diff --git a/PARALLEL_PROJECT_NOTES.md b/PARALLEL_PROJECT_NOTES.md deleted file mode 100644 index b60263e4e..000000000 --- a/PARALLEL_PROJECT_NOTES.md +++ /dev/null @@ -1,218 +0,0 @@ -# Parallel project notes - - - -We track notes for updates to -[smt/parallel.cpp](https://github.com/Z3Prover/z3/blob/master/src/smt/smt_parallel.cpp) -and possibly -[solver/parallel_tactic.cpp](https://github.com/Z3Prover/z3/blob/master/src/solver/parallel_tactical.cpp). - - - - - -## Variable selection heuristics - - - -* Lookahead solvers: - * lookahead in the smt directory performs a simplistic lookahead search using unit propagation. - * lookahead in the sat directory uses custom lookahead solver based on MARCH. March is described in Handbook of SAT and Knuth volumne 4. - * They both proxy on a cost model where the most useful variable to branch on is the one that _minimizes_ the set of new clauses maximally - through unit propagation. In other words, if a literal _p_ is set to true, and _p_ occurs in clause $\neg p \vee q \vee r$, then it results in - reducing the clause from size 3 to 2 (because $\neg p$ will be false after propagating _p_). - * Selected references: SAT handbook, Knuth Volumne 4, Marijn's March solver on github, [implementation of march in z3](https://github.com/Z3Prover/z3/blob/master/src/sat/sat_lookahead.cpp) -* VSIDS: - * As referenced in Matteo and Antti's solvers. - * Variable activity is a proxy for how useful it is to case split on a variable during search. Variables with a higher VSIDS are split first. - * VSIDS is updated dynamically during search. It was introduced in the paper with Moscovitz, Malik, et al in early 2000s. A good overview is in Armin's tutorial slides (also in my overview of SMT). - * VSIDS does not keep track of variable phases (if the variable was set to true or false). - * Selected refernces [DAC 2001](https://www.princeton.edu/~chaff/publication/DAC2001v56.pdf) and [Biere Tutorial, slide 64 on Variable Scoring Schemes](https://alexeyignatiev.github.io/ssa-school-2019/slides/ab-satsmtar19-slides.pdf) -* Proof prefix: - * Collect the literals that occur in learned clauses. Count their occurrences based on polarity. This gets tracked in a weighted score. - * The weight function can be formulated to take into account clause sizes. - * The score assignment may also decay similar to VSIDS. - * We could also use a doubly linked list for literals used in conflicts and keep reinsert literals into the list when they are used. This would be a "Variable move to front" (VMTF) variant. - * Selected references: [Battleman et al](https://www.cs.cmu.edu/~mheule/publications/proofix-SAT25.pdf) -* From local search: - * Note also that local search solvers can be used to assign variable branch priorities. - * We are not going to directly run a local search solver in the mix up front, but let us consider this heuristic for completeness. - * The heuristic is documented in Biere and Cai's journal paper on integrating local search for CDCL. - * Roughly, it considers clauses that move from the UNSAT set to the SAT set of clauses. It then keeps track of the literals involved. - * Selected references: [Cai et al](https://www.jair.org/index.php/jair/article/download/13666/26833/) -* Assignment trails: - * We could also consider the assignments to variables during search. - * Variables that are always assigned to the same truth value could be considered to be safe to assign that truth value. - * The cubes resulting from such variables might be a direction towards finding satisfying solutions. - * Selected references: [Alex and Vadim](https://link.springer.com/chapter/10.1007/978-3-319-94144-8_7) and most recently [Robin et al](https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.9). - - -## Algorithms - -This section considers various possible algorithms. -In the following, $F$ refers to the original goal, $T$ is the number of CPU cores or CPU threads. - -### Base algorithm - -The existing algorithm in smt_parallel is as follows: - -1. Run a solver on $F$ with a bounded number of conflicts. -2. If the result is SAT/UNSAT, or UNKNOWN with an interrupt or timeout, return. If the maximal number of conflicts were reached continue. -3. Spawn $T$ solvers on $F$ with a bounded number of conflicts, wait until a thread returns UNSAT/SAT or all threads have reached a maximal number of conflicts. -4. Perform a similar check as in 2. -5. Share unit literals learned by each thread. -6. Compute unit cubes for each thread $T$. -7. Spawn $T$ solvers with $F \wedge \ell$, where $\ell$ is a unit literal determined by lookahead function in each thread. -8. Perform a similar check as in 2. But note that a thread can be UNSAT because the unit cube $\ell$ contradicted $F$. In this case learn the unit literal $\neg \ell$. -9. Shared unit literals learned by each thread, increase the maximal number of conflicts, go to 3. - -### Algorithm Variants - -* Instead of using lookahead solving to find unit cubes use the proof-prefix based scoring function. -* Instead of using independent unit cubes, perform a systematic (where systematic can mean many things) cube and conquer strategy. -* Spawn some threads to work in "SAT" mode, tuning to find models instead of short resolution proofs. -* Change the synchronization barrier discipline. -* [Future] Include in-processing - -### Cube and Conquer strategy - -We could maintain a global decomposition of the search space by maintaing a list of _cubes_. -Initially, the list of cubes has just one element, the cube with no literals $[ [] ]$. -By using a list of cubes instead of a _set_ of cubes we can refer to an ordering. -For example, cubes can be ordered by a suffix traversal of the _cube tree_ (the tree formed by -case splitting on the first literal, children of the _true_ branch are the cubes where the first -literal is true, children of the _false_ branch are the cubes where the first literal is false). - -The main question is going to be how the cube decomposition is created. - -#### Static cubing -We can aim for a static cube strategy that uses a few initial (concurrent) probes to find cube literals. -This strategy would be a parallel implementaiton of proof-prefix approach. The computed cubes are inserted -into the list of cubes and the list is consumed by a second round. - -#### Growing cubes on demand -Based on experiences with cubing so far, there is high variance in how easy cubes are to solve. -Some cubes will be harder than others to solve. For hard cubes, it is tempting to develop a recursive -cubing strategy. Ideally, a recursive cubing strategy is symmetric to top-level cubing. - -* The solver would have to identify hard cubes vs. easy cubes. -* It would have to know when to stop working on a hard cube and replace it in the list of cubes by - a new list of sub-cubes. - -* Ideally, we don't need any static cubing and cubing is grown on demand while all threads are utilized. - * If we spawn $T$ threads to initially work with empty cubes, we could extract up to $T$ indepenent cubes - by examining the proof-prefix of their traces. This can form the basis for the first, up to $2^T$ cubes. - * After a round of solving with each thread churning on some cubes, we may obtain more proof-prefixes from - _hard_ cubes. It is not obvious that we want to share cubes from different proof prefixes at this point. - But a starting point is to split a hard cube into two by using the proof-prefix from attempting to solve it. - * Suppose we take the proof-prefix sampling algorithm at heart: It says to start with some initial cube prefix - and then sample for other cube literals. If we translate it to the case where multiple cubes are being processed - in parallel, then an analogy is to share candidates for new cube literals among cubes that are close to each-other. - For example, if thread $t_1$ processes cube $a, b, c$ and $t_2$ processes $a,b, \neg c$. They are close. They are only - separated by Hamming distance 1. If $t_1$ finds cube literal $d$ and $t_2$ finds cube literal $e$, we could consider the cubes - $a, b, c, d, e$, and $a, b, c, d, \neg e$, $\ldots$, $a, b, \neg c, \neg d, \neg e$. - -#### Representing cubes implicitly - -We can represent a list of cubes by using intervals and only represent start and end-points of the intervals. - -#### Batching -Threads can work on more than one cube in a batch. - -### Synchronization - -* The first thread to time out or finish could kill other threads instead of joining on all threads to finish. -* Instead of synchronization barriers have threads continue concurrently without terminating. They synchronize on signals and new units. This is trickier to implement, but in some guises accomplished in [sat/sat_parallel.cpp](https://github.com/Z3Prover/z3/blob/master/src/sat/sat_parallel.cpp) - - -## Parameter tuning - -The idea is to have parallel threads try out different parameter settings and search the parameter space of an optimal parameter setting. - -Let us assume that there is a set of tunable parameters $P$. The set comprises of a set of named parameters with initial values. -$P = \{ (p_1, v_1), \ldots, (p_n, v_n) \}$. -With each parameter associate a set of mutation functions $+=, -=, *=$, such as increment, decrement, scale a parameter by a non-negative multiplier (which can be less than 1). -We will initialize a search space of parameter settings by parameters, values and mutation functions that have assigned reward values. The reward value is incremented -if a parameter mutation step results in an improvement, and decremented if a mutation step degrades performance. -$P = \{ (p_1, v_1, \{ (r_{11}, m_{11}), \ldots, (r_{1k_1}, m_{1k_1}) \}), \ldots, (p_n, v_n, \{ (r_{n1}, m_{n1}), \ldots, (r_{nk_n}, m_{nk_n})\}) \}$. -The initial values of reward functions is fixed (to 1) and the initial values of parameters are the defaults. - -* The batch manager maintains a set of candidate parameters $CP = \{ (P_1, r_1), \ldots, (P_n, r_n) \}$. -* A worker thread picks up a parameter $P_i$ from $CP$ from the batch manager. -* It picks one or more parameter settings within $P_i$ whose mutation function have non-zero reward functions and applies a mutation. -* It then runs with a batch of cubes. -* It measures the reward for the new parameter setting based in number of cubes, cube depth, number of timeouts, and completions with number of conflicts. -* If the new reward is an improvement over $(P_i, r_i)$ it inserts the new parameter setting $(P_i', r_i')$ into the batch manager. -* The batch manager discards the worst parameter settings keeping the top $K$ ($K = 5$) parameter settings. - -When picking among mutation steps with reward functions use a weighted sampling algorithm. -Weighted sampling works as follows: You are given a set of items with weights $(i_1, w_1), \ldots, (i_k, w_k)$. -Add $w = \sum_j w_j$. Pick a random number $w_0$ in the range $0\ldots w$. -Then you pick item $i_n$ such that $n$ is the smallest index with $\sum_{j = 1}^n w_j \geq w_0$. - -SMT parameters that could be tuned: - -
-
-  arith.bprop_on_pivoted_rows (bool) (default: true)
-  arith.branch_cut_ratio (unsigned int) (default: 2)
-  arith.eager_eq_axioms (bool) (default: true)
-  arith.enable_hnf (bool) (default: true)
-  arith.greatest_error_pivot (bool) (default: false)
-  arith.int_eq_branch (bool) (default: false)
-  arith.min (bool) (default: false)
-  arith.nl.branching (bool) (default: true)
-  arith.nl.cross_nested (bool) (default: true)
