mirror of
https://github.com/Z3Prover/z3
synced 2025-04-29 20:05:51 +00:00
weed out some bugs, add more bv op support in intblast and polysat solvers
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
01e5d2dbf1
commit
e251b5e9d0
6 changed files with 132 additions and 63 deletions
|
@ -139,20 +139,21 @@ namespace polysat {
|
|||
case OP_ZERO_EXT: internalize_zero_extend(a); break;
|
||||
case OP_SIGN_EXT: internalize_sign_extend(a); break;
|
||||
|
||||
// polysat::solver should also support at least:
|
||||
case OP_BSREM:
|
||||
case OP_BSREM_I:
|
||||
case OP_BSMOD:
|
||||
case OP_BSMOD_I:
|
||||
case OP_BSDIV:
|
||||
case OP_BSDIV_I:
|
||||
expr2pdd(a);
|
||||
m_delayed_axioms.push_back(a);
|
||||
ctx.push(push_back_vector(m_delayed_axioms));
|
||||
break;
|
||||
|
||||
case OP_BREDAND: // x == 2^K - 1 unary, return single bit, 1 if all input bits are set.
|
||||
case OP_BREDOR: // x > 0 unary, return single bit, 1 if at least one input bit is set.
|
||||
case OP_BCOMP: // x == y binary, return single bit, 1 if the arguments are equal.
|
||||
case OP_BSDIV:
|
||||
case OP_BSREM:
|
||||
case OP_BSMOD:
|
||||
case OP_BSDIV_I:
|
||||
case OP_BSREM_I:
|
||||
case OP_BSMOD_I:
|
||||
|
||||
IF_VERBOSE(0, verbose_stream() << mk_pp(a, m) << "\n");
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return;
|
||||
default:
|
||||
IF_VERBOSE(0, verbose_stream() << mk_pp(a, m) << "\n");
|
||||
NOT_IMPLEMENTED_YET();
|
||||
|
@ -263,7 +264,94 @@ namespace polysat {
|
|||
expr* x, * y;
|
||||
VERIFY(bv.is_bv_shl(n, x, y));
|
||||
m_core.shl(expr2pdd(x), expr2pdd(y), expr2pdd(n));
|
||||
}
|
||||
}
|
||||
|
||||
bool solver::propagate_delayed_axioms() {
|
||||
if (m_delayed_axioms_qhead == m_delayed_axioms.size())
|
||||
return false;
|
||||
ctx.push(value_trail(m_delayed_axioms_qhead));
|
||||
for (; m_delayed_axioms_qhead < m_delayed_axioms.size() && !inconsistent(); ++m_delayed_axioms_qhead) {
|
||||
app* e = m_delayed_axioms[m_delayed_axioms_qhead];
|
||||
expr* x, *y;
|
||||
if (bv.is_bv_sdiv(e, x, y))
|
||||
axiomatize_sdiv(e, x, y);
|
||||
else if (bv.is_bv_sdivi(e, x, y))
|
||||
axiomatize_sdiv(e, x, y);
|
||||
else if (bv.is_bv_srem(e, x, y))
|
||||
axiomatize_srem(e, x, y);
|
||||
else if (bv.is_bv_sremi(e, x, y))
|
||||
axiomatize_srem(e, x, y);
|
||||
else if (bv.is_bv_smod(e, x, y))
|
||||
axiomatize_smod(e, x, y);
|
||||
else if (bv.is_bv_smodi(e, x, y))
|
||||
axiomatize_smod(e, x, y);
|
||||
else
|
||||
UNREACHABLE();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// y = 0 -> x
|
||||
// else x - sdiv(x, y) * y
|
||||
void solver::axiomatize_srem(app* e, expr* x, expr* y) {
|
||||
unsigned sz = bv.get_bv_size(x);
|
||||
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
|
||||
add_clause(~y_eq0, eq_internalize(e, x));
