3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

weed out some bugs, add more bv op support in intblast and polysat solvers

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2023-12-14 10:35:13 -08:00
parent 01e5d2dbf1
commit e251b5e9d0
6 changed files with 132 additions and 63 deletions

View file

@ -140,14 +140,14 @@ namespace polysat {
for (; i < sz && j < 2; ++i)
if (!is_assigned(vars[i]))
std::swap(vars[i], vars[j++]);
sc.set_num_watch(i);
if (i > 0)
sc.set_num_watch(j);
if (j > 0)
add_watch(idx, vars[0]);
if (i > 1)
if (j > 1)
add_watch(idx, vars[1]);
IF_VERBOSE(10, verbose_stream() << "add watch " << sc << " " << vars << " ";
if (vars.size() > 0) verbose_stream() << "( " << idx << " : " << m_watch[vars[0]] << ") ";
if (vars.size() > 1) verbose_stream() << "( " << idx << " : " << m_watch[vars[1]] << ") ";
if (j > 0) verbose_stream() << "( " << idx << " : " << m_watch[vars[0]] << ") ";
if (j > 1) verbose_stream() << "( " << idx << " : " << m_watch[vars[1]] << ") ";
verbose_stream() << "\n");
s.trail().push(mk_add_watch(*this));
return idx;
@ -227,7 +227,6 @@ namespace polysat {
m_assignment.push(v , value);
s.trail().push(mk_assign_var(v, *this));
return;
// update the watch lists for pvars
// remove constraints from m_watch[v] that have more than 2 free variables.
// for entries where there is only one free variable left add to viable set
@ -242,7 +241,7 @@ namespace polysat {
bool swapped = false;
for (unsigned i = vars.size(); i-- > 2; ) {
if (!is_assigned(vars[i])) {
verbose_stream() << "watch instead " << idx << " " << vars[i] << "instead of " << vars[0] << "\n";
verbose_stream() << "watch instead " << vars[i] << " instead of " << vars[0] << " for " << idx << "\n";
add_watch(idx, vars[i]);
std::swap(vars[i], vars[0]);
swapped = true;

View file

@ -59,24 +59,6 @@ namespace polysat {
return out << "v" << d.eq().first << " == v" << d.eq().second << "@" << d.level();
}
struct trailing_bits {
unsigned length;
rational bits;
bool positive;
unsigned src_idx;
};
struct leading_bits {
unsigned length;
bool positive; // either all 0 or all 1
unsigned src_idx;
};
struct single_bit {
bool positive;
unsigned position;
unsigned src_idx;
};
struct fixed_bits {
unsigned hi = 0;

View file

@ -33,6 +33,26 @@ namespace polysat {
resource_out,
};
struct trailing_bits {
unsigned length;
rational bits;
bool positive;
unsigned src_idx;
};
struct leading_bits {
unsigned length;
bool positive; // either all 0 or all 1
unsigned src_idx;
};
struct single_bit {
bool positive;
unsigned position;
unsigned src_idx;
};
class core;
class constraints;