-  arith.nl.delay (unsigned int) (default: 10)
-  arith.nl.expensive_patching (bool) (default: false)
-  arith.nl.expp (bool) (default: false)
-  arith.nl.gr_q (unsigned int) (default: 10)
-  arith.nl.grobner (bool) (default: true)
-  arith.nl.grobner_cnfl_to_report (unsigned int) (default: 1)
-  arith.nl.grobner_eqs_growth (unsigned int) (default: 10)
-  arith.nl.grobner_expr_degree_growth (unsigned int) (default: 2)
-  arith.nl.grobner_expr_size_growth (unsigned int) (default: 2)
-  arith.nl.grobner_frequency (unsigned int) (default: 4)
-  arith.nl.grobner_max_simplified (unsigned int) (default: 10000)
-  arith.nl.grobner_row_length_limit (unsigned int) (default: 10)
-  arith.nl.grobner_subs_fixed (unsigned int) (default: 1)
-  arith.nl.horner (bool) (default: true)
-  arith.nl.horner_frequency (unsigned int) (default: 4)
-  arith.nl.horner_row_length_limit (unsigned int) (default: 10)
-  arith.nl.horner_subs_fixed (unsigned int) (default: 2)
-  arith.nl.nra (bool) (default: true)
-  arith.nl.optimize_bounds (bool) (default: true)
-  arith.nl.order (bool) (default: true)
-  arith.nl.propagate_linear_monomials (bool) (default: true)
-  arith.nl.rounds (unsigned int) (default: 1024)
-  arith.nl.tangents (bool) (default: true)
-  arith.propagate_eqs (bool) (default: true)
-  arith.propagation_mode (unsigned int) (default: 1)
-  arith.random_initial_value (bool) (default: false)
-  arith.rep_freq (unsigned int) (default: 0)
-  arith.simplex_strategy (unsigned int) (default: 0)
-  dack (unsigned int) (default: 1)
-  dack.eq (bool) (default: false)
-  dack.factor (double) (default: 0.1)
-  dack.gc (unsigned int) (default: 2000)
-  dack.gc_inv_decay (double) (default: 0.8)
-  dack.threshold (unsigned int) (default: 10)
-  delay_units (bool) (default: false)
-  delay_units_threshold (unsigned int) (default: 32)
-  dt_lazy_splits (unsigned int) (default: 1)
-  lemma_gc_strategy (unsigned int) (default: 0)
-  phase_caching_off (unsigned int) (default: 100)
-  phase_caching_on (unsigned int) (default: 400)
-  phase_selection (unsigned int) (default: 3)
-  qi.eager_threshold (double) (default: 10.0)
-  qi.lazy_threshold (double) (default: 20.0)
-  qi.quick_checker (unsigned int) (default: 0)
-  relevancy (unsigned int) (default: 2)
-  restart_factor (double) (default: 1.1)
-  restart_strategy (unsigned int) (default: 1)
-  seq.max_unfolding (unsigned int) (default: 1000000000)
-  seq.min_unfolding (unsigned int) (default: 1)
-  seq.split_w_len (bool) (default: true)
-
- - diff --git a/run_local_tests.sh b/run_local_tests.sh deleted file mode 100755 index e9bd45bad..000000000 --- a/run_local_tests.sh +++ /dev/null @@ -1,32 +0,0 @@ -#!/bin/bash -# run from inside ./z3/build - -Z3=./z3 -OPTIONS="-v:0 -st smt.threads=4" -OUT_FILE="../z3_results.txt" -BASE_PATH="../../z3-poly-testing/inputs/" - -# List of relative test files (relative to BASE_PATH) -REL_TEST_FILES=( - "QF_NIA_small/Ton_Chanh_15__Singapore_v1_false-termination.c__p27381_terminationG_0.smt2" - "QF_UFDTLIA_SAT/52759_bec3a2272267494faeecb6bfaf253e3b_10_QF_UFDTLIA.smt2" -) - -# Clear output file -> "$OUT_FILE" - -# Loop through and run Z3 on each file -for rel_path in "${REL_TEST_FILES[@]}"; do - full_path="$BASE_PATH$rel_path" - test_name="$rel_path" - - echo "Running: $test_name" - echo "===== $test_name =====" | tee -a "$OUT_FILE" - - # Run Z3 and pipe output to both screen and file - $Z3 "$full_path" $OPTIONS 2>&1 | tee -a "$OUT_FILE" - - echo "" | tee -a "$OUT_FILE" -done - -echo "Results written to $OUT_FILE" diff --git a/src/math/polynomial/polynomial.cpp b/src/math/polynomial/polynomial.cpp index 0ad9639f2..9a0f572dd 100644 --- a/src/math/polynomial/polynomial.cpp +++ b/src/math/polynomial/polynomial.cpp @@ -5153,8 +5153,6 @@ namespace polynomial { // unsigned sz = R->size(); for (unsigned i = 0; i < sz; i++) { - if (sz > 100 && i % 100 == 0) - checkpoint(); monomial * m = R->m(i); numeral const & a = R->a(i); if (m->degree_of(x) == deg_R) { @@ -5573,7 +5571,6 @@ namespace polynomial { h = mk_one(); while (true) { - checkpoint(); TRACE(resultant, tout << "A: " << A << "\nB: " << B << "\n";); degA = degree(A, x); degB = degree(B, x); diff --git a/src/smt/priority_queue.h b/src/smt/priority_queue.h deleted file mode 100644 index 39deab9bb..000000000 --- a/src/smt/priority_queue.h +++ /dev/null @@ -1,191 +0,0 @@ -// SOURCE: https://github.com/Ten0/updatable_priority_queue/blob/master/updatable_priority_queue.h - -#include -#include - -namespace updatable_priority_queue { - template - struct priority_queue_node { - Priority priority; - Key key; - priority_queue_node(const Key& key, const Priority& priority) : priority(priority), key(key) {} - friend bool operator<(const priority_queue_node& pqn1, const priority_queue_node& pqn2) { - return pqn1.priority > pqn2.priority; - } - friend bool operator>(const priority_queue_node& pqn1, const priority_queue_node& pqn2) { - return pqn1.priority < pqn2.priority; - } - }; - - /** Key has to be an uint value (convertible to size_t) - * This is a max heap (max is on top), to match stl's pQ */ - template - class priority_queue { - protected: - std::vector id_to_heappos; - std::vector> heap; - std::size_t max_size = 4; // std::numeric_limits::max(); // Create a variable max_size that defaults to the largest size_t value possible - - public: - // priority_queue() {} - priority_queue(std::size_t max_size = std::numeric_limits::max()): max_size(max_size) {} - - // Returns a const reference to the internal heap storage - const std::vector>& get_heap() const { - return heap; - } - - bool empty() const { return heap.empty(); } - std::size_t size() const { return heap.size(); } - - /** first is priority, second is key */ - const priority_queue_node& top() const { return heap.front(); } - - void pop(bool remember_key=false) { - if(size() == 0) return; - id_to_heappos[heap.front().key] = -1-remember_key; - if(size() > 1) { - *heap.begin() = std::move(*(heap.end()-1)); - id_to_heappos[heap.front().key] = 0; - } - heap.pop_back(); - sift_down(0); - } - - priority_queue_node pop_value(bool remember_key=true) { - if(size() == 0) return priority_queue_node(-1, Priority()); - priority_queue_node ret = std::move(*heap.begin()); - id_to_heappos[ret.key] = -1-remember_key; - if(size() > 1) { - *heap.begin() = std::move(*(heap.end()-1)); - id_to_heappos[heap.front().key] = 0; - } - heap.pop_back(); - sift_down(0); - return ret; - } - - /** Sets the priority for the given key. If not present, it will be added, otherwise it will be updated - * Returns true if the priority was changed. - * */ - bool set(const Key& key, const Priority& priority, bool only_if_higher=false) { - if(key < id_to_heappos.size() && id_to_heappos[key] < ((size_t)-2)) // This key is already in the pQ - return update(key, priority, only_if_higher); - else - return push(key, priority, only_if_higher); - } - - std::pair get_priority(const Key& key) { - if(key < id_to_heappos.size()) { - size_t pos = id_to_heappos[key]; - if(pos < ((size_t)-2)) { - return {true, heap[pos].priority}; - } - } - return {false, 0}; - } - - /** Returns true if the key was not inside and was added, otherwise does nothing and returns false - * If the key was remembered and only_if_unknown is true, does nothing and returns false - * */ - bool push(const Key& key, const Priority& priority, bool only_if_unknown = false) { - extend_ids(key); - if (id_to_heappos[key] < ((size_t)-2)) return false; // already inside - if (only_if_unknown && id_to_heappos[key] == ((size_t)-2)) return false; // was evicted and only_if_unknown prevents re-adding - - if (heap.size() < max_size) { - // We have room: just add new element - size_t n = heap.size(); - id_to_heappos[key] = n; - heap.emplace_back(key, priority); - sift_up(n); - return true; - } else { - // Heap full: heap[0] is the smallest priority in the top-k (min-heap) - if (priority <= heap[0].priority) { - // New element priority too small or equal, discard it - return false; - } - // Evict smallest element at heap[0] - Key evicted_key = heap[0].key; - id_to_heappos[evicted_key] = -2; // Mark evicted - - heap[0] = priority_queue_node(key, priority); - id_to_heappos[key] = 0; - sift_down(0); // restore min-heap property - return true; - } - } - - - - /** Returns true if the key was already inside and was updated, otherwise does nothing and returns false */ - bool update(const Key& key, const Priority& new_priority, bool only_if_higher=false) { - if(key >= id_to_heappos.size()) return false; - size_t heappos = id_to_heappos[key]; - if(heappos >= ((size_t)-2)) return false; - Priority& priority = heap[heappos].priority; - if(new_priority > priority) { - priority = new_priority; - sift_up(heappos); - return true; - } - else if(!only_if_higher && new_priority < priority) { - priority = new_priority; - sift_down(heappos); - return true; - } - return false; - } - - void clear() { - heap.clear(); - id_to_heappos.clear(); - } - - - private: - void extend_ids(Key k) { - size_t new_size = k+1; - if(id_to_heappos.size() < new_size) - id_to_heappos.resize(new_size, -1); - } - - void sift_down(size_t heappos) { - size_t len = heap.size(); - size_t child = heappos*2+1; - if(len < 2 || child >= len) return; - if(child+1 < len && heap[child+1] > heap[child]) ++child; // Check whether second child is higher - if(!(heap[child] > heap[heappos])) return; // Already in heap order - - priority_queue_node val = std::move(heap[heappos]); - do { - heap[heappos] = std::move(heap[child]); - id_to_heappos[heap[heappos].key] = heappos; - heappos = child; - child = 2*child+1; - if(child >= len) break; - if(child+1 < len && heap[child+1] > heap[child]) ++child; - } while(heap[child] > val); - heap[heappos] = std::move(val); - id_to_heappos[heap[heappos].key] = heappos; - } - - void sift_up(size_t heappos) { - size_t len = heap.size(); - if(len < 2 || heappos <= 0) return; - size_t parent = (heappos-1)/2; - if(!(heap[heappos] > heap[parent])) return; - priority_queue_node val = std::move(heap[heappos]); - do { - heap[heappos] = std::move(heap[parent]); - id_to_heappos[heap[heappos].key] = heappos; - heappos = parent; - if(heappos <= 0) break; - parent = (parent-1)/2; - } while(val > heap[parent]); - heap[heappos] = std::move(val); - id_to_heappos[heap[heappos].key] = heappos; - } - }; -} \ No newline at end of file diff --git a/src/smt/smt_context.h b/src/smt/smt_context.h index 63316a331..2fbc1d705 100644 --- a/src/smt/smt_context.h +++ b/src/smt/smt_context.h @@ -50,8 +50,6 @@ Revision History: #include "model/model.h" #include "solver/progress_callback.h" #include "solver/assertions/asserted_formulas.h" -#include "smt/priority_queue.h" -#include "util/dlist.h" #include // there is a significant space overhead with allocating 1000+ contexts in @@ -191,17 +189,6 @@ namespace smt { unsigned_vector m_lit_occs; //!< occurrence count of literals svector m_bdata; //!< mapping bool_var -> data svector m_activity; - updatable_priority_queue::priority_queue m_pq_scores; - - struct lit_node : dll_base { - literal lit; - lit_node(literal l) : lit(l) { init(this); } - }; - lit_node* m_dll_lits; - - // svector> m_lit_scores; - svector m_lit_scores[2]; - clause_vector m_aux_clauses; clause_vector m_lemmas; vector m_clauses_to_reinit; @@ -946,17 +933,6 @@ namespace smt { ast_pp_util m_lemma_visitor; void dump_lemma(unsigned n, literal const* lits); void dump_axiom(unsigned n, literal const* lits); - void add_scores(unsigned n, literal const* lits); - void reset_scores() { - for (auto& e : m_lit_scores[0]) - e = 0; - for (auto& e : m_lit_scores[1]) - e = 0; - m_pq_scores.clear(); // Clear the priority queue heap as well - } - double get_score(literal l) const { - return m_lit_scores[l.sign()][l.var()]; - } public: void ensure_internalized(expr* e); diff --git a/src/smt/smt_internalizer.cpp b/src/smt/smt_internalizer.cpp index c7e257fac..9aa6d68f4 100644 --- a/src/smt/smt_internalizer.cpp +++ b/src/smt/smt_internalizer.cpp @@ -931,10 +931,6 @@ namespace smt { set_bool_var(id, v); m_bdata.reserve(v+1); m_activity.reserve(v+1); - m_lit_scores[0].reserve(v + 1); - m_lit_scores[1].reserve(v + 1); - - m_lit_scores[0][v] = m_lit_scores[1][v] = 0.0; m_bool_var2expr.reserve(v+1); m_bool_var2expr[v] = n; literal l(v, false); @@ -1423,7 +1419,6 @@ namespace smt { break; case CLS_LEARNED: dump_lemma(num_lits, lits); - add_scores(num_lits, lits); break; default: break; @@ -1532,27 +1527,6 @@ namespace smt { }} } - // void context::add_scores(unsigned n, literal const* lits) { - // for (unsigned i = 0; i < n; ++i) { - // auto lit = lits[i]; - // unsigned v = lit.var(); - // m_lit_scores[v][lit.sign()] += 1.0 / n; - // } - // } - - void context::add_scores(unsigned n, literal const* lits) { - for (unsigned i = 0; i < n; ++i) { - auto lit = lits[i]; - unsigned v = lit.var(); // unique key per literal - - m_lit_scores[lit.sign()][v] += 1.0 / n; - - auto new_score = m_lit_scores[0][v] * m_lit_scores[1][v]; - m_pq_scores.set(v, new_score); - - } - } - void context::dump_axiom(unsigned n, literal const* lits) { if (m_fparams.m_axioms2files) { literal_buffer tmp; diff --git a/src/smt/smt_lookahead.h b/src/smt/smt_lookahead.h index d53af58e4..5deccad2c 100644 --- a/src/smt/smt_lookahead.h +++ b/src/smt/smt_lookahead.h @@ -30,13 +30,11 @@ namespace smt { struct compare; - // double get_score(); + double get_score(); void choose_rec(expr_ref_vector& trail, expr_ref_vector& result, unsigned depth, unsigned budget); public: - double get_score(); - lookahead(context& ctx); expr_ref choose(unsigned budget = 2000); diff --git a/src/smt/smt_parallel.cpp b/src/smt/smt_parallel.cpp index d08a7c045..4941e4df9 100644 --- a/src/smt/smt_parallel.cpp +++ b/src/smt/smt_parallel.cpp @@ -36,463 +36,237 @@ namespace smt { #else #include -#include namespace smt { - - void parallel::worker::run() { - ast_translation g2l(p.ctx.m, m); // global to local context -- MUST USE p.ctx.m, not ctx->m, AS GLOBAL MANAGER!!! - ast_translation l2g(m, p.ctx.m); // local to global context - while (m.inc()) { // inc: increase the limit and check if it is canceled, vs m.limit().is_canceled() is readonly. the .limit() is also not necessary (m.inc() etc provides a convenience wrapper) - vector cubes; - b.get_cubes(g2l, cubes); - if (cubes.empty()) - return; - collect_shared_clauses(g2l); - for (auto& cube : cubes) { - if (!m.inc()) { - b.set_exception("context cancelled"); - return; - } - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " cube: " << mk_bounded_pp(mk_and(cube), m, 3) << "\n"); - lbool r = check_cube(cube); - if (m.limit().is_canceled()) { - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " context cancelled\n"); - return; - } - switch (r) { - case l_undef: { - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " found undef cube\n"); - // return unprocessed cubes to the batch manager - // add a split literal to the batch manager. - // optionally process other cubes and delay sending back unprocessed cubes to batch manager. - vector returned_cubes; - returned_cubes.push_back(cube); - auto split_atoms = get_split_atoms(); - b.return_cubes(l2g, returned_cubes, split_atoms); - update_max_thread_conflicts(); - break; - } - case l_true: { - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " found sat cube\n"); - model_ref mdl; - ctx->get_model(mdl); - b.set_sat(l2g, *mdl); - return; - } - case l_false: { - // if unsat core only contains (external) assumptions (i.e. all the unsat core are asms), then unsat and return as this does NOT depend on cubes - // otherwise, extract lemmas that can be shared (units (and unsat core?)). - // share with batch manager. - // process next cube. - expr_ref_vector const& unsat_core = ctx->unsat_core(); - IF_VERBOSE(1, verbose_stream() << "unsat core: " << unsat_core << "\n"); - // If the unsat core only contains assumptions, - // unsatisfiability does not depend on the current cube and the entire problem is unsat. - if (all_of(unsat_core, [&](expr* e) { return asms.contains(e); })) { - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " determined formula unsat\n"); - b.set_unsat(l2g, unsat_core); - return; - } - for (expr* e : unsat_core) - if (asms.contains(e)) - b.report_assumption_used(l2g, e); // report assumptions used in unsat core, so they can be used in final core - - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " found unsat cube\n"); - b.collect_clause(l2g, id, mk_not(mk_and(unsat_core))); - break; - } - } - } - share_units(l2g); - } - } - - parallel::worker::worker(unsigned id, parallel& p, expr_ref_vector const& _asms): id(id), p(p), b(p.m_batch_manager), m_smt_params(p.ctx.get_fparams()), asms(m) { - ast_translation g2l(p.ctx.m, m); - for (auto e : _asms) - asms.push_back(g2l(e)); - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " created with " << asms.size() << " assumptions\n"); - m_smt_params.m_preprocess = false; - ctx = alloc(context, m, m_smt_params, p.ctx.get_params()); - context::copy(p.ctx, *ctx, true); - ctx->set_random_seed(id + m_smt_params.m_random_seed); - - m_max_thread_conflicts = ctx->get_fparams().m_threads_max_conflicts; - m_max_conflicts = ctx->get_fparams().m_max_conflicts; - } - - void parallel::worker::share_units(ast_translation& l2g) { - // Collect new units learned locally by this worker and send to batch manager - unsigned sz = ctx->assigned_literals().size(); - for (unsigned j = m_num_shared_units; j < sz; ++j) { // iterate only over new literals since last sync - literal lit = ctx->assigned_literals()[j]; - expr_ref e(ctx->bool_var2expr(lit.var()), ctx->m); // turn literal into a Boolean expression - if (lit.sign()) - e = m.mk_not(e); // negate if literal is negative - b.collect_clause(l2g, id, e); - } - m_num_shared_units = sz; - } - - void parallel::batch_manager::collect_clause(ast_translation& l2g, unsigned source_worker_id, expr* clause) { - std::scoped_lock lock(mux); - expr* g_clause = l2g(clause); - if (!shared_clause_set.contains(g_clause)) { - shared_clause_set.insert(g_clause); - shared_clause sc{source_worker_id, expr_ref(g_clause, m)}; - shared_clause_trail.push_back(sc); - } - } - - void parallel::worker::collect_shared_clauses(ast_translation& g2l) { - expr_ref_vector new_clauses = b.return_shared_clauses(g2l, m_shared_clause_limit, id); // get new clauses from the batch manager - // iterate over new clauses and assert them in the local context - for (expr* e : new_clauses) { - expr_ref local_clause(e, g2l.to()); // e was already translated to the local context in the batch manager!! - ctx->assert_expr(local_clause); // assert the clause in the local context - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " asserting shared clause: " << mk_bounded_pp(local_clause, m, 3) << "\n"); - } - } - - // get new clauses from the batch manager and assert them in the local context - expr_ref_vector parallel::batch_manager::return_shared_clauses(ast_translation& g2l, unsigned& worker_limit, unsigned worker_id) { - std::scoped_lock lock(mux); - expr_ref_vector result(g2l.to()); - for (unsigned i = worker_limit; i < shared_clause_trail.size(); ++i) { - if (shared_clause_trail[i].source_worker_id == worker_id) - continue; // skip clauses from the requesting worker - result.push_back(g2l(shared_clause_trail[i].clause.get())); - } - worker_limit = shared_clause_trail.size(); // update the worker limit to the end of the current trail - return result; - } - - lbool parallel::worker::check_cube(expr_ref_vector const& cube) { - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " checking cube\n";); - for (auto& atom : cube) - asms.push_back(atom); - lbool r = l_undef; - - ctx->get_fparams().m_max_conflicts = std::min(m_max_thread_conflicts, m_max_conflicts); - try { - r = ctx->check(asms.size(), asms.data()); - } - catch (z3_error& err) { - b.set_exception(err.error_code()); - } - catch (z3_exception& ex) { - b.set_exception(ex.what()); - } - catch (...) { - b.set_exception("unknown exception"); - } - asms.shrink(asms.size() - cube.size()); - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " DONE checking cube " << r << "\n";); - return r; - } - - void parallel::batch_manager::get_cubes(ast_translation& g2l, vector& cubes) { - std::scoped_lock lock(mux); - if (m_cubes.size() == 1 && m_cubes[0].size() == 0) { - // special initialization: the first cube is emtpy, have the worker work on an empty cube. - cubes.push_back(expr_ref_vector(g2l.to())); - return; - } - - for (unsigned i = 0; i < std::min(m_max_batch_size / p.num_threads, (unsigned)m_cubes.size()) && !m_cubes.empty(); ++i) { - auto& cube = m_cubes.back(); - expr_ref_vector l_cube(g2l.to()); - for (auto& e : cube) { - l_cube.push_back(g2l(e)); - } - cubes.push_back(l_cube); - m_cubes.pop_back(); - } - } - - void parallel::batch_manager::set_sat(ast_translation& l2g, model& m) { - std::scoped_lock lock(mux); - if (m_state != state::is_running) - return; - m_state = state::is_sat; - p.ctx.set_model(m.translate(l2g)); - cancel_workers(); - } - - void parallel::batch_manager::set_unsat(ast_translation& l2g, expr_ref_vector const& unsat_core) { - std::scoped_lock lock(mux); - if (m_state != state::is_running) - return; - m_state = state::is_unsat; - - // every time we do a check_sat call, don't want to have old info coming from a prev check_sat call - // the unsat core gets reset internally in the context after each check_sat, so we assert this property here - // takeaway: each call to check_sat needs to have a fresh unsat core - SASSERT(p.ctx.m_unsat_core.empty()); - for (expr* e : unsat_core) - p.ctx.m_unsat_core.push_back(l2g(e)); - cancel_workers(); - } - - void parallel::batch_manager::set_exception(unsigned error_code) { - std::scoped_lock lock(mux); - if (m_state != state::is_running) - return; - m_state = state::is_exception_code; - m_exception_code = error_code; - cancel_workers(); - } - - void parallel::batch_manager::set_exception(std::string const& msg) { - std::scoped_lock lock(mux); - if (m_state != state::is_running || m.limit().is_canceled()) - return; - m_state = state::is_exception_msg; - m_exception_msg = msg; - cancel_workers(); - } - - void parallel::batch_manager::report_assumption_used(ast_translation& l2g, expr* assumption) { - std::scoped_lock lock(mux); - p.m_assumptions_used.insert(l2g(assumption)); - } - - lbool parallel::batch_manager::get_result() const { - if (m.limit().is_canceled()) - return l_undef; // the main context was cancelled, so we return undef. - switch (m_state) { - case state::is_running: // batch manager is still running, but all threads have processed their cubes, which means all cubes were unsat - if (!m_cubes.empty()) - throw default_exception("inconsistent end state"); - if (!p.m_assumptions_used.empty()) { - // collect unsat core from assumptions used, if any --> case when all cubes were unsat, but depend on nonempty asms, so we need to add these asms to final unsat core - SASSERT(p.ctx.m_unsat_core.empty()); - for (auto a : p.m_assumptions_used) - p.ctx.m_unsat_core.push_back(a); - } - return l_false; - case state::is_unsat: - return l_false; - case state::is_sat: - return l_true; - case state::is_exception_msg: - throw default_exception(m_exception_msg.c_str()); - case state::is_exception_code: - throw z3_error(m_exception_code); - default: - UNREACHABLE(); - return l_undef; - } - } - - /* - Batch manager maintains C_batch, A_batch. - C_batch - set of cubes - A_batch - set of split atoms. - return_cubes is called with C_batch A_batch C A. - C_worker - one or more cubes - A_worker - split atoms form the worker thread. - Assumption: A_worker does not occur in C_worker. - - ------------------------------------------------------------------------------------------------------------------------------------------------------------ - Greedy strategy: - For each returned cube c from the worker, you split it on all split atoms not in it (i.e., A_batch \ atoms(c)), plus any new atoms from A_worker. - For each existing cube in the batch, you also split it on the new atoms from A_worker. - - return_cubes C_batch A_batch C_worker A_worker: - C_batch <- { cube * 2^(A_worker u (A_batch \ atoms(cube)) | cube in C_worker } u - { cube * 2^(A_worker \ A_batch) | cube in C_batch } - = - let C_batch' = C_batch u { cube * 2^(A_batch \ atoms(cube)) | cube in C_worker } - in { cube * 2^(A_worker \ A_batch) | cube in C_batch' } - A_batch <- A_batch u A_worker - - ------------------------------------------------------------------------------------------------------------------------------------------------------------ - Frugal strategy: only split on worker cubes - - case 1: thread returns no cubes, just atoms: just create 2^k cubes from all combinations of atoms so far. - return_cubes C_batch A_batch [[]] A_worker: - C_batch <- C_batch u 2^(A_worker u A_batch), - A_batch <- A_batch u A_worker - - case 2: thread returns both cubes and atoms - Only the returned cubes get split by the newly discovered atoms (A_worker). Existing cubes are not touched. - return_cubes C_batch A_batch C_worker A_worker: - C_batch <- C_batch u { cube * 2^A_worker | cube in C_worker }. - A_batch <- A_batch u A_worker - - This means: - Only the returned cubes get split by the newly discovered atoms (A_worker). - Existing cubes are not touched. - - ------------------------------------------------------------------------------------------------------------------------------------------------------------ - Hybrid: Between Frugal and Greedy: (generalizes the first case of empty cube returned by worker) -- don't focus on this approach - i.e. Expand only the returned cubes, but allow them to be split on both new and old atoms not already in them. - - C_batch <- C_batch u { cube * 2^(A_worker u (A_batch \ atoms(cube)) | cube in C_worker } - A_batch <- A_batch u A_worker - - ------------------------------------------------------------------------------------------------------------------------------------------------------------ - Final thought (do this!): use greedy strategy by a policy when C_batch, A_batch, A_worker are "small". -- want to do this. switch to frugal strategy after reaching size limit - */ - - // currenly, the code just implements the greedy strategy - void parallel::batch_manager::return_cubes(ast_translation& l2g, vectorconst& C_worker, expr_ref_vector const& A_worker) { - auto atom_in_cube = [&](expr_ref_vector const& cube, expr* atom) { - return any_of(cube, [&](expr* e) { return e == atom || (m.is_not(e, e) && e == atom); }); - }; - - auto add_split_atom = [&](expr* atom, unsigned start) { - unsigned stop = m_cubes.size(); - for (unsigned i = start; i < stop; ++i) { - m_cubes.push_back(m_cubes[i]); - m_cubes.back().push_back(m.mk_not(atom)); - m_cubes[i].push_back(atom); - } - }; - - std::scoped_lock lock(mux); - unsigned max_cubes = 1000; - bool greedy_mode = (m_cubes.size() <= max_cubes); - unsigned a_worker_start_idx = 0; - - // - // --- Phase 1: Greedy split of *existing* cubes on new A_worker atoms (greedy) --- - // - if (greedy_mode) { - for (; a_worker_start_idx < A_worker.size(); ++a_worker_start_idx) { - expr_ref g_atom(l2g(A_worker[a_worker_start_idx]), l2g.to()); - if (m_split_atoms.contains(g_atom)) - continue; - m_split_atoms.push_back(g_atom); - - add_split_atom(g_atom, 0); // split all *existing* cubes - if (m_cubes.size() > max_cubes) { - greedy_mode = false; - ++a_worker_start_idx; // start frugal from here - break; - } - } - } - - unsigned initial_m_cubes_size = m_cubes.size(); // where to start processing the worker cubes after splitting the EXISTING cubes on the new worker atoms - - // --- Phase 2: Process worker cubes (greedy) --- - for (auto& c : C_worker) { - expr_ref_vector g_cube(l2g.to()); - for (auto& atom : c) - g_cube.push_back(l2g(atom)); - - unsigned start = m_cubes.size(); // update start after adding each cube so we only process the current cube being added - m_cubes.push_back(g_cube); - - if (greedy_mode) { - // Split new cube on all existing m_split_atoms not in it - for (auto g_atom : m_split_atoms) { - if (!atom_in_cube(g_cube, g_atom)) { - add_split_atom(g_atom, start); - if (m_cubes.size() > max_cubes) { - greedy_mode = false; - break; - } - } - } - } - } - - // --- Phase 3: Frugal fallback: only process NEW worker cubes with NEW atoms --- - if (!greedy_mode) { - for (unsigned i = a_worker_start_idx; i < A_worker.size(); ++i) { - expr_ref g_atom(l2g(A_worker[i]), l2g.to()); - if (!m_split_atoms.contains(g_atom)) - m_split_atoms.push_back(g_atom); - add_split_atom(g_atom, initial_m_cubes_size); - } - } - } - - expr_ref_vector parallel::worker::get_split_atoms() { - unsigned k = 2; - - auto candidates = ctx->m_pq_scores.get_heap(); - - std::sort(candidates.begin(), candidates.end(), - [](const auto& a, const