3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

updates to nra_solver integration to call it directly from theory_lra instead of over lar_solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-05-25 14:04:48 -07:00
parent d2b2aedef3
commit e306287d7b
6 changed files with 120 additions and 107 deletions

View file

@ -35,6 +35,7 @@ Revision History:
#include "smt/smt_model_generator.h"
#include "smt/arith_eq_adapter.h"
#include "util/nat_set.h"
#include "util/lp/nra_solver.h"
#include "tactic/filter_model_converter.h"
namespace lp {
@ -144,10 +145,10 @@ namespace smt {
ast_manager& m;
theory_arith_params& m_arith_params;
arith_util a;
arith_eq_adapter m_arith_eq_adapter;
vector<rational> m_columns;
vector<rational> m_columns;
// temporary values kept during internalization
struct internalize_state {
expr_ref_vector m_terms;
@ -248,6 +249,8 @@ namespace smt {
unsigned m_num_conflicts;
scoped_ptr<nra::solver> m_nra;
bool m_use_nra_model;
struct var_value_eq {
imp & m_th;
@ -291,6 +294,16 @@ namespace smt {
//m_solver->settings().set_ostream(0);
}
void ensure_nra() {
if (!m_nra) {
m_nra = alloc(nra::solver, *m_solver.get(), m.limit(), ctx().get_params());
for (unsigned i = 0; i < m_scopes.size(); ++i) {
m_nra->push();
}
}
}
void found_not_handled(expr* n) {
m_not_handled = n;
if (is_app(n) && is_underspecified(to_app(n))) {
@ -456,7 +469,8 @@ namespace smt {
}
TRACE("arith", tout << mk_pp(t, m) << "\n";);
if (!_has_var) {
m_solver->add_monomial(get_var_index(v), vars);
ensure_nra();
m_nra->add_monomial(get_var_index(v), vars.size(), vars.c_ptr());
}
}
@ -711,7 +725,8 @@ namespace smt {
m_num_conflicts(0),
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
m_solver(0),
m_resource_limit(*this) {
m_resource_limit(*this),
m_use_nra_model(false) {
}
~imp() {
@ -868,6 +883,7 @@ namespace smt {
s.m_underspecified_lim = m_underspecified.size();
s.m_var_trail_lim = m_var_trail.size();
if (!m_delay_constraints) m_solver->push();
if (m_nra) m_nra->push();
}
void pop_scope_eh(unsigned num_scopes) {
@ -900,6 +916,7 @@ namespace smt {
// VERIFY(l_false != make_feasible());
m_new_bounds.reset();
m_to_check.reset();
if (m_nra) m_nra->pop(num_scopes);
TRACE("arith", tout << "num scopes: " << num_scopes << " new scope level: " << m_scopes.size() << "\n";);
}
@ -1272,21 +1289,23 @@ namespace smt {
}
lbool check_nra() {
m_use_nra_model = false;
if (m.canceled()) return l_undef;
// return l_true;
// TBD:
switch (m_solver->check_nra(m_variable_values, m_explanation)) {
case lean::final_check_status::DONE:
return l_true;
case lean::final_check_status::CONTINUE:
return l_true; // ?? why have a continue at this level ??
case lean::final_check_status::UNSAT:
if (!m_nra) return l_true;
if (!m_nra->need_check()) return l_true;
lbool r = m_nra->check(m_explanation);
switch (r) {
case l_false:
set_conflict1();
return l_false;
case lean::final_check_status::GIVEUP:
return l_undef;
break;
case l_true:
m_use_nra_model = true;
// TBD: check equalities
break;
default:
break;
}
return l_true;
return r;
}
/**
@ -2355,9 +2374,16 @@ namespace smt {
model_value_proc * mk_value(enode * n, model_generator & mg) {
theory_var v = n->get_th_var(get_id());
expr* o = n->get_owner();
rational r = get_value(v);
if (a.is_int(o) && !r.is_int()) r = floor(r);
return alloc(expr_wrapper_proc, m_factory->mk_value(r, m.get_sort(o)));
if (m_use_nra_model) {
SASSERT(m_nra);
app* e = a.mk_numeral(m_nra->value(m_theory_var2var_index[v]), a.is_int(o));
return alloc(expr_wrapper_proc, e);
}
else {
rational r = get_value(v);
if (a.is_int(o) && !r.is_int()) r = floor(r);
return alloc(expr_wrapper_proc, m_factory->mk_value(r, m.get_sort(o)));
}
}
bool get_value(enode* n, expr_ref& r) {