|
||||
add_clause(y_eq0, eq_internalize(e, bv.mk_bv_mul(bv.mk_bv_sdiv(x, y), y)));
|
||||
}
|
||||
|
||||
// u := umod(x, y)
|
||||
// u = 0 -> 0
|
||||
// y = 0 -> x
|
||||
// x < 0, y < 0 -> -u
|
||||
// x < 0, y >= 0 -> y - u
|
||||
// x >= 0, y < 0 -> y + u
|
||||
// x >= 0, y >= 0 -> u
|
||||
void solver::axiomatize_smod(app* e, expr* x, expr* y) {
|
||||
unsigned sz = bv.get_bv_size(x);
|
||||
expr* u = bv.mk_bv_urem(x, y);
|
||||
rational N = rational::power_of_two(bv.get_bv_size(x));
|
||||
expr* signx = bv.mk_ule(bv.mk_numeral(N / 2, sz), x);
|
||||
expr* signy = bv.mk_ule(bv.mk_numeral(N / 2, sz), y);
|
||||
sat::literal lsignx = mk_literal(signx);
|
||||
sat::literal lsigny = mk_literal(signy);
|
||||
sat::literal u_eq0 = eq_internalize(u, bv.mk_zero(sz));
|
||||
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
|
||||
add_clause(~u_eq0, eq_internalize(e, bv.mk_zero(sz)));
|
||||
add_clause(u_eq0, ~y_eq0, eq_internalize(e, x));
|
||||
add_clause(~lsignx, ~lsigny, eq_internalize(e, bv.mk_bv_neg(u)));
|
||||
add_clause(y_eq0, ~lsignx, lsigny, eq_internalize(e, bv.mk_bv_sub(y, u)));
|
||||
add_clause(y_eq0, lsignx, ~lsigny, eq_internalize(e, bv.mk_bv_add(y, u)));
|
||||
add_clause(y_eq0, lsignx, lsigny, eq_internalize(e, u));
|
||||
}
|
||||
|
||||
|
||||
// d = udiv(abs(x), abs(y))
|
||||
// y = 0, x > 0 -> 1
|
||||
// y = 0, x <= 0 -> -1
|
||||
// x = 0, y != 0 -> 0
|
||||
// x > 0, y < 0 -> -d
|
||||
// x < 0, y > 0 -> -d
|
||||
// x > 0, y > 0 -> d
|
||||
// x < 0, y < 0 -> d
|
||||
void solver::axiomatize_sdiv(app* e, expr* x, expr* y) {
|
||||
unsigned sz = bv.get_bv_size(x);
|
||||
rational N = rational::power_of_two(bv.get_bv_size(x));
|
||||
expr* signx = bv.mk_ule(bv.mk_numeral(N/2, sz), x);
|
||||
expr* signy = bv.mk_ule(bv.mk_numeral(N/2, sz), y);
|
||||
expr* absx = m.mk_ite(signx, bv.mk_bv_sub(bv.mk_numeral(N-1, sz), x), x);
|
||||
expr* absy = m.mk_ite(signy, bv.mk_bv_sub(bv.mk_numeral(N-1, sz), y), y);
|
||||
expr* d = bv.mk_bv_udiv(absx, absy);
|
||||
sat::literal lsignx = mk_literal(signx);
|
||||
sat::literal lsigny = mk_literal(signy);
|
||||
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
|
||||
add_clause(~y_eq0, ~lsignx, eq_internalize(e, bv.mk_numeral(1, sz)));
|
||||
add_clause(~y_eq0, lsignx, eq_internalize(e, bv.mk_numeral(N-1, sz)));
|
||||
add_clause(y_eq0, lsignx, ~lsigny, eq_internalize(e, bv.mk_bv_neg(d)));
|
||||
add_clause(y_eq0, ~lsignx, lsigny, eq_internalize(e, bv.mk_bv_neg(d)));
|
||||
add_clause(y_eq0, lsignx, lsigny, eq_internalize(e, d));
|
||||
add_clause(y_eq0, ~lsignx, ~lsigny, eq_internalize(e, d));
|
||||
}
|
||||
|
||||
void solver::internalize_urem_i(app* rem) {
|
||||
expr* x, *y;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue