *)
- type string_symbol
-
- (** Symbols *)
- type symbol = S_Int of int_symbol | S_Str of string_symbol
-
- (** The kind of the symbol (int or string) *)
- val kind : symbol -> Z3enums.symbol_kind
-
- (** Indicates whether the symbol is of Int kind *)
- val is_int_symbol : symbol -> bool
-
- (** Indicates whether the symbol is of string kind. *)
- val is_string_symbol : symbol -> bool
-
- (** The int value of the symbol. *)
- val get_int : int_symbol -> int
-
- (** The string value of the symbol. *)
- val get_string : string_symbol -> string
-
- (** A string representation of the symbol. *)
- val to_string : symbol -> string
-
- (** Creates a new symbol using an integer.
-
- Not all integers can be passed to this function.
- The legal range of unsigned integers is 0 to 2^30-1. *)
- val mk_int : context -> int -> symbol
-
- (** Creates a new symbol using a string. *)
- val mk_string : context -> string -> symbol
-
- (** Create a list of symbols. *)
- val mk_ints : context -> int list -> symbol list
-
- (** Create a list of symbols. *)
- val mk_strings : context -> string list -> symbol list
-end
-
-(** The abstract syntax tree (AST) module *)
-module AST :
-sig
- type ast
-
- (** Vectors of ASTs *)
- module ASTVector :
- sig
- type ast_vector
-
- (** The size of the vector *)
- val get_size : ast_vector -> int
-
- (**
- Retrieves the i-th object in the vector.
- @return An AST *)
- val get : ast_vector -> int -> ast
-
- (** Sets the i-th object in the vector. *)
- val set : ast_vector -> int -> ast -> unit
-
- (** Resize the vector to a new size. *)
- val resize : ast_vector -> int -> unit
-
- (** Add an ast to the back of the vector. The size
- is increased by 1. *)
- val push : ast_vector -> ast -> unit
-
- (** Translates all ASTs in the vector to another context.
- @return A new ASTVector *)
- val translate : ast_vector -> context -> ast_vector
-
- (** Retrieves a string representation of the vector. *)
- val to_string : ast_vector -> string
- end
-
- (** Map from AST to AST *)
- module ASTMap :
- sig
- type ast_map
-
- (** Checks whether the map contains a key.
- @return True if the key in the map, false otherwise. *)
- val contains : ast_map -> ast -> bool
-
- (** Finds the value associated with the key.
- This function signs an error when the key is not a key in the map. *)
- val find : ast_map -> ast -> ast
-
- (** Stores or replaces a new key/value pair in the map. *)
- val insert : ast_map -> ast -> ast -> unit
-
- (** Erases the key from the map.*)
- val erase : ast_map -> ast -> unit
-
- (** Removes all keys from the map. *)
- val reset : ast_map -> unit
-
- (** The size of the map *)
- val get_size : ast_map -> int
-
- (** The keys stored in the map. *)
- val get_keys : ast_map -> ast list
-
- (** Retrieves a string representation of the map.*)
- val to_string : ast_map -> string
- end
-
- (** The AST's hash code.
- @return A hash code *)
- val get_hash_code : ast -> int
-
- (** A unique identifier for the AST (unique among all ASTs). *)
- val get_id : ast -> int
-
- (** The kind of the AST. *)
- val get_ast_kind : ast -> Z3enums.ast_kind
-
- (** Indicates whether the AST is an Expr *)
- val is_expr : ast -> bool
-
- (** Indicates whether the AST is a bound variable*)
- val is_var : ast -> bool
-
- (** Indicates whether the AST is a Quantifier *)
- val is_quantifier : ast -> bool
-
- (** Indicates whether the AST is a Sort *)
- val is_sort : ast -> bool
-
- (** Indicates whether the AST is a func_decl *)
- val is_func_decl : ast -> bool
-
- (** A string representation of the AST. *)
- val to_string : ast -> string
-
- (** A string representation of the AST in s-expression notation. *)
- val to_sexpr : ast -> string
-
- (** Comparison operator.
- @return True if the two ast's are from the same context
- and represent the same sort; false otherwise. *)
- val ( = ) : ast -> ast -> bool
-
- (** Object Comparison.
- @return Negative if the first ast should be sorted before the second, positive if after else zero. *)
- val compare : ast -> ast -> int
-
- (** Operator < *)
- val ( < ) : ast -> ast -> int
-
- (** Translates (copies) the AST to another context.
- @return A copy of the AST which is associated with the other context. *)
- val translate : ast -> context -> ast
-
- (** Wraps an AST.
-
- This function is used for transitions between native and
- managed objects. Note that the native ast that is passed must be a
- native object obtained from Z3 (e.g., through {!unwrap_ast})
- and that it must have a correct reference count (see e.g.,
- Z3native.inc_ref). *)
- val wrap_ast : context -> Z3native.z3_ast -> ast
-
- (** Unwraps an AST.
- This function is used for transitions between native and
- managed objects. It returns the native pointer to the AST. Note that
- AST objects are reference counted and unwrapping an AST disables automatic
- reference counting, i.e., all references to the IntPtr that is returned
- must be handled externally and through native calls (see e.g.,
- Z3native.inc_ref).
- {!wrap_ast} *)
- val unwrap_ast : ast -> Z3native.ptr
-end
-
-(** The Sort module implements type information for ASTs *)
-module Sort :
-sig
- (** Sorts *)
- type sort = Sort of AST.ast
-
- (** Uninterpreted Sorts *)
- type uninterpreted_sort = UninterpretedSort of sort
-
- val ast_of_sort : sort -> AST.ast
- val sort_of_uninterpreted_sort : uninterpreted_sort -> sort
- val uninterpreted_sort_of_sort : sort -> uninterpreted_sort
-
- (** Comparison operator.
- @return True if the two sorts are from the same context
- and represent the same sort; false otherwise. *)
- val ( = ) : sort -> sort -> bool
-
- (** Returns a unique identifier for the sort. *)
- val get_id : sort -> int
-
- (** The kind of the sort. *)
- val get_sort_kind : sort -> Z3enums.sort_kind
-
- (** The name of the sort *)
- val get_name : sort -> Symbol.symbol
-
- (** A string representation of the sort. *)
- val to_string : sort -> string
-
- (** Create a new uninterpreted sort. *)
- val mk_uninterpreted : context -> Symbol.symbol -> uninterpreted_sort
-
- (** Create a new uninterpreted sort. *)
- val mk_uninterpreted_s : context -> string -> uninterpreted_sort
-end
-
-(** Function declarations *)
-module rec FuncDecl :
-sig
- type func_decl = FuncDecl of AST.ast
-
- val ast_of_func_decl : FuncDecl.func_decl -> AST.ast
-
- (** Parameters of Func_Decls *)
- module Parameter :
- sig
- (** Parameters of func_decls *)
- type parameter =
- P_Int of int
- | P_Dbl of float
- | P_Sym of Symbol.symbol
- | P_Srt of Sort.sort
- | P_Ast of AST.ast
- | P_Fdl of func_decl
- | P_Rat of string
-
- (** The kind of the parameter. *)
- val get_kind : parameter -> Z3enums.parameter_kind
-
- (** The int value of the parameter.*)
- val get_int : parameter -> int
-
- (** The double value of the parameter.*)
- val get_float : parameter -> float
-
- (** The Symbol.Symbol value of the parameter.*)
- val get_symbol : parameter -> Symbol.symbol
-
- (** The Sort value of the parameter.*)
- val get_sort : parameter -> Sort.sort
-
- (** The AST value of the parameter.*)
- val get_ast : parameter -> AST.ast
-
- (** The FunctionDeclaration value of the parameter.*)
- val get_func_decl : parameter -> func_decl
-
- (** The rational string value of the parameter.*)
- val get_rational : parameter -> string
- end
-
- (** Creates a new function declaration. *)
- val mk_func_decl : context -> Symbol.symbol -> Sort.sort list -> Sort.sort -> func_decl
-
- (** Creates a new function declaration. *)
- val mk_func_decl_s : context -> string -> Sort.sort list -> Sort.sort -> func_decl
- (** Creates a fresh function declaration with a name prefixed with a prefix string. *)
-
- val mk_fresh_func_decl : context -> string -> Sort.sort list -> Sort.sort -> func_decl
-
- (** Creates a new constant function declaration. *)
- val mk_const_decl : context -> Symbol.symbol -> Sort.sort -> func_decl
-
- (** Creates a new constant function declaration. *)
- val mk_const_decl_s : context -> string -> Sort.sort -> func_decl
-
- (** Creates a fresh constant function declaration with a name prefixed with a prefix string.
- {!mk_func_decl}
- {!mk_func_decl} *)
- val mk_fresh_const_decl : context -> string -> Sort.sort -> func_decl
-
- (** Comparison operator.
- @return True if a and b are from the same context and represent the same func_decl; false otherwise. *)
- val ( = ) : func_decl -> func_decl -> bool
-
- (** A string representations of the function declaration. *)
- val to_string : func_decl -> string
-
- (** Returns a unique identifier for the function declaration. *)
- val get_id : func_decl -> int
-
- (** The arity of the function declaration *)
- val get_arity : func_decl -> int
-
- (** The size of the domain of the function declaration
- {!get_arity} *)
- val get_domain_size : func_decl -> int
-
- (** The domain of the function declaration *)
- val get_domain : func_decl -> Sort.sort list
-
- (** The range of the function declaration *)
- val get_range : func_decl -> Sort.sort
-
- (** The kind of the function declaration. *)
- val get_decl_kind : func_decl -> Z3enums.decl_kind
-
- (** The name of the function declaration*)
- val get_name : func_decl -> Symbol.symbol
-
- (** The number of parameters of the function declaration *)
- val get_num_parameters : func_decl -> int
-
- (** The parameters of the function declaration *)
- val get_parameters : func_decl -> Parameter.parameter list
-
- (** Create expression that applies function to arguments. *)
- val apply : func_decl -> Expr.expr list -> Expr.expr
-end
-
-(** Parameter sets (of Solvers, Tactics, ...)
-
- A Params objects represents a configuration in the form of Symbol.symbol/value pairs. *)
-and Params :
-sig
- type params
-
- (** ParamDescrs describe sets of parameters (of Solvers, Tactics, ...) *)
- module ParamDescrs :
- sig
- type param_descrs
-
- (** Validate a set of parameters. *)
- val validate : param_descrs -> params -> unit
-
- (** Retrieve kind of parameter. *)
- val get_kind : param_descrs -> Symbol.symbol -> Z3enums.param_kind
-
- (** Retrieve all names of parameters. *)
- val get_names : param_descrs -> Symbol.symbol list
-
- (** The size of the ParamDescrs. *)
- val get_size : param_descrs -> int
-
- (** Retrieves a string representation of the ParamDescrs. *)
- val to_string : param_descrs -> string
- end
-
- (** Adds a parameter setting. *)
- val add_bool : params -> Symbol.symbol -> bool -> unit
-
- (** Adds a parameter setting. *)
- val add_int : params -> Symbol.symbol -> int -> unit
-
- (** Adds a parameter setting. *)
- val add_double : params -> Symbol.symbol -> float -> unit
-
- (** Adds a parameter setting. *)
- val add_symbol : params -> Symbol.symbol -> Symbol.symbol -> unit
-
- (** Adds a parameter setting. *)
- val add_s_bool : params -> string -> bool -> unit
-
- (** Adds a parameter setting. *)
- val add_s_int : params -> string -> int -> unit
-
- (** Adds a parameter setting. *)
- val add_s_double : params -> string -> float -> unit
-
- (** Adds a parameter setting. *)
- val add_s_symbol : params -> string -> Symbol.symbol -> unit
-
- (** Creates a new parameter set *)
- val mk_params : context -> params
-
- (** A string representation of the parameter set. *)
- val to_string : params -> string
-end
-
-(** General Expressions (terms) *)
-and Expr :
-sig
- type expr = Expr of AST.ast
-
- val ast_of_expr : Expr.expr -> AST.ast
- val expr_of_ast : AST.ast -> Expr.expr
-
- (** Returns a simplified version of the expression.