View file

@ -32,7 +32,6 @@ lar_solver::lar_solver() : m_status(OPTIMAL),
m_terms_start_index(1000000),
m_mpq_lar_core_solver(m_settings, *this)
{
m_nra = alloc(nra::solver, *this);
}
void lar_solver::set_propagate_bounds_on_pivoted_rows_mode(bool v) {
@ -332,7 +331,6 @@ void lar_solver::push() {
m_term_count.push();
m_constraint_count = m_constraints.size();
m_constraint_count.push();
m_nra->push();
}
void lar_solver::clean_large_elements_after_pop(unsigned n, int_set& set) {
@ -388,7 +386,6 @@ void lar_solver::pop(unsigned k) {
m_settings.simplex_strategy() = m_simplex_strategy;
lean_assert(sizes_are_correct());
lean_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
m_nra->pop(k);
}
vector<constraint_index> lar_solver::get_all_constraint_indices() const {
@ -1088,13 +1085,6 @@ void lar_solver::get_infeasibility_explanation(vector<std::pair<mpq, constraint_
lean_assert(explanation_is_correct(explanation));
}
final_check_status lar_solver::check_nra(nra_model_t& model, explanation_t& explanation) {
return m_nra->check(model, explanation);
}
void lar_solver::add_monomial(var_index v, svector<var_index> const& vars) {
m_nra->add_monomial(v, vars.size(), vars.c_ptr());
}
void lar_solver::get_infeasibility_explanation_for_inf_sign(

View file

@ -31,7 +31,6 @@
#include "util/lp/quick_xplain.h"
#include "util/lp/conversion_helper.h"
#include "util/lp/int_solver.h"
#include "util/lp/nra_solver.h"
namespace lean {
@ -64,7 +63,6 @@ class lar_solver : public column_namer {
vector<lar_term*> m_terms;
const var_index m_terms_start_index;
indexed_vector<mpq> m_column_buffer;
scoped_ptr<nra::solver> m_nra;
public:
lar_core_solver m_mpq_lar_core_solver;
unsigned constraint_count() const;
@ -204,8 +202,6 @@ public:
lp_status find_feasible_solution();
final_check_status check_nra(nra_model_t& model, explanation_t& explanation);
void add_monomial(var_index v, svector<var_index> const& vars);
lp_status solve();

View file

@ -26,8 +26,6 @@ enum class final_check_status {
typedef vector<std::pair<mpq, constraint_index>> explanation_t;
typedef std::unordered_map<lean::var_index, rational> nra_model_t;
enum class column_type {
free_column = 0,

