3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 19:35:50 +00:00

overhaul of proof format for new solver

This commit overhauls the proof format (in development) for the new core.

NOTE: this functionality is work in progress with a long way to go.
It is shielded by the sat.euf option, which is off by default and in pre-release state.
It is too early to fuzz or use it. It is pushed into master to shed light on road-map for certifying inferences of sat.euf.

It retires the ad-hoc extension of DRUP used by the SAT solver.
Instead it relies on SMT with ad-hoc extensions for proof terms.
It adds the following commands (consumed by proof_cmds.cpp):

- assume  - for input clauses
- learn   - when a clause is learned (or redundant clause is added)
- del     - when a clause is deleted.

The commands take a list of expressions of type Bool and the
last argument can optionally be of type Proof.
When the last argument is of type Proof it is provided as a hint
to justify the learned clause.

Proof hints can be checked using a self-contained proof
checker. The sat/smt/euf_proof_checker.h class provides
a plugin dispatcher for checkers.
It is instantiated with a checker for arithmetic lemmas,
so far for Farkas proofs.

Use example:
```
(set-option :sat.euf true)
(set-option :tactic.default_tactic smt)
(set-option :sat.smt.proof f.proof)
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const u Int)
(assert (< x y))
(assert (< y z))
(assert (< z x))
(check-sat)
```

Run z3 on a file with above content.
Then run z3 on f.proof

```
(verified-smt)
(verified-smt)
(verified-smt)
(verified-farkas)
(verified-smt)
```
This commit is contained in:
Nikolaj Bjorner 2022-08-28 17:44:33 -07:00
parent 9922c766b9
commit e2f4fc2307
37 changed files with 809 additions and 1078 deletions

View file

@ -15,6 +15,8 @@ Author:
--*/
#include "ast/ast_util.h"
#include "ast/scoped_proof.h"
#include "sat/smt/euf_solver.h"
#include "sat/smt/arith_solver.h"
@ -81,7 +83,6 @@ namespace arith {
}
void solver::explain_assumptions() {
m_arith_hint.reset();
unsigned i = 0;
for (auto const & ev : m_explanation) {
++i;
@ -91,14 +92,12 @@ namespace arith {
switch (m_constraint_sources[idx]) {
case inequality_source: {
literal lit = m_inequalities[idx];
m_arith_hint.m_literals.push_back({ev.coeff(), lit});
m_arith_hint.add_lit(ev.coeff(), lit);
break;
}
case equality_source: {
auto [u, v] = m_equalities[idx];
ctx.drat_log_expr(u->get_expr());
ctx.drat_log_expr(v->get_expr());
m_arith_hint.m_eqs.push_back({u->get_expr_id(), v->get_expr_id()});
m_arith_hint.add_eq(u, v);
break;
}
default:
@ -115,22 +114,65 @@ namespace arith {
* such that there is a r >= 1
* (r1*a1+..+r_k*a_k) = r*a, (r1*b1+..+r_k*b_k) <= r*b
*/
sat::proof_hint const* solver::explain(sat::hint_type ty, sat::literal lit) {
arith_proof_hint const* solver::explain(hint_type ty, sat::literal lit) {
if (!ctx.use_drat())
return nullptr;
m_arith_hint.m_ty = ty;
m_arith_hint.set_type(ctx, ty);
explain_assumptions();
if (lit != sat::null_literal)
m_arith_hint.m_literals.push_back({rational(1), ~lit});
return &m_arith_hint;
m_arith_hint.add_lit(rational(1), ~lit);
return m_arith_hint.mk(ctx);
}
sat::proof_hint const* solver::explain_implied_eq(euf::enode* a, euf::enode* b) {
arith_proof_hint const* solver::explain_implied_eq(euf::enode* a, euf::enode* b) {
if (!ctx.use_drat())
return nullptr;
m_arith_hint.m_ty = sat::hint_type::implied_eq_h;
m_arith_hint.set_type(ctx, hint_type::implied_eq_h);
explain_assumptions();
m_arith_hint.m_diseqs.push_back({a->get_expr_id(), b->get_expr_id()});
return &m_arith_hint;
m_arith_hint.add_diseq(a, b);
return m_arith_hint.mk(ctx);
}
expr* arith_proof_hint::get_hint(euf::solver& s) const {
ast_manager& m = s.get_manager();
family_id fid = m.get_family_id("arith");
arith_util arith(m);
solver& a = dynamic_cast<solver&>(*s.fid2solver(fid));
char const* name;
switch (m_ty) {
case hint_type::farkas_h:
name = "farkas";
break;
case hint_type::bound_h:
name = "bound";
break;
case hint_type::implied_eq_h:
name = "implied-eq";
break;
}
rational lc(1);
for (unsigned i = m_lit_head; i < m_lit_tail; ++i)
lc = lcm(lc, denominator(a.m_arith_hint.lit(i).first));
expr_ref_vector args(m);
sort_ref_vector sorts(m);
for (unsigned i = m_lit_head; i < m_lit_tail; ++i) {
auto const& [coeff, lit] = a.m_arith_hint.lit(i);
args.push_back(arith.mk_int(coeff*lc));
args.push_back(s.literal2expr(lit));
}
for (unsigned i = m_eq_head; i < m_eq_tail; ++i) {
auto const& [a, b, is_eq] = a.m_arith_hint.eq(i);
expr_ref eq(m.mk_eq(a->get_expr(), b->get_expr()), m);
if (!is_eq) eq = m.mk_not(eq);
args.push_back(arith.mk_int(lc));
args.push_back(eq);
}
for (expr* a : args)
sorts.push_back(a->get_sort());
sort* range = m.mk_proof_sort();
func_decl* d = m.mk_func_decl(symbol(name), args.size(), sorts.data(), range);
expr* r = m.mk_app(d, args);
return r;
}
}