- {!get_simplify_help} *)
- val simplify : Expr.expr -> Params.params option -> expr
-
- (** A string describing all available parameters to Expr.Simplify. *)
- val get_simplify_help : context -> string
-
- (** Retrieves parameter descriptions for simplifier. *)
- val get_simplify_parameter_descrs : context -> Params.ParamDescrs.param_descrs
-
- (** The function declaration of the function that is applied in this expression. *)
- val get_func_decl : Expr.expr -> FuncDecl.func_decl
-
- (** Indicates whether the expression is the true or false expression
- or something else (L_UNDEF). *)
- val get_bool_value : Expr.expr -> Z3enums.lbool
-
- (** The number of arguments of the expression. *)
- val get_num_args : Expr.expr -> int
-
- (** The arguments of the expression. *)
- val get_args : Expr.expr -> Expr.expr list
-
- (** Update the arguments of the expression using an array of expressions.
- The number of new arguments should coincide with the current number of arguments. *)
- val update : Expr.expr -> Expr.expr list -> expr
-
- (** Substitute every occurrence of from[i] in the expression with to[i], for i smaller than num_exprs.
-
- The result is the new expression. The arrays from and to must have size num_exprs.
- For every i smaller than num_exprs, we must have that
- sort of from[i] must be equal to sort of to[i]. *)
- val substitute : Expr.expr -> Expr.expr list -> Expr.expr list -> expr
-
- (** Substitute every occurrence of from in the expression with to.
- {!substitute} *)
- val substitute_one : Expr.expr -> Expr.expr -> Expr.expr -> expr
-
- (** Substitute the free variables in the expression with the expressions in the expr array
-
- For every i smaller than num_exprs, the variable with de-Bruijn index i is replaced with term to[i]. *)
- val substitute_vars : Expr.expr -> Expr.expr list -> expr
-
- (** Translates (copies) the term to another context.
- @return A copy of the term which is associated with the other context *)
- val translate : Expr.expr -> context -> expr
-
- (** Returns a string representation of the expression. *)
- val to_string : Expr.expr -> string
-
- (** Indicates whether the term is a numeral *)
- val is_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is well-sorted.
- @return True if the term is well-sorted, false otherwise. *)
- val is_well_sorted : Expr.expr -> bool
-
- (** The Sort of the term. *)
- val get_sort : Expr.expr -> Sort.sort
-
- (** Indicates whether the term has Boolean sort. *)
- val is_bool : Expr.expr -> bool
-
- (** Indicates whether the term represents a constant. *)
- val is_const : Expr.expr -> bool
-
- (** Indicates whether the term is the constant true. *)
- val is_true : Expr.expr -> bool
-
- (** Indicates whether the term is the constant false. *)
- val is_false : Expr.expr -> bool
-
- (** Indicates whether the term is an equality predicate. *)
- val is_eq : Expr.expr -> bool
-
- (** Indicates whether the term is an n-ary distinct predicate (every argument is mutually distinct). *)
- val is_distinct : Expr.expr -> bool
-
- (** Indicates whether the term is a ternary if-then-else term *)
- val is_ite : Expr.expr -> bool
-
- (** Indicates whether the term is an n-ary conjunction *)
- val is_and : Expr.expr -> bool
-
- (** Indicates whether the term is an n-ary disjunction *)
- val is_or : Expr.expr -> bool
-
- (** Indicates whether the term is an if-and-only-if (Boolean equivalence, binary) *)
- val is_iff : Expr.expr -> bool
-
- (** Indicates whether the term is an exclusive or *)
- val is_xor : Expr.expr -> bool
-
- (** Indicates whether the term is a negation *)
- val is_not : Expr.expr -> bool
-
- (** Indicates whether the term is an implication *)
- val is_implies : Expr.expr -> bool
-
- (** Indicates whether the term is a label (used by the Boogie Verification condition generator).
- The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula. *)
- val is_label : Expr.expr -> bool
-
- (** Indicates whether the term is a label literal (used by the Boogie Verification condition generator).
- A label literal has a set of string parameters. It takes no arguments.
- let is_label_lit ( x : expr ) = (FuncDecl.get_decl_kind (get_func_decl x) == OP_LABEL_LIT) *)
- val is_label_lit : Expr.expr -> bool
-
- (** Indicates whether the term is a binary equivalence modulo namings.
- This binary predicate is used in proof terms.
- It captures equisatisfiability and equivalence modulo renamings. *)
- val is_oeq : Expr.expr -> bool
-
- (** Creates a new constant. *)
- val mk_const : context -> Symbol.symbol -> Sort.sort -> expr
-
- (** Creates a new constant. *)
- val mk_const_s : context -> string -> Sort.sort -> expr
-
- (** Creates a constant from the func_decl. *)
- val mk_const_f : context -> FuncDecl.func_decl -> expr
-
- (** Creates a fresh constant with a name prefixed with a string. *)
- val mk_fresh_const : context -> string -> Sort.sort -> expr
-
- (** Create a new function application. *)
- val mk_app : context -> FuncDecl.func_decl -> Expr.expr list -> expr
-
- (** Create a numeral of a given sort.
- @return A Term with the goven value and sort *)
- val mk_numeral_string : context -> string -> Sort.sort -> expr
-
- (** Create a numeral of a given sort. This function can be use to create numerals that fit in a machine integer.
- It is slightly faster than MakeNumeral since it is not necessary to parse a string.
- @return A Term with the given value and sort *)
- val mk_numeral_int : context -> int -> Sort.sort -> expr
-end
-
-(** Boolean expressions *)
-module Boolean :
-sig
- type bool_sort = BoolSort of Sort.sort
- type bool_expr = BoolExpr of Expr.expr
-
- val expr_of_bool_expr : bool_expr -> Expr.expr
- val sort_of_bool_sort : bool_sort -> Sort.sort
- val bool_sort_of_sort : Sort.sort -> bool_sort
- val bool_expr_of_expr : Expr.expr -> bool_expr
-
- (** Create a Boolean sort *)
- val mk_sort : context -> bool_sort
-
- (** Create a Boolean constant. *)
- val mk_const : context -> Symbol.symbol -> bool_expr
-
- (** Create a Boolean constant. *)
- val mk_const_s : context -> string -> bool_expr
-
- (** The true Term. *)
- val mk_true : context -> bool_expr
-
- (** The false Term. *)
- val mk_false : context -> bool_expr
-
- (** Creates a Boolean value. *)
- val mk_val : context -> bool -> bool_expr
-
- (** Creates the equality between two expr's. *)
- val mk_eq : context -> Expr.expr -> Expr.expr -> bool_expr
-
- (** Creates a distinct term. *)
- val mk_distinct : context -> Expr.expr list -> bool_expr
-
- (** Mk an expression representing not(a). *)
- val mk_not : context -> bool_expr -> bool_expr
-
- (** Create an expression representing an if-then-else: ite(t1, t2, t3). *)
- val mk_ite : context -> bool_expr -> bool_expr -> bool_expr -> bool_expr
-
- (** Create an expression representing t1 iff t2. *)
- val mk_iff : context -> bool_expr -> bool_expr -> bool_expr
-
- (** Create an expression representing t1 -> t2. *)
- val mk_implies : context -> bool_expr -> bool_expr -> bool_expr
-
- (** Create an expression representing t1 xor t2. *)
- val mk_xor : context -> bool_expr -> bool_expr -> bool_expr
-
- (** Create an expression representing the AND of args *)
- val mk_and : context -> bool_expr list -> bool_expr
-
- (** Create an expression representing the OR of args *)
- val mk_or : context -> bool_expr list -> bool_expr
-end
-
-(** Quantifier expressions *)
-module Quantifier :
-sig
- type quantifier = Quantifier of Expr.expr
-
- val expr_of_quantifier : quantifier -> Expr.expr
- val quantifier_of_expr : Expr.expr -> quantifier
-
- (** Quantifier patterns
-
- Patterns comprise a list of terms. The list should be
- non-empty. If the list comprises of more than one term, it is
- also called a multi-pattern. *)
- module Pattern :
- sig
- type pattern = Pattern of AST.ast
-
- val ast_of_pattern : pattern -> AST.ast
- val pattern_of_ast : AST.ast -> pattern
-
- (** The number of terms in the pattern. *)
- val get_num_terms : pattern -> int
-
- (** The terms in the pattern. *)
- val get_terms : pattern -> Expr.expr list
-
- (** A string representation of the pattern. *)
- val to_string : pattern -> string
- end
-
-
- (** The de-Burijn index of a bound variable.
-
- Bound variables are indexed by de-Bruijn indices. It is perhaps easiest to explain
- the meaning of de-Bruijn indices by indicating the compilation process from
- non-de-Bruijn formulas to de-Bruijn format.
-
- abs(forall (x1) phi) = forall (x1) abs1(phi, x1, 0)
- abs(forall (x1, x2) phi) = abs(forall (x1) abs(forall (x2) phi))
- abs1(x, x, n) = b_n
- abs1(y, x, n) = y
- abs1(f(t1,...,tn), x, n) = f(abs1(t1,x,n), ..., abs1(tn,x,n))
- abs1(forall (x1) phi, x, n) = forall (x1) (abs1(phi, x, n+1))
-
- The last line is significant: the index of a bound variable is different depending
- on the scope in which it appears. The deeper ( x : expr ) appears, the higher is its
- index. *)
- val get_index : Expr.expr -> int
-
- (** Indicates whether the quantifier is universal. *)
- val is_universal : quantifier -> bool
-
- (** Indicates whether the quantifier is existential. *)
- val is_existential : quantifier -> bool
-
- (** The weight of the quantifier. *)
- val get_weight : quantifier -> int
-
- (** The number of patterns. *)
- val get_num_patterns : quantifier -> int
-
- (** The patterns. *)
- val get_patterns : quantifier -> Pattern.pattern list
-
- (** The number of no-patterns. *)
- val get_num_no_patterns : quantifier -> int
-
- (** The no-patterns. *)
- val get_no_patterns : quantifier -> Pattern.pattern list
-
- (** The number of bound variables. *)
- val get_num_bound : quantifier -> int
-
- (** The symbols for the bound variables. *)
- val get_bound_variable_names : quantifier -> Symbol.symbol list
-
- (** The sorts of the bound variables. *)
- val get_bound_variable_sorts : quantifier -> Sort.sort list
-
- (** The body of the quantifier. *)
- val get_body : quantifier -> Boolean.bool_expr
-
- (** Creates a new bound variable. *)
- val mk_bound : context -> int -> Sort.sort -> Expr.expr
-
- (** Create a quantifier pattern. *)
- val mk_pattern : context -> Expr.expr list -> Pattern.pattern
-
- (** Create a universal Quantifier. *)
- val mk_forall : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create a universal Quantifier. *)
- val mk_forall_const : context -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create an existential Quantifier. *)
- val mk_exists : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create an existential Quantifier. *)
- val mk_exists_const : context -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create a Quantifier. *)
- val mk_quantifier : context -> Sort.sort list -> Symbol.symbol list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-
- (** Create a Quantifier. *)
- val mk_quantifier : context -> bool -> Expr.expr list -> Expr.expr -> int option -> Pattern.pattern list -> Expr.expr list -> Symbol.symbol option -> Symbol.symbol option -> quantifier
-end
-
-(** Functions to manipulate Array expressions *)
-module Array_ :
-sig
- type array_sort = ArraySort of Sort.sort
- type array_expr = ArrayExpr of Expr.expr
-
- val sort_of_array_sort : array_sort -> Sort.sort
- val array_sort_of_sort : Sort.sort -> array_sort
- val expr_of_array_expr : array_expr -> Expr.expr
-
- val array_expr_of_expr : Expr.expr -> array_expr
-
- (** Create a new array sort. *)
- val mk_sort : context -> Sort.sort -> Sort.sort -> array_sort
-
- (** Indicates whether the term is an array store.
- It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j).
- Array store takes at least 3 arguments. *)
- val is_store : Expr.expr -> bool
-
- (** Indicates whether the term is an array select. *)
- val is_select : Expr.expr -> bool
-
- (** Indicates whether the term is a constant array.
- For example, select(const(v),i) = v holds for every v and i. The function is unary. *)
- val is_constant_array : Expr.expr -> bool
-
- (** Indicates whether the term is a default array.
- For example default(const(v)) = v. The function is unary. *)
- val is_default_array : Expr.expr -> bool
-
- (** Indicates whether the term is an array map.
- It satisfies map[f](a1,..,a_n)[i] = f(a1[i],...,a_n[i]) for every i. *)
- val is_array_map : Expr.expr -> bool
-
- (** Indicates whether the term is an as-array term.
- An as-array term is n array value that behaves as the function graph of the
- function passed as parameter. *)
- val is_as_array : Expr.expr -> bool
-
- (** Indicates whether the term is of an array sort. *)
- val is_array : Expr.expr -> bool
-
- (** The domain of the array sort. *)
- val get_domain : array_sort -> Sort.sort
-
- (** The range of the array sort. *)
- val get_range : array_sort -> Sort.sort
-
- (** Create an array constant. *)
- val mk_const : context -> Symbol.symbol -> Sort.sort -> Sort.sort -> array_expr
-
- (** Create an array constant. *)
- val mk_const_s : context -> string -> Sort.sort -> Sort.sort -> array_expr
-
- (** Array read.
-
- The argument a is the array and i is the index
- of the array that gets read.
-
- The node a must have an array sort [domain -> range],
- and i must have the sort domain.
- The sort of the result is range.
- {!Array_.mk_sort}
- {!mk_store} *)
- val mk_select : context -> array_expr -> Expr.expr -> array_expr
-
- (** Array update.
-
- The node a must have an array sort [domain -> range],
- i must have sort domain,
- v must have sort range. The sort of the result is [domain -> range].
- The semantics of this function is given by the theory of arrays described in the SMT-LIB
- standard. See http://smtlib.org for more details.
- The result of this function is an array that is equal to a
- (with respect to select)
- on all indices except for i, where it maps to v
- (and the select of a with
- respect to i may be a different value).
- {!Array_.mk_sort}
- {!mk_select} *)
- val mk_store : context -> array_expr -> Expr.expr -> Expr.expr -> array_expr
-
- (** Create a constant array.
-
- The resulting term is an array, such that a selecton an arbitrary index
- produces the value v.
- {!Array_.mk_sort}
- {!mk_select} *)
- val mk_const_array : context -> Sort.sort -> Expr.expr -> array_expr
-
- (** Maps f on the argument arrays.
-
- Eeach element of args must be of an array sort [domain_i -> range_i].
- The function declaration f must have type range_1 .. range_n -> range.
- v must have sort range. The sort of the result is [domain_i -> range].
- {!Array_.mk_sort}
- {!mk_select}
- {!mk_store} *)
- val mk_map : context -> FuncDecl.func_decl -> array_expr list -> array_expr
-
- (** Access the array default value.
-
- Produces the default range value, for arrays that can be represented as
- finite maps with a default range value. *)
- val mk_term_array : context -> array_expr -> array_expr
-end
-
-(** Functions to manipulate Set expressions *)
-module Set :
-sig
- type set_sort = SetSort of Sort.sort
-
- val sort_of_set_sort : set_sort -> Sort.sort
-
- (** Create a set type. *)
- val mk_sort : context -> Sort.sort -> set_sort
-
- (** Indicates whether the term is set union *)
- val is_union : Expr.expr -> bool
-
- (** Indicates whether the term is set intersection *)
- val is_intersect : Expr.expr -> bool
-
- (** Indicates whether the term is set difference *)
- val is_difference : Expr.expr -> bool
-
- (** Indicates whether the term is set complement *)
- val is_complement : Expr.expr -> bool
-
- (** Indicates whether the term is set subset *)
- val is_subset : Expr.expr -> bool
-
- (** Create an empty set. *)
- val mk_empty : context -> Sort.sort -> Expr.expr
-
- (** Create the full set. *)
- val mk_full : context -> Sort.sort -> Expr.expr
-
- (** Add an element to the set. *)
- val mk_set_add : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Remove an element from a set. *)
- val mk_del : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Take the union of a list of sets. *)
- val mk_union : context -> Expr.expr list -> Expr.expr
-
- (** Take the intersection of a list of sets. *)
- val mk_intersection : context -> Expr.expr list -> Expr.expr
-
- (** Take the difference between two sets. *)
- val mk_difference : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Take the complement of a set. *)
- val mk_complement : context -> Expr.expr -> Expr.expr
-
- (** Check for set membership. *)
- val mk_membership : context -> Expr.expr -> Expr.expr -> Expr.expr
-
- (** Check for subsetness of sets. *)
- val mk_subset : context -> Expr.expr -> Expr.expr -> Expr.expr
-end
-
-(** Functions to manipulate Finite Domain expressions *)
-module FiniteDomain :
-sig
- type finite_domain_sort = FiniteDomainSort of Sort.sort
-
- val sort_of_finite_domain_sort : finite_domain_sort -> Sort.sort
- val finite_domain_sort_of_sort : Sort.sort -> finite_domain_sort
-
- (** Create a new finite domain sort. *)
- val mk_sort : context -> Symbol.symbol -> int -> finite_domain_sort
-
- (** Create a new finite domain sort. *)
- val mk_sort_s : context -> string -> int -> finite_domain_sort
-
- (** Indicates whether the term is of an array sort. *)
- val is_finite_domain : Expr.expr -> bool
-
- (** Indicates whether the term is a less than predicate over a finite domain. *)
- val is_lt : Expr.expr -> bool
-
- (** The size of the finite domain sort. *)
- val get_size : finite_domain_sort -> int
-end
-
-
-(** Functions to manipulate Relation expressions *)
-module Relation :
-sig
- type relation_sort = RelationSort of Sort.sort
-
- val sort_of_relation_sort : relation_sort -> Sort.sort
- val relation_sort_of_sort : Sort.sort -> relation_sort
-
- (** Indicates whether the term is of a relation sort. *)
- val is_relation : Expr.expr -> bool
-
- (** Indicates whether the term is an relation store
-
- Insert a record into a relation.
- The function takes n+1 arguments, where the first argument is the relation and the remaining n elements
- correspond to the n columns of the relation. *)
- val is_store : Expr.expr -> bool
-
- (** Indicates whether the term is an empty relation *)
- val is_empty : Expr.expr -> bool
-
- (** Indicates whether the term is a test for the emptiness of a relation *)
- val is_is_empty : Expr.expr -> bool
-
- (** Indicates whether the term is a relational join *)
- val is_join : Expr.expr -> bool
-
- (** Indicates whether the term is the union or convex hull of two relations.
- The function takes two arguments. *)
- val is_union : Expr.expr -> bool
-
- (** Indicates whether the term is the widening of two relations
- The function takes two arguments. *)
- val is_widen : Expr.expr -> bool
-
- (** Indicates whether the term is a projection of columns (provided as numbers in the parameters).
- The function takes one argument. *)
- val is_project : Expr.expr -> bool
-
- (** Indicates whether the term is a relation filter
-
- Filter (restrict) a relation with respect to a predicate.
- The first argument is a relation.
- The second argument is a predicate with free de-Brujin indices
- corresponding to the columns of the relation.
- So the first column in the relation has index 0. *)
- val is_filter : Expr.expr -> bool
-
- (** Indicates whether the term is an intersection of a relation with the negation of another.
-
- Intersect the first relation with respect to negation
- of the second relation (the function takes two arguments).
- Logically, the specification can be described by a function
-
- target = filter_by_negation(pos, neg, columns)
-
- where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that
- target are elements in ( x : expr ) in pos, such that there is no y in neg that agrees with
- ( x : expr ) on the columns c1, d1, .., cN, dN. *)
- val is_negation_filter : Expr.expr -> bool
-
- (** Indicates whether the term is the renaming of a column in a relation
-
- The function takes one argument.
- The parameters contain the renaming as a cycle. *)
- val is_rename : Expr.expr -> bool
-
- (** Indicates whether the term is the complement of a relation *)
- val is_complement : Expr.expr -> bool
-
- (** Indicates whether the term is a relational select
-
- Check if a record is an element of the relation.
- The function takes n+1 arguments, where the first argument is a relation,
- and the remaining n arguments correspond to a record. *)
- val is_select : Expr.expr -> bool
-
- (** Indicates whether the term is a relational clone (copy)
-
- Create a fresh copy (clone) of a relation.
- The function is logically the identity, but
- in the context of a register machine allows
- for terms of kind {!is_union}
- to perform destructive updates to the first argument. *)
- val is_clone : Expr.expr -> bool
-
- (** The arity of the relation sort. *)
- val get_arity : relation_sort -> int
-
- (** The sorts of the columns of the relation sort. *)
- val get_column_sorts : relation_sort -> relation_sort list
-end
-
-(** Functions to manipulate Datatype expressions *)
-module Datatype :
-sig
- type datatype_sort = DatatypeSort of Sort.sort
- type datatype_expr = DatatypeExpr of Expr.expr
-
- val sort_of_datatype_sort : datatype_sort -> Sort.sort
- val datatype_sort_of_sort : Sort.sort -> datatype_sort
- val expr_of_datatype_expr : datatype_expr -> Expr.expr
- val datatype_expr_of_expr : Expr.expr -> datatype_expr
-
- (** Datatype Constructors *)
- module Constructor :
- sig
- type constructor
-
- (** The number of fields of the constructor. *)
- val get_num_fields : constructor -> int
-
- (** The function declaration of the constructor. *)
- val get_constructor_decl : constructor -> FuncDecl.func_decl
-
- (** The function declaration of the tester. *)
- val get_tester_decl : constructor -> FuncDecl.func_decl
-
- (** The function declarations of the accessors *)
- val get_accessor_decls : constructor -> FuncDecl.func_decl list
- end
-
- (** Create a datatype constructor.
- if the corresponding sort reference is 0, then the value in sort_refs should be an index
- referring to one of the recursive datatypes that is declared. *)
- val mk_constructor : context -> Symbol.symbol -> Symbol.symbol -> Symbol.symbol list -> Sort.sort list -> int list -> Constructor.constructor
-
- (** Create a datatype constructor.
- if the corresponding sort reference is 0, then the value in sort_refs should be an index
- referring to one of the recursive datatypes that is declared. *)
- val mk_constructor_s : context -> string -> Symbol.symbol -> Symbol.symbol list -> Sort.sort list -> int list -> Constructor.constructor
-
- (** Create a new datatype sort. *)
- val mk_sort : context -> Symbol.symbol -> Constructor.constructor list -> datatype_sort
-
- (** Create a new datatype sort. *)
- val mk_sort_s : context -> string -> Constructor.constructor list -> datatype_sort
-
- (** Create mutually recursive datatypes. *)
- val mk_sorts : context -> Symbol.symbol list -> Constructor.constructor list list -> datatype_sort list
-
- (** Create mutually recursive data-types. *)
- val mk_sorts_s : context -> string list -> Constructor.constructor list list -> datatype_sort list
-
-
- (** The number of constructors of the datatype sort. *)
- val get_num_constructors : datatype_sort -> int
-
- (** The constructors. *)
- val get_constructors : datatype_sort -> FuncDecl.func_decl list
-
- (** The recognizers. *)
- val get_recognizers : datatype_sort -> FuncDecl.func_decl list
-
- (** The constructor accessors. *)
- val get_accessors : datatype_sort -> FuncDecl.func_decl list list
-end
-
-(** Functions to manipulate Enumeration expressions *)
-module Enumeration :
-sig
- type enum_sort = EnumSort of Sort.sort
-
- val sort_of_enum_sort : enum_sort -> Sort.sort
-
- (** Create a new enumeration sort. *)
- val mk_sort : context -> Symbol.symbol -> Symbol.symbol list -> enum_sort
-
- (** Create a new enumeration sort. *)
- val mk_sort_s : context -> string -> string list -> enum_sort
-
- (** The function declarations of the constants in the enumeration. *)
- val get_const_decls : enum_sort -> FuncDecl.func_decl list
-
- (** The test predicates for the constants in the enumeration. *)
- val get_tester_decls : enum_sort -> FuncDecl.func_decl list
-end
-
-(** Functions to manipulate List expressions *)
-module List_ :
-sig
- type list_sort = ListSort of Sort.sort
-
- val sort_of_list_sort : list_sort -> Sort.sort
-
- (** Create a new list sort. *)
- val mk_sort : context -> Symbol.symbol -> Sort.sort -> list_sort
-
- (** Create a new list sort. *)
- val mk_list_s : context -> string -> Sort.sort -> list_sort
-
- (** The declaration of the nil function of this list sort. *)
- val get_nil_decl : list_sort -> FuncDecl.func_decl
-
- (** The declaration of the isNil function of this list sort. *)
- val get_is_nil_decl : list_sort -> FuncDecl.func_decl
-
- (** The declaration of the cons function of this list sort. *)
- val get_cons_decl : list_sort -> FuncDecl.func_decl
-
- (** The declaration of the isCons function of this list sort. *)
- val get_is_cons_decl : list_sort -> FuncDecl.func_decl
-
- (** The declaration of the head function of this list sort. *)
- val get_head_decl : list_sort -> FuncDecl.func_decl
-
- (** The declaration of the tail function of this list sort. *)
- val get_tail_decl : list_sort -> FuncDecl.func_decl
-
- (** The empty list. *)
- val nil : list_sort -> Expr.expr
-end
-
-(** Functions to manipulate Tuple expressions *)
-module Tuple :
-sig
- type tuple_sort = TupleSort of Sort.sort
-
- val sort_of_tuple_sort : tuple_sort -> Sort.sort
-
- (** Create a new tuple sort. *)
- val mk_sort : context -> Symbol.symbol -> Symbol.symbol list -> Sort.sort list -> tuple_sort
-
- (** The constructor function of the tuple. *)
- val get_mk_decl : tuple_sort -> FuncDecl.func_decl
-
- (** The number of fields in the tuple. *)
- val get_num_fields : tuple_sort -> int
-
- (** The field declarations. *)
- val get_field_decls : tuple_sort -> FuncDecl.func_decl list
-end
-
-(** Functions to manipulate arithmetic expressions *)
-module rec Arithmetic :
-sig
- type arith_sort = ArithSort of Sort.sort
- type arith_expr = ArithExpr of Expr.expr
-
- val sort_of_arith_sort : Arithmetic.arith_sort -> Sort.sort
- val arith_sort_of_sort : Sort.sort -> Arithmetic.arith_sort
- val expr_of_arith_expr : Arithmetic.arith_expr -> Expr.expr
- val arith_expr_of_expr : Expr.expr -> Arithmetic.arith_expr
-
- (** Integer Arithmetic *)
- module rec Integer :
- sig
- type int_sort = IntSort of arith_sort
- type int_expr = IntExpr of arith_expr
- type int_num = IntNum of int_expr
-
- val arith_sort_of_int_sort : Arithmetic.Integer.int_sort -> Arithmetic.arith_sort
- val int_sort_of_arith_sort : Arithmetic.arith_sort -> Arithmetic.Integer.int_sort
- val arith_expr_of_int_expr : Arithmetic.Integer.int_expr -> Arithmetic.arith_expr
- val int_expr_of_int_num : Arithmetic.Integer.int_num -> Arithmetic.Integer.int_expr
- val int_expr_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.Integer.int_expr
- val int_num_of_int_expr : Arithmetic.Integer.int_expr -> Arithmetic.Integer.int_num
-
- (** Create a new integer sort. *)
- val mk_sort : context -> int_sort
-
- (** Retrieve the int value. *)
- val get_int : int_num -> int
-
- (** Returns a string representation of the numeral. *)
- val to_string : int_num -> string
-
- (** Creates an integer constant. *)
- val mk_const : context -> Symbol.symbol -> int_expr
-
- (** Creates an integer constant. *)
- val mk_const_s : context -> string -> int_expr
-
- (** Create an expression representing t1 mod t2.