View file

@ -16,9 +16,10 @@ namespace nra {
struct solver::imp {
lean::lar_solver& s;
reslimit m_limit; // TBD: extract from lar_solver
params_ref m_params; // TBD: pass from outside
reslimit& m_limit; // TBD: extract from lar_solver
params_ref m_params; // TBD: pass from outside
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
nlsat::solver m_nlsat;
struct mon_eq {
mon_eq(lean::var_index v, unsigned sz, lean::var_index const* vs):
@ -31,23 +32,15 @@ namespace nra {
unsigned_vector m_lim;
mutable std::unordered_map<lean::var_index, rational> m_variable_values; // current model
imp(lean::lar_solver& s):
s(s) {
imp(lean::lar_solver& s, reslimit& lim, params_ref const& p):
s(s),
m_limit(lim),
m_params(p),
m_nlsat(m_limit, m_params) {
}
lean::final_check_status check_feasible(lean::nra_model_t& m, lean::explanation_t& ex) {
if (m_monomials.empty()) {
return lean::final_check_status::DONE;
}
if (check_assignments()) {
return lean::final_check_status::DONE;
}
switch (check_nlsat(m, ex)) {
case l_undef: return lean::final_check_status::GIVEUP;
case l_true: return lean::final_check_status::DONE;
case l_false: return lean::final_check_status::UNSAT;
}
return lean::final_check_status::DONE;
bool need_check() {
return !m_monomials.empty() && !check_assignments();
}
void add(lean::var_index v, unsigned sz, lean::var_index const* vs) {
@ -97,71 +90,51 @@ namespace nra {
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
*/
lbool check_nlsat(lean::nra_model_t& model, lean::explanation_t& ex) {
nlsat::solver solver(m_limit, m_params);
lbool check(lean::explanation_t& ex) {
SASSERT(need_check());
m_nlsat.reset();
m_lp2nl.reset();
vector<nlsat::assumption, false> core;
// add linear inequalities from lra_solver
for (unsigned i = 0; i < s.constraint_count(); ++i) {
add_constraint(solver, i);
add_constraint(i);
}
// add polynomial definitions.
for (auto const& m : m_monomials) {
add_monomial_eq(solver, m);
add_monomial_eq(m);
}
// TBD: add variable bounds?
lbool r = solver.check();
TRACE("arith", solver.display(tout << r << "\n"););
lbool r = m_nlsat.check();
TRACE("arith", m_nlsat.display(tout << r << "\n"););
switch (r) {
case l_true: {
nlsat::anum_manager& am = solver.am();
model.clear();
for (auto kv : m_lp2nl) {
kv.m_key;
nlsat::anum const& v = solver.value(kv.m_value);
if (is_int(kv.m_key) && !am.is_int(v)) {
// the nlsat solver should already have returned unknown.
TRACE("lp", tout << "Value is not integer " << kv.m_key << "\n";);
return l_undef;
}
if (!am.is_rational(v)) {
// TBD extract and convert model.
TRACE("lp", tout << "Cannot handle algebraic numbers\n";);
return l_undef;
}
rational r;
am.to_rational(v, r);
model[kv.m_key] = r;
}
case l_true:
break;
}
case l_false: {
case l_false:
ex.reset();
vector<nlsat::assumption, false> core;
solver.get_core(core);
m_nlsat.get_core(core);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
ex.push_back(std::pair<rational, unsigned>(rational(1), idx));
TRACE("arith", tout << "ex: " << idx << "\n";);
}
break;
}
case l_undef:
break;
}
return r;
}
void add_monomial_eq(nlsat::solver& solver, mon_eq const& m) {
polynomial::manager& pm = solver.pm();
void add_monomial_eq(mon_eq const& m) {
polynomial::manager& pm = m_nlsat.pm();
svector<polynomial::var> vars;
for (auto v : m.m_vs) {
vars.push_back(lp2nl(solver, v));
vars.push_back(lp2nl(v));
}
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(solver, m.m_v), 1), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.m_v), 1), pm);
polynomial::monomial* mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
@ -169,13 +142,13 @@ namespace nra {
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls), pm);
polynomial::polynomial* ps[1] = { p };
bool even[1] = { false };
nlsat::literal lit = solver.mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
solver.mk_clause(1, &lit, 0);