View file

@ -139,20 +139,21 @@ namespace polysat {
case OP_ZERO_EXT: internalize_zero_extend(a); break;
case OP_SIGN_EXT: internalize_sign_extend(a); break;
// polysat::solver should also support at least:
case OP_BSREM:
case OP_BSREM_I:
case OP_BSMOD:
case OP_BSMOD_I:
case OP_BSDIV:
case OP_BSDIV_I:
expr2pdd(a);
m_delayed_axioms.push_back(a);
ctx.push(push_back_vector(m_delayed_axioms));
break;
case OP_BREDAND: // x == 2^K - 1 unary, return single bit, 1 if all input bits are set.
case OP_BREDOR: // x > 0 unary, return single bit, 1 if at least one input bit is set.
case OP_BCOMP: // x == y binary, return single bit, 1 if the arguments are equal.
case OP_BSDIV:
case OP_BSREM:
case OP_BSMOD:
case OP_BSDIV_I:
case OP_BSREM_I:
case OP_BSMOD_I:
IF_VERBOSE(0, verbose_stream() << mk_pp(a, m) << "\n");
NOT_IMPLEMENTED_YET();
return;
default:
IF_VERBOSE(0, verbose_stream() << mk_pp(a, m) << "\n");
NOT_IMPLEMENTED_YET();
@ -263,7 +264,94 @@ namespace polysat {
expr* x, * y;
VERIFY(bv.is_bv_shl(n, x, y));
m_core.shl(expr2pdd(x), expr2pdd(y), expr2pdd(n));
}
}
bool solver::propagate_delayed_axioms() {
if (m_delayed_axioms_qhead == m_delayed_axioms.size())
return false;
ctx.push(value_trail(m_delayed_axioms_qhead));
for (; m_delayed_axioms_qhead < m_delayed_axioms.size() && !inconsistent(); ++m_delayed_axioms_qhead) {
app* e = m_delayed_axioms[m_delayed_axioms_qhead];
expr* x, *y;
if (bv.is_bv_sdiv(e, x, y))
axiomatize_sdiv(e, x, y);
else if (bv.is_bv_sdivi(e, x, y))
axiomatize_sdiv(e, x, y);
else if (bv.is_bv_srem(e, x, y))
axiomatize_srem(e, x, y);
else if (bv.is_bv_sremi(e, x, y))
axiomatize_srem(e, x, y);
else if (bv.is_bv_smod(e, x, y))
axiomatize_smod(e, x, y);
else if (bv.is_bv_smodi(e, x, y))
axiomatize_smod(e, x, y);
else
UNREACHABLE();
}
return true;
}
// y = 0 -> x
// else x - sdiv(x, y) * y
void solver::axiomatize_srem(app* e, expr* x, expr* y) {
unsigned sz = bv.get_bv_size(x);
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
add_clause(~y_eq0, eq_internalize(e, x));
add_clause(y_eq0, eq_internalize(e, bv.mk_bv_mul(bv.mk_bv_sdiv(x, y), y)));
}
// u := umod(x, y)
// u = 0 -> 0
// y = 0 -> x
// x < 0, y < 0 -> -u
// x < 0, y >= 0 -> y - u
// x >= 0, y < 0 -> y + u
// x >= 0, y >= 0 -> u
void solver::axiomatize_smod(app* e, expr* x, expr* y) {
unsigned sz = bv.get_bv_size(x);
expr* u = bv.mk_bv_urem(x, y);
rational N = rational::power_of_two(bv.get_bv_size(x));
expr* signx = bv.mk_ule(bv.mk_numeral(N / 2, sz), x);
expr* signy = bv.mk_ule(bv.mk_numeral(N / 2, sz), y);
sat::literal lsignx = mk_literal(signx);
sat::literal lsigny = mk_literal(signy);
sat::literal u_eq0 = eq_internalize(u, bv.mk_zero(sz));
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
add_clause(~u_eq0, eq_internalize(e, bv.mk_zero(sz)));
add_clause(u_eq0, ~y_eq0, eq_internalize(e, x));
add_clause(~lsignx, ~lsigny, eq_internalize(e, bv.mk_bv_neg(u)));
add_clause(y_eq0, ~lsignx, lsigny, eq_internalize(e, bv.mk_bv_sub(y, u)));
add_clause(y_eq0, lsignx, ~lsigny, eq_internalize(e, bv.mk_bv_add(y, u)));
add_clause(y_eq0, lsignx, lsigny, eq_internalize(e, u));
}
// d = udiv(abs(x), abs(y))
// y = 0, x > 0 -> 1
// y = 0, x <= 0 -> -1
// x = 0, y != 0 -> 0
// x > 0, y < 0 -> -d
// x < 0, y > 0 -> -d
// x > 0, y > 0 -> d
// x < 0, y < 0 -> d
void solver::axiomatize_sdiv(app* e, expr* x, expr* y) {
unsigned sz = bv.get_bv_size(x);
rational N = rational::power_of_two(bv.get_bv_size(x));
expr* signx = bv.mk_ule(bv.mk_numeral(N/2, sz), x);
expr* signy = bv.mk_ule(bv.mk_numeral(N/2, sz), y);
expr* absx = m.mk_ite(signx, bv.mk_bv_sub(bv.mk_numeral(N-1, sz), x), x);
expr* absy = m.mk_ite(signy, bv.mk_bv_sub(bv.mk_numeral(N-1, sz), y), y);
expr* d = bv.mk_bv_udiv(absx, absy);
sat::literal lsignx = mk_literal(signx);
sat::literal lsigny = mk_literal(signy);
sat::literal y_eq0 = eq_internalize(y, bv.mk_zero(sz));
add_clause(~y_eq0, ~lsignx, eq_internalize(e, bv.mk_numeral(1, sz)));
add_clause(~y_eq0, lsignx, eq_internalize(e, bv.mk_numeral(N-1, sz)));
add_clause(y_eq0, lsignx, ~lsigny, eq_internalize(e, bv.mk_bv_neg(d)));
add_clause(y_eq0, ~lsignx, lsigny, eq_internalize(e, bv.mk_bv_neg(d)));
add_clause(y_eq0, lsignx, lsigny, eq_internalize(e, d));
add_clause(y_eq0, ~lsignx, ~lsigny, eq_internalize(e, d));
}
void solver::internalize_urem_i(app* rem) {
expr* x, *y;

View file

@ -52,7 +52,7 @@ namespace polysat {
}
bool solver::unit_propagate() {
return m_core.propagate();
return m_core.propagate() || propagate_delayed_axioms();
}
sat::check_result solver::check() {
@ -266,32 +266,6 @@ namespace polysat {
void solver::add_polysat_clause(char const* name, core_vector cs, bool is_redundant) {
sat::literal_vector lits;
signed_constraint sc;
unsigned constraint_count = 0;
for (auto e : cs) {
if (std::holds_alternative<signed_constraint>(e)) {
sc = *std::get_if<signed_constraint>(&e);
constraint_count++;
}
}
if (constraint_count == 1) {
auto lit = ctx.mk_literal(constraint2expr(sc));
svector<euf::enode_pair> eqs;
for (auto e : cs) {
if (std::holds_alternative<dependency>(e)) {
auto d = *std::get_if<dependency>(&e);
if (d.is_literal())
lits.push_back(d.literal());
else if (d.is_eq()) {
auto [v1, v2] = d.eq();
eqs.push_back({ var2enode(v1), var2enode(v2) });
}
}
}
ctx.propagate(lit, euf::th_explain::propagate(*this, lits, eqs, lit, nullptr));
return;
}
for (auto e : cs) {
if (std::holds_alternative<dependency>(e)) {
auto d = *std::get_if<dependency>(&e);

View file

@ -130,6 +130,12 @@ namespace polysat {
void internalize_udiv_i(app* e);
void internalize_urem_i(app* e);
void internalize_div_rem(app* e, bool is_div);
void axiomatize_srem(app* e, expr* x, expr* y);
void axiomatize_smod(app* e, expr* x, expr* y);
void axiomatize_sdiv(app* e, expr* x, expr* y);
unsigned m_delayed_axioms_qhead = 0;
ptr_vector<app> m_delayed_axioms;
bool propagate_delayed_axioms();
void internalize_polysat(app* a);
void assert_bv2int_axiom(app * n);
void assert_int2bv_axiom(app* n);