- The arguments must have int type. *)
- val mk_mod : context -> int_expr -> int_expr -> int_expr
-
- (** Create an expression representing t1 rem t2.
- The arguments must have int type. *)
- val mk_rem : context -> int_expr -> int_expr -> int_expr
-
- (** Create an integer numeral. *)
- val mk_numeral_s : context -> string -> int_num
-
- (** Create an integer numeral.
- @return A Term with the given value and sort Integer *)
- val mk_numeral_i : context -> int -> int_num
-
- (** Coerce an integer to a real.
-
-
- There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard.
-
- You can take the floor of a real by creating an auxiliary integer Term k and
- and asserting MakeInt2Real(k) <= t1 < MkInt2Real(k)+1.
- The argument must be of integer sort. *)
- val mk_int2real : context -> int_expr -> Real.real_expr
-
- (** Create an n-bit bit-vector from an integer argument.
-
-
- NB. This function is essentially treated as uninterpreted.
- So you cannot expect Z3 to precisely reflect the semantics of this function
- when solving constraints with this function.
-
- The argument must be of integer sort. *)
- val mk_int2bv : context -> int -> int_expr -> BitVector.bitvec_expr
- end
-
- (** Real Arithmetic *)
- and Real :
- sig
- type real_sort = RealSort of arith_sort
- type real_expr = RealExpr of arith_expr
- type rat_num = RatNum of real_expr
-
- val arith_sort_of_real_sort : Arithmetic.Real.real_sort -> Arithmetic.arith_sort
- val real_sort_of_arith_sort : Arithmetic.arith_sort -> Arithmetic.Real.real_sort
- val arith_expr_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.arith_expr
- val real_expr_of_rat_num : Arithmetic.Real.rat_num -> Arithmetic.Real.real_expr
- val real_expr_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.Real.real_expr
- val rat_num_of_real_expr : Arithmetic.Real.real_expr -> Arithmetic.Real.rat_num
-
- (** Create a real sort. *)
- val mk_sort : context -> real_sort
-
- (** The numerator of a rational numeral. *)
- val get_numerator : rat_num -> Integer.int_num
-
- (** The denominator of a rational numeral. *)
- val get_denominator : rat_num -> Integer.int_num
-
- (** Returns a string representation in decimal notation.
- The result has at most as many decimal places as indicated by the int argument.*)
- val to_decimal_string : rat_num -> int -> string
-
- (** Returns a string representation of the numeral. *)
- val to_string : rat_num -> string
-
- (** Creates a real constant. *)
- val mk_const : context -> Symbol.symbol -> real_expr
-
- (** Creates a real constant. *)
- val mk_const_s : context -> string -> real_expr
-
- (** Create a real numeral from a fraction.
- @return A Term with rational value and sort Real
- {!mk_numeral_s} *)
- val mk_numeral_nd : context -> int -> int -> rat_num
-
- (** Create a real numeral.
- @return A Term with the given value and sort Real *)
- val mk_numeral_s : context -> string -> rat_num
-
- (** Create a real numeral.
- @return A Term with the given value and sort Real *)
- val mk_numeral_i : context -> int -> rat_num
-
- (** Creates an expression that checks whether a real number is an integer. *)
- val mk_is_integer : context -> real_expr -> Boolean.bool_expr
-
- (** Coerce a real to an integer.
-
- The semantics of this function follows the SMT-LIB standard for the function to_int.
- The argument must be of real sort. *)
- val mk_real2int : context -> real_expr -> Integer.int_expr
- end
-
- (** Algebraic Numbers *)
- and AlgebraicNumber :
- sig
- type algebraic_num = AlgebraicNum of arith_expr
-
- val arith_expr_of_algebraic_num : Arithmetic.AlgebraicNumber.algebraic_num -> Arithmetic.arith_expr
- val algebraic_num_of_arith_expr : Arithmetic.arith_expr -> Arithmetic.AlgebraicNumber.algebraic_num
-
- (** Return a upper bound for a given real algebraic number.
- The interval isolating the number is smaller than 1/10^precision.
- {!is_algebraic_number}
- @return A numeral Expr of sort Real *)
- val to_upper : algebraic_num -> int -> Real.rat_num
-
- (** Return a lower bound for the given real algebraic number.
- The interval isolating the number is smaller than 1/10^precision.
- {!is_algebraic_number}
- @return A numeral Expr of sort Real *)
- val to_lower : algebraic_num -> int -> Real.rat_num
-
- (** Returns a string representation in decimal notation.
- The result has at most as many decimal places as the int argument provided.*)
- val to_decimal_string : algebraic_num -> int -> string
-
- (** Returns a string representation of the numeral. *)
- val to_string : algebraic_num -> string
- end
-
- (** Indicates whether the term is of integer sort. *)
- val is_int : Expr.expr -> bool
-
- (** Indicates whether the term is an arithmetic numeral. *)
- val is_arithmetic_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is a less-than-or-equal *)
- val is_le : Expr.expr -> bool
-
- (** Indicates whether the term is a greater-than-or-equal *)
- val is_ge : Expr.expr -> bool
-
- (** Indicates whether the term is a less-than *)
- val is_lt : Expr.expr -> bool
-
- (** Indicates whether the term is a greater-than *)
- val is_gt : Expr.expr -> bool
-
- (** Indicates whether the term is addition (binary) *)
- val is_add : Expr.expr -> bool
-
- (** Indicates whether the term is subtraction (binary) *)
- val is_sub : Expr.expr -> bool
-
- (** Indicates whether the term is a unary minus *)
- val is_uminus : Expr.expr -> bool
-
- (** Indicates whether the term is multiplication (binary) *)
- val is_mul : Expr.expr -> bool
-
- (** Indicates whether the term is division (binary) *)
- val is_div : Expr.expr -> bool
-
- (** Indicates whether the term is integer division (binary) *)
- val is_idiv : Expr.expr -> bool
-
- (** Indicates whether the term is remainder (binary) *)
- val is_remainder : Expr.expr -> bool
-
- (** Indicates whether the term is modulus (binary) *)
- val is_modulus : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion of integer to real (unary) *)
- val is_inttoreal : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion of real to integer (unary) *)
- val is_real_to_int : Expr.expr -> bool
-
- (** Indicates whether the term is a check that tests whether a real is integral (unary) *)
- val is_real_is_int : Expr.expr -> bool
-
- (** Indicates whether the term is of sort real. *)
- val is_real : Expr.expr -> bool
-
- (** Indicates whether the term is an integer numeral. *)
- val is_int_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is a real numeral. *)
- val is_rat_num : Expr.expr -> bool
-
- (** Indicates whether the term is an algebraic number *)
- val is_algebraic_number : Expr.expr -> bool
-
- (** Create an expression representing t[0] + t[1] + .... *)
- val mk_add : context -> arith_expr list -> arith_expr
-
- (** Create an expression representing t[0] * t[1] * .... *)
- val mk_mul : context -> arith_expr list -> arith_expr
-
- (** Create an expression representing t[0] - t[1] - .... *)
- val mk_sub : context -> arith_expr list -> arith_expr
-
- (** Create an expression representing -t. *)
- val mk_unary_minus : context -> arith_expr -> arith_expr
-
- (** Create an expression representing t1 / t2. *)
- val mk_div : context -> arith_expr -> arith_expr -> arith_expr
-
- (** Create an expression representing t1 ^ t2. *)
- val mk_power : context -> arith_expr -> arith_expr -> arith_expr
-
- (** Create an expression representing t1 < t2 *)
- val mk_lt : context -> arith_expr -> arith_expr -> Boolean.bool_expr
-
- (** Create an expression representing t1 <= t2 *)
- val mk_le : context -> arith_expr -> arith_expr -> Boolean.bool_expr
-
- (** Create an expression representing t1 > t2 *)
- val mk_gt : context -> arith_expr -> arith_expr -> Boolean.bool_expr
-
- (** Create an expression representing t1 >= t2 *)
- val mk_ge : context -> arith_expr -> arith_expr -> Boolean.bool_expr
-end
-
-(** Functions to manipulate bit-vector expressions *)
-and BitVector :
-sig
- type bitvec_sort = BitVecSort of Sort.sort
- type bitvec_expr = BitVecExpr of Expr.expr
- type bitvec_num = BitVecNum of bitvec_expr
-
- val sort_of_bitvec_sort : BitVector.bitvec_sort -> Sort.sort
- val bitvec_sort_of_sort : Sort.sort -> BitVector.bitvec_sort
- val expr_of_bitvec_expr : BitVector.bitvec_expr -> Expr.expr
- val bitvec_expr_of_bitvec_num : BitVector.bitvec_num -> BitVector.bitvec_expr
- val bitvec_expr_of_expr : Expr.expr -> BitVector.bitvec_expr
- val bitvec_num_of_bitvec_expr : BitVector.bitvec_expr -> BitVector.bitvec_num
-
- (** Create a new bit-vector sort. *)
- val mk_sort : context -> int -> bitvec_sort
-
- (** Indicates whether the terms is of bit-vector sort. *)
- val is_bv : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector numeral *)
- val is_bv_numeral : Expr.expr -> bool
-
- (** Indicates whether the term is a one-bit bit-vector with value one *)
- val is_bv_bit1 : Expr.expr -> bool
-
- (** Indicates whether the term is a one-bit bit-vector with value zero *)
- val is_bv_bit0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unary minus *)
- val is_bv_uminus : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector addition (binary) *)
- val is_bv_add : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector subtraction (binary) *)
- val is_bv_sub : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector multiplication (binary) *)
- val is_bv_mul : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed division (binary) *)
- val is_bv_sdiv : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned division (binary) *)
- val is_bv_udiv : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed remainder (binary) *)
- val is_bv_SRem : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned remainder (binary) *)
- val is_bv_urem : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed modulus *)
- val is_bv_smod : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed division by zero *)
- val is_bv_sdiv0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned division by zero *)
- val is_bv_udiv0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed remainder by zero *)
- val is_bv_srem0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector unsigned remainder by zero *)
- val is_bv_urem0 : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector signed modulus by zero *)
- val is_bv_smod0 : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector less-than-or-equal *)
- val is_bv_ule : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector less-than-or-equal *)
- val is_bv_sle : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector greater-than-or-equal *)
- val is_bv_uge : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector greater-than-or-equal *)
- val is_bv_sge : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector less-than *)
- val is_bv_ult : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector less-than *)
- val is_bv_slt : Expr.expr -> bool
-
- (** Indicates whether the term is an unsigned bit-vector greater-than *)
- val is_bv_ugt : Expr.expr -> bool
-
- (** Indicates whether the term is a signed bit-vector greater-than *)
- val is_bv_sgt : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise AND *)
- val is_bv_and : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise OR *)
- val is_bv_or : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise NOT *)
- val is_bv_not : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise XOR *)
- val is_bv_xor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise NAND *)
- val is_bv_nand : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise NOR *)
- val is_bv_nor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-wise XNOR *)
- val is_bv_xnor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector concatenation (binary) *)
- val is_bv_concat : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector sign extension *)
- val is_bv_signextension : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector zero extension *)
- val is_bv_zeroextension : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector extraction *)
- val is_bv_extract : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector repetition *)
- val is_bv_repeat : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector reduce OR *)
- val is_bv_reduceor : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector reduce AND *)
- val is_bv_reduceand : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector comparison *)
- val is_bv_comp : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector shift left *)
- val is_bv_shiftleft : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector logical shift right *)
- val is_bv_shiftrightlogical : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector arithmetic shift left *)
- val is_bv_shiftrightarithmetic : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate left *)
- val is_bv_rotateleft : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate right *)
- val is_bv_rotateright : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate left (extended)
- Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one. *)
- val is_bv_rotateleftextended : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector rotate right (extended)
- Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one. *)
- val is_bv_rotaterightextended : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion from integer to bit-vector
- This function is not supported by the decision procedures. Only the most
- rudimentary simplification rules are applied to this function. *)
-
- (** Indicates whether the term is a coercion from bit-vector to integer
- This function is not supported by the decision procedures. Only the most
- rudimentary simplification rules are applied to this function. *)
- val is_int_to_bv : Expr.expr -> bool
-
- (** Indicates whether the term is a coercion from integer to bit-vector
- This function is not supported by the decision procedures. Only the most
- rudimentary simplification rules are applied to this function. *)
- val is_bv_to_int : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector carry
- Compute the carry bit in a full-adder. The meaning is given by the
- equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3))) *)
- val is_bv_carry : Expr.expr -> bool
-
- (** Indicates whether the term is a bit-vector ternary XOR
- The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3) *)
- val is_bv_xor3 : Expr.expr -> bool
-
- (** The size of a bit-vector sort. *)
- val get_size : bitvec_sort -> int
-
- (** Retrieve the int value. *)
- val get_int : bitvec_num -> int
-
- (** Returns a string representation of the numeral. *)
- val to_string : bitvec_num -> string
-
- (** Creates a bit-vector constant. *)
- val mk_const : context -> Symbol.symbol -> int -> bitvec_expr
-
- (** Creates a bit-vector constant. *)
- val mk_const_s : context -> string -> int -> bitvec_expr
-
- (** Bitwise negation.
