3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 20:05:51 +00:00

overhaul of proof format for new solver

This commit overhauls the proof format (in development) for the new core.

NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.

It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):

- assume  - for input clauses
- learn   - when a clause is learned (or redundant clause is added)
- del     - when a clause is deleted.

The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.

Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.

Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```

Run z3 on a file with above content.
Then run z3 on f.proof

```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
This commit is contained in:
Nikolaj Bjorner 2022-08-28 17:44:33 -07:00
parent 9922c766b9
commit e2f4fc2307
37 changed files with 809 additions and 1078 deletions

View file

@ -360,19 +360,7 @@ namespace q {
void solver::log_instantiation(unsigned n, sat::literal const* lits, justification* j) {
TRACE("q", for (unsigned i = 0; i < n; ++i) tout << literal2expr(lits[i]) << "\n";);
if (get_config().m_instantiations2console) {
ctx.visit_clause(n, lits);
if (j) {
for (unsigned i = 0; i < j->m_clause.num_decls(); ++i)
ctx.visit_expr(j->m_binding[i]->get_expr());
std::cout << "; (instantiation";
for (unsigned i = 0; i < j->m_clause.num_decls(); ++i) {
std::cout << " ";
ctx.display_expr(j->m_binding[i]->get_expr());
}
std::cout << ")\n";
}
ctx.display_clause(n, lits);
ctx.on_instantiation(n, lits, j ? j->m_clause.num_decls() : 0, j ? j->m_binding : nullptr);
}
}
}