nlsat::literal lit = m_nlsat.mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
m_nlsat.mk_clause(1, &lit, 0);
}
void add_constraint(nlsat::solver& solver, unsigned idx) {
void add_constraint(unsigned idx) {
auto& c = s.get_constraint(idx);
auto& pm = solver.pm();
auto& pm = m_nlsat.pm();
auto k = c.m_kind;
auto rhs = c.m_right_side;
auto lhs = c.get_left_side_coefficients();
@ -183,7 +156,7 @@ namespace nra {
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto kv : lhs) {
vars.push_back(lp2nl(solver, kv.second));
vars.push_back(lp2nl(kv.second));
den = lcm(den, denominator(kv.first));
}
vector<rational> coeffs;
@ -197,24 +170,24 @@ namespace nra {
nlsat::literal lit;
switch (k) {
case lean::lconstraint_kind::LE:
lit = ~solver.mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
lit = ~m_nlsat.mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lean::lconstraint_kind::GE:
lit = ~solver.mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
lit = ~m_nlsat.mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lean::lconstraint_kind::LT:
lit = solver.mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
lit = m_nlsat.mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lean::lconstraint_kind::GT:
lit = solver.mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
lit = m_nlsat.mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lean::lconstraint_kind::EQ:
lit = solver.mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
lit = m_nlsat.mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
}
nlsat::assumption a = this + idx;
solver.mk_clause(1, &lit, a);
m_nlsat.mk_clause(1, &lit, a);
}
bool is_int(lean::var_index v) {
@ -222,15 +195,20 @@ namespace nra {
return false;
}
polynomial::var lp2nl(nlsat::solver& solver, lean::var_index v) {
polynomial::var lp2nl(lean::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = solver.mk_var(is_int(v));
r = m_nlsat.mk_var(is_int(v));
m_lp2nl.insert(v, r);
}
return r;
}
nlsat::anum const& value(lean::var_index v) const {
return m_nlsat.value(m_lp2nl.find(v));
}
std::ostream& display(std::ostream& out) const {
for (auto m : m_monomials) {
out << "v" << m.m_v << " = ";
@ -244,8 +222,8 @@ namespace nra {
};
solver::solver(lean::lar_solver& s) {
m_imp = alloc(imp, s);
solver::solver(lean::lar_solver& s, reslimit& lim, params_ref const& p) {
m_imp = alloc(imp, s, lim, p);
}
solver::~solver() {
@ -256,8 +234,12 @@ namespace nra {
m_imp->add(v, sz, vs);
}
lean::final_check_status solver::check(lean::nra_model_t& m, lean::explanation_t& ex) {
return m_imp->check_feasible(m, ex);
lbool solver::check(lean::explanation_t& ex) {
return m_imp->check(ex);
}
bool solver::need_check() {
return m_imp->need_check();
}
void solver::push() {
@ -272,4 +254,8 @@ namespace nra {
return m_imp->display(out);
}
nlsat::anum const& solver::value(lean::var_index v) const {
return m_imp->value(v);
}
}

View file

@ -6,20 +6,26 @@
#pragma once
#include "util/vector.h"
#include "util/lp/lp_settings.h"
#include "util/rlimit.h"
#include "util/params.h"
#include "nlsat/nlsat_solver.h"
namespace lean {
class lar_solver;
}
namespace nra {
typedef std::unordered_map<lean::var_index, rational> nra_model_t;
class solver {
struct imp;
imp* m_imp;
public:
solver(lean::lar_solver& s);
solver(lean::lar_solver& s, reslimit& lim, params_ref const& p = params_ref());
~solver();
@ -33,7 +39,17 @@ namespace nra {
\brief Check feasiblity of linear constraints augmented by polynomial definitions
that are added.
*/
lean::final_check_status check(lean::nra_model_t& m, lean::explanation_t& ex);
lbool check(lean::explanation_t& ex);
/*
\brief determine whether nra check is needed.
*/
bool need_check();
/*
\brief Access model.
*/
nlsat::anum const& value(lean::var_index v) const;
/*
\brief push and pop scope.
@ -47,5 +63,6 @@ namespace nra {
\brief display state
*/
std::ostream& display(std::ostream& out) const;
};
}