- The argument must have a bit-vector sort. *)
- val mk_not : context -> bitvec_expr -> Expr.expr
-
- (** Take conjunction of bits in a vector,vector of length 1.
- The argument must have a bit-vector sort. *)
- val mk_redand : context -> bitvec_expr -> Expr.expr
-
- (** Take disjunction of bits in a vector,vector of length 1.
- The argument must have a bit-vector sort. *)
- val mk_redor : context -> bitvec_expr -> Expr.expr
-
- (** Bitwise conjunction.
- The arguments must have a bit-vector sort. *)
- val mk_and : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Bitwise disjunction.
- The arguments must have a bit-vector sort. *)
- val mk_or : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Bitwise XOR.
- The arguments must have a bit-vector sort. *)
- val mk_xor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Bitwise NAND.
- The arguments must have a bit-vector sort. *)
- val mk_nand : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Bitwise NOR.
- The arguments must have a bit-vector sort. *)
- val mk_nor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Bitwise XNOR.
- The arguments must have a bit-vector sort. *)
- val mk_xnor : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Standard two's complement unary minus.
- The arguments must have a bit-vector sort. *)
- val mk_neg : context -> bitvec_expr -> bitvec_expr
-
- (** Two's complement addition.
- The arguments must have the same bit-vector sort. *)
- val mk_add : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Two's complement subtraction.
- The arguments must have the same bit-vector sort. *)
- val mk_sub : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Two's complement multiplication.
- The arguments must have the same bit-vector sort. *)
- val mk_mul : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Unsigned division.
-
-
- It is defined as the floor of t1/t2 if \c t2 is
- different from zero. If t2 is zero, then the result
- is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_udiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Signed division.
-
- It is defined in the following way:
-
- - The \c floor of t1/t2 if \c t2 is different from zero, and t1*t2 >= 0.
-
- - The \c ceiling of t1/t2 if \c t2 is different from zero, and t1*t2 < 0.
-
- If t2 is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_sdiv : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Unsigned remainder.
-
- It is defined as t1 - (t1 /u t2) * t2, where /u represents unsigned division.
- If t2 is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_urem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Signed remainder.
-
- It is defined as t1 - (t1 /s t2) * t2, where /s represents signed division.
- The most significant bit (sign) of the result is equal to the most significant bit of \c t1.
-
- If t2 is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_srem : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Two's complement signed remainder (sign follows divisor).
-
- If t2 is zero, then the result is undefined.
- The arguments must have the same bit-vector sort. *)
- val mk_smod : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Unsigned less-than
-
- The arguments must have the same bit-vector sort. *)
- val mk_ult : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Two's complement signed less-than
-
- The arguments must have the same bit-vector sort. *)
- val mk_slt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Unsigned less-than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_ule : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Two's complement signed less-than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_sle : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Unsigned greater than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_uge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Two's complement signed greater than or equal to.
-
- The arguments must have the same bit-vector sort. *)
- val mk_sge : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Unsigned greater-than.
-
- The arguments must have the same bit-vector sort. *)
- val mk_ugt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Two's complement signed greater-than.
-
- The arguments must have the same bit-vector sort. *)
- val mk_sgt : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Bit-vector concatenation.
-
- The arguments must have a bit-vector sort.
- @return
- The result is a bit-vector of size n1+n2, where n1 (n2)
- is the size of t1 (t2). *)
- val mk_concat : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Bit-vector extraction.
-
- Extract the bits between two limits from a bitvector of
- size m to yield a new bitvector of size n, where
- n = high - low + 1. *)
- val mk_extract : context -> int -> int -> bitvec_expr -> bitvec_expr
-
- (** Bit-vector sign extension.
-
- Sign-extends the given bit-vector to the (signed) equivalent bitvector of
- size m+i, where \c m is the size of the given bit-vector. *)
- val mk_sign_ext : context -> int -> bitvec_expr -> bitvec_expr
-
- (** Bit-vector zero extension.
-
- Extend the given bit-vector with zeros to the (unsigned) equivalent
- bitvector of size m+i, where \c m is the size of the
- given bit-vector. *)
- val mk_zero_ext : context -> int -> bitvec_expr -> bitvec_expr
-
- (** Bit-vector repetition. *)
- val mk_repeat : context -> int -> bitvec_expr -> bitvec_expr
-
- (** Shift left.
-
- It is equivalent to multiplication by 2^x where \c x is the value of third argument.
-
- NB. The semantics of shift operations varies between environments. This
- definition does not necessarily capture directly the semantics of the
- programming language or assembly architecture you are modeling.*)
- val mk_shl : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Logical shift right
-
- It is equivalent to unsigned division by 2^x where \c x is the value of the third argument.
-
- NB. The semantics of shift operations varies between environments. This
- definition does not necessarily capture directly the semantics of the
- programming language or assembly architecture you are modeling.
-
- The arguments must have a bit-vector sort. *)
- val mk_lshr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Arithmetic shift right
-
- It is like logical shift right except that the most significant
- bits of the result always copy the most significant bit of the
- second argument.
-
- NB. The semantics of shift operations varies between environments. This
- definition does not necessarily capture directly the semantics of the
- programming language or assembly architecture you are modeling.
-
- The arguments must have a bit-vector sort. *)
- val mk_ashr : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Rotate Left.
- Rotate bits of \c t to the left \c i times. *)
- val mk_rotate_left : context -> int -> bitvec_expr -> bitvec_expr
-
- (** Rotate Right.
- Rotate bits of \c t to the right \c i times.*)
- val mk_rotate_right : context -> int -> bitvec_expr -> bitvec_expr
-
- (** Rotate Left.
- Rotate bits of the second argument to the left.*)
- val mk_ext_rotate_left : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Rotate Right.
- Rotate bits of the second argument to the right. *)
- val mk_ext_rotate_right : context -> bitvec_expr -> bitvec_expr -> bitvec_expr
-
- (** Create an integer from the bit-vector argument
-
- If \c is_signed is false, then the bit-vector \c t1 is treated as unsigned.
- So the result is non-negative and in the range [0..2^N-1], where
- N are the number of bits in the argument.
- If \c is_signed is true, \c t1 is treated as a signed bit-vector.
-
- NB. This function is essentially treated as uninterpreted.
- So you cannot expect Z3 to precisely reflect the semantics of this function
- when solving constraints with this function.*)
- val mk_bv2int : context -> bitvec_expr -> bool -> Arithmetic.Integer.int_expr
-
- (** Create a predicate that checks that the bit-wise addition does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_add_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr
-
- (** Create a predicate that checks that the bit-wise addition does not underflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_add_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Create a predicate that checks that the bit-wise subtraction does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_sub_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Create a predicate that checks that the bit-wise subtraction does not underflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_sub_no_underflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr
-
- (** Create a predicate that checks that the bit-wise signed division does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_sdiv_no_overflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Create a predicate that checks that the bit-wise negation does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_neg_no_overflow : context -> bitvec_expr -> Boolean.bool_expr
-
- (** Create a predicate that checks that the bit-wise multiplication does not overflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_mul_no_overflow : context -> bitvec_expr -> bitvec_expr -> bool -> Boolean.bool_expr
-
- (** Create a predicate that checks that the bit-wise multiplication does not underflow.
-
- The arguments must be of bit-vector sort. *)
- val mk_mul_no_underflow : context -> bitvec_expr -> bitvec_expr -> Boolean.bool_expr
-
- (** Create a bit-vector numeral. *)
- val mk_numeral : context -> string -> int -> bitvec_num
-end
-
-(** Functions to manipulate proof expressions *)
-module Proof :
-sig
- (** Indicates whether the term is a Proof for the expression 'true'. *)
- val is_true : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a fact asserted by the user. *)
- val is_asserted : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a fact (tagged as goal) asserted by the user. *)
- val is_goal : Expr.expr -> bool
-
- (** Indicates whether the term is proof via modus ponens
-
- Given a proof for p and a proof for (implies p q), produces a proof for q.
- T1: p
- T2: (implies p q)
- [mp T1 T2]: q
- The second antecedents may also be a proof for (iff p q). *)
- val is_modus_ponens : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for (R t t), where R is a reflexive relation.
- This proof object has no antecedents.
- The only reflexive relations that are used are
- equivalence modulo namings, equality and equivalence.
- That is, R is either '~', '=' or 'iff'. *)
- val is_reflexivity : Expr.expr -> bool
-
- (** Indicates whether the term is proof by symmetricity of a relation
-
- Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
- T1: (R t s)
- [symmetry T1]: (R s t)
- T1 is the antecedent of this proof object. *)
- val is_symmetry : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by transitivity of a relation
-
- Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof
- for (R t u).
- T1: (R t s)
- T2: (R s u)
- [trans T1 T2]: (R t u) *)
- val is_transitivity : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by condensed transitivity of a relation
-
- Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1.
- It combines several symmetry and transitivity proofs.
- Example:
- T1: (R a b)
- T2: (R c b)
- T3: (R c d)
- [trans* T1 T2 T3]: (R a d)
- R must be a symmetric and transitive relation.
-
- Assuming that this proof object is a proof for (R s t), then
- a proof checker must check if it is possible to prove (R s t)
- using the antecedents, symmetry and transitivity. That is,
- if there is a path from s to t, if we view every
- antecedent (R a b) as an edge between a and b. *)
- val is_Transitivity_star : Expr.expr -> bool
-
- (** Indicates whether the term is a monotonicity proof object.
-
- T1: (R t_1 s_1)
- ...
- Tn: (R t_n s_n)
- [monotonicity T1 ... Tn]: (R (f t_1 ... t_n) (f s_1 ... s_n))
- Remark: if t_i == s_i, then the antecedent Ti is suppressed.
- That is, reflexivity proofs are supressed to save space. *)
- val is_monotonicity : Expr.expr -> bool
-
- (** Indicates whether the term is a quant-intro proof
-
- Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).
- T1: (~ p q)
- [quant-intro T1]: (~ (forall (x) p) (forall (x) q)) *)
- val is_quant_intro : Expr.expr -> bool
-
- (** Indicates whether the term is a distributivity proof object.
-
- Given that f (= or) distributes over g (= and), produces a proof for
- (= (f a (g c d))
- (g (f a c) (f a d)))
- If f and g are associative, this proof also justifies the following equality:
- (= (f (g a b) (g c d))
- (g (f a c) (f a d) (f b c) (f b d)))
- where each f and g can have arbitrary number of arguments.
-
- This proof object has no antecedents.
- Remark. This rule is used by the CNF conversion pass and
- instantiated by f = or, and g = and. *)
- val is_distributivity : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by elimination of AND
-
- Given a proof for (and l_1 ... l_n), produces a proof for l_i
- T1: (and l_1 ... l_n)
- [and-elim T1]: l_i *)
- val is_and_elimination : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by eliminiation of not-or
-
- Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).
- T1: (not (or l_1 ... l_n))
- [not-or-elim T1]: (not l_i) *)
- val is_or_elimination : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by rewriting
-
- A proof for a local rewriting step (= t s).
- The head function symbol of t is interpreted.
-
- This proof object has no antecedents.
- The conclusion of a rewrite rule is either an equality (= t s),
- an equivalence (iff t s), or equi-satisfiability (~ t s).
- Remark: if f is bool, then = is iff.
-
- Examples:
- (= (+ ( x : expr ) 0) x)
- (= (+ ( x : expr ) 1 2) (+ 3 x))
- (iff (or ( x : expr ) false) x) *)
- val is_rewrite : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by rewriting
-
- A proof for rewriting an expression t into an expression s.
- This proof object is used if the parameter PROOF_MODE is 1.
- This proof object can have n antecedents.
- The antecedents are proofs for equalities used as substitution rules.
- The object is also used in a few cases if the parameter PROOF_MODE is 2.
- The cases are:
- - When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
- - When converting bit-vectors to Booleans (BIT2BOOL=true)
- - When pulling ite expression up (PULL_CHEAP_ITE_TREES=true) *)
- val is_rewrite_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for pulling quantifiers out.
-
- A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents. *)
- val is_pull_quant : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for pulling quantifiers out.
-
- A proof for (iff P Q) where Q is in prenex normal form.
- This proof object is only used if the parameter PROOF_MODE is 1.
- This proof object has no antecedents *)
- val is_pull_quant_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for pushing quantifiers in.
-
- A proof for:
- (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
- (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
- ...
- (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
- This proof object has no antecedents *)
- val is_push_quant : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for elimination of unused variables.
-
- A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n])
- (forall (x_1 ... x_n) p[x_1 ... x_n]))
-
- It is used to justify the elimination of unused variables.
- This proof object has no antecedents. *)
- val is_elim_unused_vars : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for destructive equality resolution
-
- A proof for destructive equality resolution:
- (iff (forall (x) (or (not (= ( x : expr ) t)) P[x])) P[t])
- if ( x : expr ) does not occur in t.
-
- This proof object has no antecedents.
-
- Several variables can be eliminated simultaneously. *)
- val is_der : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for quantifier instantiation
-
- A proof of (or (not (forall (x) (P x))) (P a)) *)
- val is_quant_inst : Expr.expr -> bool
-
- (** Indicates whether the term is a hypthesis marker.
- Mark a hypothesis in a natural deduction style proof. *)
- val is_hypothesis : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by lemma
-
- T1: false
- [lemma T1]: (or (not l_1) ... (not l_n))
-
- This proof object has one antecedent: a hypothetical proof for false.
- It converts the proof in a proof for (or (not l_1) ... (not l_n)),
- when T1 contains the hypotheses: l_1, ..., l_n. *)
- val is_lemma : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by unit resolution
-
- T1: (or l_1 ... l_n l_1' ... l_m')
- T2: (not l_1)
- ...
- T(n+1): (not l_n)
- [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m') *)
- val is_unit_resolution : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by iff-true
-
- T1: p
- [iff-true T1]: (iff p true) *)
- val is_iff_true : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by iff-false
-
- T1: (not p)
- [iff-false T1]: (iff p false) *)
- val is_iff_false : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by commutativity
-
- [comm]: (= (f a b) (f b a))
-
- f is a commutative operator.
-
- This proof object has no antecedents.
- Remark: if f is bool, then = is iff. *)
- val is_commutativity : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for Tseitin-like axioms
-
- Proof object used to justify Tseitin's like axioms:
-
- (or (not (and p q)) p)
- (or (not (and p q)) q)
- (or (not (and p q r)) p)
- (or (not (and p q r)) q)
- (or (not (and p q r)) r)
- ...
- (or (and p q) (not p) (not q))
- (or (not (or p q)) p q)
- (or (or p q) (not p))
- (or (or p q) (not q))
- (or (not (iff p q)) (not p) q)
- (or (not (iff p q)) p (not q))
- (or (iff p q) (not p) (not q))
- (or (iff p q) p q)
- (or (not (ite a b c)) (not a) b)
- (or (not (ite a b c)) a c)
- (or (ite a b c) (not a) (not b))
- (or (ite a b c) a (not c))
- (or (not (not a)) (not a))
- (or (not a) a)
-
- This proof object has no antecedents.
- Note: all axioms are propositional tautologies.
- Note also that 'and' and 'or' can take multiple arguments.
- You can recover the propositional tautologies by
- unfolding the Boolean connectives in the axioms a small
- bounded number of steps (=3). *)
- val is_def_axiom : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for introduction of a name
-
- Introduces a name for a formula/term.
- Suppose e is an expression with free variables x, and def-intro
- introduces the name n(x). The possible cases are:
-
- When e is of Boolean type:
- [def-intro]: (and (or n (not e)) (or (not n) e))
-
- or:
- [def-intro]: (or (not n) e)
- when e only occurs positively.
-
- When e is of the form (ite cond th el):
- [def-intro]: (and (or (not cond) (= n th)) (or cond (= n el)))
-
- Otherwise:
- [def-intro]: (= n e) *)
- val is_def_intro : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for application of a definition
-
- [apply-def T1]: F ~ n
- F is 'equivalent' to n, given that T1 is a proof that
- n is a name for F. *)
- val is_apply_def : Expr.expr -> bool
-
- (** Indicates whether the term is a proof iff-oeq
-
- T1: (iff p q)
- [iff~ T1]: (~ p q) *)
- val is_iff_oeq : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a positive NNF step
-
- Proof for a (positive) NNF step. Example:
-
- T1: (not s_1) ~ r_1
- T2: (not s_2) ~ r_2
- T3: s_1 ~ r_1'
- T4: s_2 ~ r_2'
- [nnf-pos T1 T2 T3 T4]: (~ (iff s_1 s_2)
- (and (or r_1 r_2') (or r_1' r_2)))
-
- The negation normal form steps NNF_POS and NNF_NEG are used in the following cases:
- (a) When creating the NNF of a positive force quantifier.
- The quantifier is retained (unless the bound variables are eliminated).
- Example
- T1: q ~ q_new
- [nnf-pos T1]: (~ (forall (x T) q) (forall (x T) q_new))
-
- (b) When recursively creating NNF over Boolean formulas, where the top-level
- connective is changed during NNF conversion. The relevant Boolean connectives
- for NNF_POS are 'implies', 'iff', 'xor', 'ite'.
- NNF_NEG furthermore handles the case where negation is pushed
- over Boolean connectives 'and' and 'or'. *)
- val is_nnf_pos : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a negative NNF step
-
- Proof for a (negative) NNF step. Examples:
-
- T1: (not s_1) ~ r_1
- ...
- Tn: (not s_n) ~ r_n
- [nnf-neg T1 ... Tn]: (not (and s_1 ... s_n)) ~ (or r_1 ... r_n)
- and
- T1: (not s_1) ~ r_1
- ...
- Tn: (not s_n) ~ r_n
- [nnf-neg T1 ... Tn]: (not (or s_1 ... s_n)) ~ (and r_1 ... r_n)
- and
- T1: (not s_1) ~ r_1
- T2: (not s_2) ~ r_2
- T3: s_1 ~ r_1'
- T4: s_2 ~ r_2'
- [nnf-neg T1 T2 T3 T4]: (~ (not (iff s_1 s_2))
- (and (or r_1 r_2) (or r_1' r_2'))) *)
- val is_nnf_neg : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for (~ P Q) here Q is in negation normal form.
-
- A proof for (~ P Q) where Q is in negation normal form.
-
- This proof object is only used if the parameter PROOF_MODE is 1.
-
- This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO. *)
- val is_nnf_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for (~ P Q) where Q is in conjunctive normal form.
-
- A proof for (~ P Q) where Q is in conjunctive normal form.
- This proof object is only used if the parameter PROOF_MODE is 1.
- This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO. *)
- val is_cnf_star : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for a Skolemization step
-
- Proof for:
-
- [sk]: (~ (not (forall ( x : expr ) (p ( x : expr ) y))) (not (p (sk y) y)))
- [sk]: (~ (exists ( x : expr ) (p ( x : expr ) y)) (p (sk y) y))
-
- This proof object has no antecedents. *)
- val is_skolemize : Expr.expr -> bool
-
- (** Indicates whether the term is a proof by modus ponens for equi-satisfiability.
-
- Modus ponens style rule for equi-satisfiability.
- T1: p
- T2: (~ p q)
- [mp~ T1 T2]: q *)
- val is_modus_ponens_oeq : Expr.expr -> bool
-
- (** Indicates whether the term is a proof for theory lemma
-
- Generic proof for theory lemmas.
-
- The theory lemma function comes with one or more parameters.
- The first parameter indicates the name of the theory.
- For the theory of arithmetic, additional parameters provide hints for
- checking the theory lemma.
- The hints for arithmetic are:
- - farkas - followed by rational coefficients. Multiply the coefficients to the
- inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
- - triangle-eq - Indicates a lemma related to the equivalence:
- (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
- - gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test. *)
- val is_theory_lemma : Expr.expr -> bool
-end
-
-(** Goals
-
- A goal (aka problem). A goal is essentially a
- of formulas, that can be solved and/or transformed using
- tactics and solvers. *)
-module Goal :
-sig
- type goal
-
- (** The precision of the goal.
-
- Goals can be transformed using over and under approximations.
- An under approximation is applied when the objective is to find a model for a given goal.
- An over approximation is applied when the objective is to find a proof for a given goal. *)
- val get_precision : goal -> Z3enums.goal_prec
-
- (** Indicates whether the goal is precise. *)
- val is_precise : goal -> bool
-
- (** Indicates whether the goal is an under-approximation. *)
- val is_underapproximation : goal -> bool
-
- (** Indicates whether the goal is an over-approximation. *)
- val is_overapproximation : goal -> bool
-
- (** Indicates whether the goal is garbage (i.e., the product of over- and under-approximations). *)
- val is_garbage : goal -> bool
-
- (** Adds the constraints to the given goal. *)
- val assert_ : goal -> Boolean.bool_expr list -> unit
-
- (** Indicates whether the goal contains `false'. *)
- val is_inconsistent : goal -> bool
-
- (** The depth of the goal.
- This tracks how many transformations were applied to it. *)
- val get_depth : goal -> int
-
- (** Erases all formulas from the given goal. *)
- val reset : goal -> unit
-
- (** The number of formulas in the goal. *)
- val get_size : goal -> int
-
- (** The formulas in the goal. *)
- val get_formulas : goal -> Boolean.bool_expr list
-
- (** The number of formulas, subformulas and terms in the goal. *)
- val get_num_exprs : goal -> int
-
- (** Indicates whether the goal is empty, and it is precise or the product of an under approximation. *)
- val is_decided_sat : goal -> bool
-
- (** Indicates whether the goal contains `false', and it is precise or the product of an over approximation. *)
- val is_decided_unsat : goal -> bool
-
- (** Translates (copies) the Goal to another context.. *)
- val translate : goal -> context -> goal
-
- (** Simplifies the goal. Essentially invokes the `simplify' tactic on the goal. *)
- val simplify : goal -> Params.params option -> goal
-
- (** Creates a new Goal.
-
- Note that the Context must have been created with proof generation support if
- the fourth argument is set to true here. *)
- val mk_goal : context -> bool -> bool -> bool -> goal
-
- (** A string representation of the Goal. *)
- val to_string : goal -> string
-end
-
-(** Models
-
- A Model contains interpretations (assignments) of constants and functions. *)
-module Model :
-sig
- type model
-
- (** Function interpretations
-
- A function interpretation is represented as a finite map and an 'else'.
- Each entry in the finite map represents the value of a function given a set of arguments. *)
- module FuncInterp :
- sig
- type func_interp
-
- (** Function interpretations entries
-
- An Entry object represents an element in the finite map used to a function interpretation. *)
- module FuncEntry :
- sig
- type func_entry
-
- (** Return the (symbolic) value of this entry.
- *)
- val get_value : func_entry -> Expr.expr
-
- (** The number of arguments of the entry.
- *)
- val get_num_args : func_entry -> int
-
- (** The arguments of the function entry.
- *)
- val get_args : func_entry -> Expr.expr list
-
- (** A string representation of the function entry.
- *)
- val to_string : func_entry -> string
- end
-
- (** The number of entries in the function interpretation. *)
- val get_num_entries : func_interp -> int
-
- (** The entries in the function interpretation *)
- val get_entries : func_interp -> FuncEntry.func_entry list
-
- (** The (symbolic) `else' value of the function interpretation. *)
- val get_else : func_interp -> Expr.expr
-
- (** The arity of the function interpretation *)
- val get_arity : func_interp -> int
-
- (** A string representation of the function interpretation. *)
- val to_string : func_interp -> string
- end
-
- (** Retrieves the interpretation (the assignment) of a func_decl in the model.
- An expression if the function has an interpretation in the model, null otherwise. *)
- val get_const_interp : model -> FuncDecl.func_decl -> Expr.expr option
-
- (** Retrieves the interpretation (the assignment) of an expression in the model.
- An expression if the constant has an interpretation in the model, null otherwise. *)
- val get_const_interp_e : model -> Expr.expr -> Expr.expr option
-
- (** Retrieves the interpretation (the assignment) of a non-constant func_decl in the model.
- A FunctionInterpretation if the function has an interpretation in the model, null otherwise. *)
- val get_func_interp : model -> FuncDecl.func_decl -> FuncInterp.func_interp option
-
- (** The number of constant interpretations in the model. *)
- val get_num_consts : model -> int
-
- (** The function declarations of the constants in the model. *)
- val get_const_decls : model -> FuncDecl.func_decl list
-
- (** The number of function interpretations in the model. *)
- val get_num_funcs : model -> int
-
- (** The function declarations of the function interpretations in the model. *)
- val get_func_decls : model -> FuncDecl.func_decl list
-
- (** All symbols that have an interpretation in the model. *)
- val get_decls : model -> FuncDecl.func_decl list
-
- (** A ModelEvaluationFailedException is thrown when an expression cannot be evaluated by the model. *)
- exception ModelEvaluationFailedException of string
-
- (** Evaluates an expression in the current model.
-
- This function may fail if the argument contains quantifiers,
- is partial (MODEL_PARTIAL enabled), or if it is not well-sorted.
- In this case a ModelEvaluationFailedException is thrown.
- *)
- val eval : model -> Expr.expr -> bool -> Expr.expr
-
- (** Alias for eval. *)
- val evaluate : model -> Expr.expr -> bool -> Expr.expr
-
- (** The number of uninterpreted sorts that the model has an interpretation for. *)
- val get_num_sorts : model -> int
-
- (** The uninterpreted sorts that the model has an interpretation for.
-
- Z3 also provides an intepretation for uninterpreted sorts used in a formula.
- The interpretation for a sort is a finite set of distinct values. We say this finite set is
- the "universe" of the sort.
- {!get_num_sorts}
- {!sort_universe} *)
- val get_sorts : model -> Sort.sort list
-
- (** The finite set of distinct values that represent the interpretation of a sort.
- {!get_sorts}
- @returns A list of expressions, where each is an element of the universe of the sort *)
- val sort_universe : model -> Sort.sort -> AST.ast list
-
- (** Conversion of models to strings.
- A string representation of the model. *)
- val to_string : model -> string
-end
-
-(** Probes
-
- Probes are used to inspect a goal (aka problem) and collect information that may be used to decide
- which solver and/or preprocessing step will be used.
- The complete list of probes may be obtained using the procedures Context.NumProbes
- and Context.ProbeNames.
- It may also be obtained using the command (help-tactics) in the SMT 2.0 front-end.
-*)
-module Probe :
-sig
- type probe
-
- (** Execute the probe over the goal.
- A probe always produce a double value.
- "Boolean" probes return 0.0 for false, and a value different from 0.0 for true. *)
- val apply : probe -> Goal.goal -> float
-
- (** The number of supported Probes. *)
- val get_num_probes : context -> int
-
- (** The names of all supported Probes. *)
- val get_probe_names : context -> string list
-
- (** Returns a string containing a description of the probe with the given name. *)
- val get_probe_description : context -> string -> string
-
- (** Creates a new Probe. *)
- val mk_probe : context -> string -> probe
-
- (** Create a probe that always evaluates to a float value. *)
- val const : context -> float -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is less than the value returned by second argument *)
- val lt : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is greater than the value returned by second argument *)
- val gt : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is less than or equal the value returned by second argument *)
- val le : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is greater than or equal the value returned by second argument *)
- val ge : context -> probe -> probe -> probe
-
-
- (** Create a probe that evaluates to "true" when the value returned by the first argument
- is equal the value returned by second argument *)
- val eq : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when both of two probes evaluate to "true". *)
- val and_ : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when either of two probes evaluates to "true". *)
- val or_ : context -> probe -> probe -> probe
-
- (** Create a probe that evaluates to "true" when another probe does not evaluate to "true". *)
- val not_ : context -> probe -> probe
-end
-
-(** Tactics
-
- Tactics are the basic building block for creating custom solvers for specific problem domains.
- The complete list of tactics may be obtained using Context.get_num_tactics
- and Context.get_tactic_names.
- It may also be obtained using the command (help-tactics) in the SMT 2.0 front-end.
-*)
-module Tactic :
-sig
- type tactic
-
- (** Tactic application results
-
- ApplyResult objects represent the result of an application of a
- tactic to a goal. It contains the subgoals that were produced. *)
- module ApplyResult :
- sig
- type apply_result
-
- (** The number of Subgoals. *)
- val get_num_subgoals : apply_result -> int
-
- (** Retrieves the subgoals from the apply_result. *)
- val get_subgoals : apply_result -> Goal.goal list
-
- (** Retrieves a subgoal from the apply_result. *)
- val get_subgoal : apply_result -> int -> Goal.goal
-
- (** Convert a model for a subgoal into a model for the original
- goal g, that the ApplyResult was obtained from.
- #return A model for g *)
- val convert_model : apply_result -> int -> Model.model -> Model.model
-
- (** A string representation of the ApplyResult. *)
- val to_string : apply_result -> string
- end
-
- (** A string containing a description of parameters accepted by the tactic. *)
- val get_help : tactic -> string
-
- (** Retrieves parameter descriptions for Tactics. *)
- val get_param_descrs : tactic -> Params.ParamDescrs.param_descrs
-
- (** Apply the tactic to the goal. *)
- val apply : tactic -> Goal.goal -> Params.params option -> ApplyResult.apply_result
-
- (** The number of supported tactics. *)
- val get_num_tactics : context -> int
-
- (** The names of all supported tactics. *)
- val get_tactic_names : context -> string list
-
- (** Returns a string containing a description of the tactic with the given name. *)
- val get_tactic_description : context -> string -> string
-
- (** Creates a new Tactic. *)
- val mk_tactic : context -> string -> tactic
-
- (** Create a tactic that applies one tactic to a Goal and
- then another one to every subgoal produced by the first one. *)
- val and_then : context -> tactic -> tactic -> tactic list -> tactic
-
- (** Create a tactic that first applies one tactic to a Goal and
- if it fails then returns the result of another tactic applied to the Goal. *)
- val or_else : context -> tactic -> tactic -> tactic
-
- (** Create a tactic that applies one tactic to a goal for some time (in milliseconds).
-
- If the tactic does not terminate within the timeout, then it fails. *)
- val try_for : context -> tactic -> int -> tactic
-
- (** Create a tactic that applies one tactic to a given goal if the probe
- evaluates to true.
-
- If the probe evaluates to false, then the new tactic behaves like the skip tactic. *)
- val when_ : context -> Probe.probe -> tactic -> tactic
-
- (** Create a tactic that applies a tactic to a given goal if the probe
- evaluates to true and another tactic otherwise. *)
- val cond : context -> Probe.probe -> tactic -> tactic -> tactic
-
- (** Create a tactic that keeps applying one tactic until the goal is not
- modified anymore or the maximum number of iterations is reached. *)
- val repeat : context -> tactic -> int -> tactic
-
- (** Create a tactic that just returns the given goal. *)
- val skip : context -> tactic
-
- (** Create a tactic always fails. *)
- val fail : context -> tactic
-
- (** Create a tactic that fails if the probe evaluates to false. *)
- val fail_if : context -> Probe.probe -> tactic
-
- (** Create a tactic that fails if the goal is not triviall satisfiable (i.e., empty)
- or trivially unsatisfiable (i.e., contains `false'). *)
- val fail_if_not_decided : context -> tactic
-
- (** Create a tactic that applies a tactic using the given set of parameters. *)
- val using_params : context -> tactic -> Params.params -> tactic
-
- (** Create a tactic that applies a tactic using the given set of parameters.
- Alias for UsingParams*)
- val with_ : context -> tactic -> Params.params -> tactic
-
- (** Create a tactic that applies the given tactics in parallel. *)
- val par_or : context -> tactic list -> tactic
-
- (** Create a tactic that applies a tactic to a given goal and then another tactic
- to every subgoal produced by the first one. The subgoals are processed in parallel. *)
- val par_and_then : context -> tactic -> tactic -> tactic
-
- (** Interrupt the execution of a Z3 procedure.
- This procedure can be used to interrupt: solvers, simplifiers and tactics. *)
- val interrupt : context -> unit
-end
-
-(** Solvers *)
-module Solver :
-sig
- type solver
- type status = UNSATISFIABLE | UNKNOWN | SATISFIABLE
-
- val string_of_status : status -> string
-
- (** Objects that track statistical information about solvers. *)
- module Statistics :
- sig
- type statistics
-
- (** Statistical data is organized into pairs of \[Key, Entry\], where every
- Entry is either a floating point or integer value.
- *)
- module Entry :
- sig
- type statistics_entry
-
- (** The key of the entry. *)
- val get_key : statistics_entry -> string
-
- (** The int-value of the entry. *)
- val get_int : statistics_entry -> int
-
- (** The float-value of the entry. *)
- val get_float : statistics_entry -> float
-
- (** True if the entry is uint-valued. *)
- val is_int : statistics_entry -> bool
-
- (** True if the entry is double-valued. *)
- val is_float : statistics_entry -> bool
-
- (** The string representation of the the entry's value. *)
- val to_string_value : statistics_entry -> string
-
- (** The string representation of the entry (key and value) *)
- val to_string : statistics_entry -> string
- end
-
- (** A string representation of the statistical data. *)
- val to_string : statistics -> string
-
- (** The number of statistical data. *)
- val get_size : statistics -> int
-
- (** The data entries. *)
- val get_entries : statistics -> Entry.statistics_entry list
-
- (** The statistical counters. *)
- val get_keys : statistics -> string list
-
- (** The value of a particular statistical counter. *)
- val get : statistics -> string -> Entry.statistics_entry option
- end
-
- (** A string that describes all available solver parameters. *)
- val get_help : solver -> string
-
- (** Sets the solver parameters. *)
- val set_parameters : solver -> Params.params -> unit
-
- (** Retrieves parameter descriptions for solver. *)
- val get_param_descrs : solver -> Params.ParamDescrs.param_descrs
-
- (** The current number of backtracking points (scopes).
- {!pop}
- {!push} *)
- val get_num_scopes : solver -> int
-
- (** Creates a backtracking point.
- {!pop} *)
- val push : solver -> unit
-
- (** Backtracks a number of backtracking points.
- Note that an exception is thrown if the integer is not smaller than {!get_num_scopes}
- {!push} *)
- val pop : solver -> int -> unit
-
- (** Resets the Solver.
- This removes all assertions from the solver. *)
- val reset : solver -> unit
-
- (** Assert a constraint (or multiple) into the solver. *)
- val assert_ : solver -> Boolean.bool_expr list -> unit
-
- (** * Assert multiple constraints (cs) into the solver, and track them (in the
- * unsat) core
- * using the Boolean constants in ps.
- *
- * This API is an alternative to {!check} with assumptions for
- * extracting unsat cores.
- * Both APIs can be used in the same solver. The unsat core will contain a
- * combination
- * of the Boolean variables provided using {!assert_and_track}
- * and the Boolean literals
- * provided using {!check} with assumptions. *)
- val assert_and_track_a : solver -> Boolean.bool_expr list -> Boolean.bool_expr list -> unit
-
- (** * Assert a constraint (c) into the solver, and track it (in the unsat) core
- * using the Boolean constant p.
- *
- * This API is an alternative to {!check} with assumptions for
- * extracting unsat cores.
- * Both APIs can be used in the same solver. The unsat core will contain a
- * combination
- * of the Boolean variables provided using {!assert_and_track}
- * and the Boolean literals
- * provided using {!check} with assumptions. *)
- val assert_and_track : solver -> Boolean.bool_expr -> Boolean.bool_expr -> unit
-
- (** The number of assertions in the solver. *)
- val get_num_assertions : solver -> int
-
- (** The set of asserted formulas. *)
- val get_assertions : solver -> Boolean.bool_expr list
-
- (** Checks whether the assertions in the solver are consistent or not.
-
- {!Model}
- {!get_unsat_core}
- {!Proof} *)
- val check : solver -> Boolean.bool_expr list -> status
-
- (** The model of the last Check.
-
- The result is None if Check was not invoked before,
- if its results was not SATISFIABLE, or if model production is not enabled. *)
- val get_model : solver -> Model.model option
-
- (** The proof of the last Check.
-
- The result is null if Check was not invoked before,
- if its results was not UNSATISFIABLE, or if proof production is disabled. *)
- val get_proof : solver -> Expr.expr option
-
- (** The unsat core of the last Check.
-
- The unsat core is a subset of Assertions
- The result is empty if Check was not invoked before,
- if its results was not UNSATISFIABLE, or if core production is disabled. *)
- val get_unsat_core : solver -> AST.ast list
-
- (** A brief justification of why the last call to Check returned UNKNOWN. *)
- val get_reason_unknown : solver -> string
-
- (** Solver statistics. *)
- val get_statistics : solver -> Statistics.statistics
-
- (** Creates a new (incremental) solver.
-
- This solver also uses a set of builtin tactics for handling the first
- check-sat command, and check-sat commands that take more than a given
- number of milliseconds to be solved. *)
- val mk_solver : context -> Symbol.symbol option -> solver
-
- (** Creates a new (incremental) solver.
- {!mk_solver} *)
- val mk_solver_s : context -> string -> solver
-
- (** Creates a new (incremental) solver. *)
- val mk_simple_solver : context -> solver
-
- (** Creates a solver that is implemented using the given tactic.
-
- The solver supports the commands Push and Pop, but it
- will always solve each check from scratch. *)
- val mk_solver_t : context -> Tactic.tactic -> solver
-
- (** A string representation of the solver. *)
- val to_string : solver -> string
-end
-
-(** Fixedpoint solving *)
-module Fixedpoint :
-sig
- type fixedpoint
-
- (** A string that describes all available fixedpoint solver parameters. *)
- val get_help : fixedpoint -> string
-
- (** Sets the fixedpoint solver parameters. *)
- val set_params : fixedpoint -> Params.params -> unit
-
- (** Retrieves parameter descriptions for Fixedpoint solver. *)
- val get_param_descrs : fixedpoint -> Params.ParamDescrs.param_descrs
-
- (** Assert a constraints into the fixedpoint solver. *)
- val assert_ : fixedpoint -> Boolean.bool_expr list -> unit
-
- (** Register predicate as recursive relation. *)
- val register_relation : fixedpoint -> FuncDecl.func_decl -> unit
-
- (** Add rule into the fixedpoint solver. *)
- val add_rule : fixedpoint -> Boolean.bool_expr -> Symbol.symbol option -> unit
-
- (** Add table fact to the fixedpoint solver. *)
- val add_fact : fixedpoint -> FuncDecl.func_decl -> int list -> unit
-
- (** Query the fixedpoint solver.
- A query is a conjunction of constraints. The constraints may include the recursively defined relations.
- The query is satisfiable if there is an instance of the query variables and a derivation for it.
- The query is unsatisfiable if there are no derivations satisfying the query variables. *)
- val query : fixedpoint -> Boolean.bool_expr -> Solver.status
-
- (** Query the fixedpoint solver.
- A query is an array of relations.
- The query is satisfiable if there is an instance of some relation that is non-empty.
- The query is unsatisfiable if there are no derivations satisfying any of the relations. *)
- val query_r : fixedpoint -> FuncDecl.func_decl list -> Solver.status
-
- (** Creates a backtracking point.
- {!pop} *)
- val push : fixedpoint -> unit
-
- (** Backtrack one backtracking point.
-
- Note that an exception is thrown if Pop is called without a corresponding Push
- {!push} *)
- val pop : fixedpoint -> unit
-
- (** Update named rule into in the fixedpoint solver. *)
- val update_rule : fixedpoint -> Boolean.bool_expr -> Symbol.symbol -> unit
-
- (** Retrieve satisfying instance or instances of solver,
- or definitions for the recursive predicates that show unsatisfiability. *)
- val get_answer : fixedpoint -> Expr.expr option
-
- (** Retrieve explanation why fixedpoint engine returned status Unknown. *)
- val get_reason_unknown : fixedpoint -> string
-
- (** Retrieve the number of levels explored for a given predicate. *)
- val get_num_levels : fixedpoint -> FuncDecl.func_decl -> int
-
- (** Retrieve the cover of a predicate. *)
- val get_cover_delta : fixedpoint -> int -> FuncDecl.func_decl -> Expr.expr option
-
- (** Add property about the predicate.
- The property is added at level. *)
- val add_cover : fixedpoint -> int -> FuncDecl.func_decl -> Expr.expr -> unit
-
- (** Retrieve internal string representation of fixedpoint object. *)
- val to_string : fixedpoint -> string
-
- (** Instrument the Datalog engine on which table representation to use for recursive predicate. *)
- val set_predicate_representation : fixedpoint -> FuncDecl.func_decl -> Symbol.symbol list -> unit
-
- (** Convert benchmark given as set of axioms, rules and queries to a string. *)
- val to_string_q : fixedpoint -> Boolean.bool_expr list -> string
-
- (** Retrieve set of rules added to fixedpoint context. *)
- val get_rules : fixedpoint -> Boolean.bool_expr list
-
- (** Retrieve set of assertions added to fixedpoint context. *)
- val get_assertions : fixedpoint -> Boolean.bool_expr list
-
- (** Create a Fixedpoint context. *)
- val mk_fixedpoint : context -> fixedpoint
-end
-
-(** Global and context options
-
- Note: This module contains functions that set parameters/options for context
- objects as well as functions that set options that are used globally, across
- contexts.*)
-module Options :
-sig
- (** Update a mutable configuration parameter.
-
- The list of all configuration parameters can be obtained using the Z3 executable:
- z3.exe -ini?
- Only a few configuration parameters are mutable once the context is created.
- An exception is thrown when trying to modify an immutable parameter.
- {!get_param_value} *)
- val update_param_value : context -> string -> string -> unit
-
- (** Get a configuration parameter.
-
- Returns None if the parameter value does not exist.
- {!update_param_value} *)
- val get_param_value : context -> string -> string option
-
- (** Selects the format used for pretty-printing expressions.
-
- The default mode for pretty printing expressions is to produce
- SMT-LIB style output where common subexpressions are printed
- at each occurrence. The mode is called PRINT_SMTLIB_FULL.
- To print shared common subexpressions only once,
- use the PRINT_LOW_LEVEL mode.
- To print in way that conforms to SMT-LIB standards and uses let
- expressions to share common sub-expressions use PRINT_SMTLIB_COMPLIANT.
- {!AST.to_string}
- {!Quantifier.Pattern.to_string}
- {!FuncDecl.to_string}
- {!Sort.to_string} *)
- val set_print_mode : context -> Z3enums.ast_print_mode -> unit
-
- (** Enable/disable printing of warning messages to the console.
-
- Note that this function is static and effects the behaviour of
- all contexts globally. *)
- val toggle_warning_messages : bool -> unit
-end
-
-(** Functions for handling SMT and SMT2 expressions and files *)
-module SMT :
-sig
- (** Convert a benchmark into an SMT-LIB formatted string.
-
- @return A string representation of the benchmark. *)
- val benchmark_to_smtstring : context -> string -> string -> string -> string -> Boolean.bool_expr list -> Boolean.bool_expr -> string
-
- (** Parse the given string using the SMT-LIB parser.
-
- The symbol table of the parser can be initialized using the given sorts and declarations.
- The symbols in the arrays in the third and fifth argument
- don't need to match the names of the sorts and declarations in the arrays in the fourth
- and sixth argument. This is a useful feature since we can use arbitrary names to
- reference sorts and declarations. *)
- val parse_smtlib_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> unit
-
- (** Parse the given file using the SMT-LIB parser.
- {!parse_smtlib_string} *)
- val parse_smtlib_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> unit
-
- (** The number of SMTLIB formulas parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_num_smtlib_formulas : context -> int
-
- (** The formulas parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_smtlib_formulas : context -> Boolean.bool_expr list
-
- (** The number of SMTLIB assumptions parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_num_smtlib_assumptions : context -> int
-
- (** The assumptions parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_smtlib_assumptions : context -> Boolean.bool_expr list
-
- (** The number of SMTLIB declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_num_smtlib_decls : context -> int
-
- (** The declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_smtlib_decls : context -> FuncDecl.func_decl list
-
- (** The number of SMTLIB sorts parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_num_smtlib_sorts : context -> int
-
- (** The sort declarations parsed by the last call to ParseSMTLIBString or ParseSMTLIBFile. *)
- val get_smtlib_sorts : context -> Sort.sort list
-
- (** Parse the given string using the SMT-LIB2 parser.
-
- {!parse_smtlib_string}
- @return A conjunction of assertions in the scope (up to push/pop) at the end of the string. *)
- val parse_smtlib2_string : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Boolean.bool_expr
-
- (** Parse the given file using the SMT-LIB2 parser.
- {!parse_smtlib2_string} *)
- val parse_smtlib2_file : context -> string -> Symbol.symbol list -> Sort.sort list -> Symbol.symbol list -> FuncDecl.func_decl list -> Boolean.bool_expr
-end
-
-(** Set a global (or module) parameter, which is shared by all Z3 contexts.
-
- When a Z3 module is initialized it will use the value of these parameters
- when Z3_params objects are not provided.
- The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'.
- The character '.' is a delimiter (more later).
- The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'.
- Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION".
- This function can be used to set parameters for a specific Z3 module.
- This can be done by using ..
- For example:
- (set_global_param "pp.decimal" "true")
- will set the parameter "decimal" in the module "pp" to true.
-*)
-val set_global_param : string -> string -> unit
-
-(** Get a global (or module) parameter.
-
- Returns None if the parameter does not exist.
- The caller must invoke #Z3_global_param_del_value to delete the value returned at \c param_value.
- This function cannot be invoked simultaneously from different threads without synchronization.
- The result string stored in param_value is stored in a shared location.
-*)
-val get_global_param : string -> string option
-
-(** Restore the value of all global (and module) parameters.
-
- This command will not affect already created objects (such as tactics and solvers)
- {!set_global_param}
-*)
-val global_param_reset_all : unit