auto& b) { return a.priority > b.priority; }); - - expr_ref_vector top_lits(m); - for (const auto& node: candidates) { - if (ctx->get_assignment(node.key) != l_undef) - continue; - - expr* e = ctx->bool_var2expr(node.key); - if (!e) - continue; - - top_lits.push_back(expr_ref(e, m)); - if (top_lits.size() >= k) - break; - } - IF_VERBOSE(1, verbose_stream() << "top literals " << top_lits << " head size " << ctx->m_pq_scores.size() << " num vars " << ctx->get_num_bool_vars() << "\n"); - return top_lits; - } - - void parallel::batch_manager::initialize() { - m_state = state::is_running; - m_cubes.reset(); - m_cubes.push_back(expr_ref_vector(m)); // push empty cube - m_split_atoms.reset(); - } - lbool parallel::operator()(expr_ref_vector const& asms) { - ast_manager& m = ctx.m; + lbool result = l_undef; + unsigned num_threads = std::min((unsigned) std::thread::hardware_concurrency(), ctx.get_fparams().m_threads); + flet _nt(ctx.m_fparams.m_threads, 1); + unsigned thread_max_conflicts = ctx.get_fparams().m_threads_max_conflicts; + unsigned max_conflicts = ctx.get_fparams().m_max_conflicts; + + // try first sequential with a low conflict budget to make super easy problems cheap + unsigned max_c = std::min(thread_max_conflicts, 40u); + flet _mc(ctx.get_fparams().m_max_conflicts, max_c); + result = ctx.check(asms.size(), asms.data()); + if (result != l_undef || ctx.m_num_conflicts < max_c) { + return result; + } + + enum par_exception_kind { + DEFAULT_EX, + ERROR_EX + }; + + vector smt_params; + scoped_ptr_vector pms; + scoped_ptr_vector pctxs; + vector pasms; + + ast_manager& m = ctx.m; + scoped_limits sl(m.limit()); + unsigned finished_id = UINT_MAX; + std::string ex_msg; + par_exception_kind ex_kind = DEFAULT_EX; + unsigned error_code = 0; + bool done = false; + unsigned num_rounds = 0; if (m.has_trace_stream()) throw default_exception("trace streams have to be off in parallel mode"); + - struct scoped_clear_table { - obj_hashtable& ht; - scoped_clear_table(obj_hashtable& ht) : ht(ht) {} // Constructor: Takes a reference to a hash table when the object is created and saves it. - ~scoped_clear_table() { ht.reset(); } // Destructor: When the scoped_clear_table object goes out of scope, it automatically calls reset() on that hash table, clearing it - }; - scoped_clear_table clear(m_assumptions_used); // creates a scoped_clear_table named clear, bound to m_assumptions_used - - { - m_batch_manager.initialize(); - m_workers.reset(); - scoped_limits sl(m.limit()); - flet _nt(ctx.m_fparams.m_threads, 1); - SASSERT(num_threads > 1); - for (unsigned i = 0; i < num_threads; ++i) - m_workers.push_back(alloc(worker, i, *this, asms)); // i.e. "new worker(i, *this, asms)" - - // THIS WILL ALLOW YOU TO CANCEL ALL THE CHILD THREADS - // within the lexical scope of the code block, creates a data structure that allows you to push children - // objects to the limit object, so if someone cancels the parent object, the cancellation propagates to the children - // and that cancellation has the lifetime of the scope - // even if this code doesn't expliclty kill the main thread, still applies bc if you e.g. Ctrl+C the main thread, the children threads need to be cancelled - for (auto w : m_workers) - sl.push_child(&(w->limit())); - - // Launch threads - vector threads(num_threads); - for (unsigned i = 0; i < num_threads; ++i) { - threads[i] = std::thread([&, i]() { - m_workers[i]->run(); - }); - } - - // Wait for all threads to finish - for (auto& th : threads) - th.join(); - - for (auto w : m_workers) - w->collect_statistics(ctx.m_aux_stats); + params_ref params = ctx.get_params(); + for (unsigned i = 0; i < num_threads; ++i) { + smt_params.push_back(ctx.get_fparams()); + smt_params.back().m_preprocess = false; + } + + for (unsigned i = 0; i < num_threads; ++i) { + ast_manager* new_m = alloc(ast_manager, m, true); + pms.push_back(new_m); + pctxs.push_back(alloc(context, *new_m, smt_params[i], params)); + context& new_ctx = *pctxs.back(); + context::copy(ctx, new_ctx, true); + new_ctx.set_random_seed(i + ctx.get_fparams().m_random_seed); + ast_translation tr(m, *new_m); + pasms.push_back(tr(asms)); + sl.push_child(&(new_m->limit())); } - m_workers.clear(); - return m_batch_manager.get_result(); // i.e. all threads have finished all of their cubes -- so if state::is_running is still true, means the entire formula is unsat (otherwise a thread would have returned l_undef) + auto cube = [](context& ctx, expr_ref_vector& lasms, expr_ref& c) { + lookahead lh(ctx); + c = lh.choose(); + if (c) { + if ((ctx.get_random_value() % 2) == 0) + c = c.get_manager().mk_not(c); + lasms.push_back(c); + } + }; + + obj_hashtable unit_set; + expr_ref_vector unit_trail(ctx.m); + unsigned_vector unit_lim; + for (unsigned i = 0; i < num_threads; ++i) unit_lim.push_back(0); + + std::function collect_units = [&,this]() { + //return; -- has overhead + for (unsigned i = 0; i < num_threads; ++i) { + context& pctx = *pctxs[i]; + pctx.pop_to_base_lvl(); + ast_translation tr(pctx.m, ctx.m); + unsigned sz = pctx.assigned_literals().size(); + for (unsigned j = unit_lim[i]; j < sz; ++j) { + literal lit = pctx.assigned_literals()[j]; + //IF_VERBOSE(0, verbose_stream() << "(smt.thread " << i << " :unit " << lit << " " << pctx.is_relevant(lit.var()) << ")\n";); + if (!pctx.is_relevant(lit.var())) + continue; + expr_ref e(pctx.bool_var2expr(lit.var()), pctx.m); + if (lit.sign()) e = pctx.m.mk_not(e); + expr_ref ce(tr(e.get()), ctx.m); + if (!unit_set.contains(ce)) { + unit_set.insert(ce); + unit_trail.push_back(ce); + } + } + } + + unsigned sz = unit_trail.size(); + for (unsigned i = 0; i < num_threads; ++i) { + context& pctx = *pctxs[i]; + ast_translation tr(ctx.m, pctx.m); + for (unsigned j = unit_lim[i]; j < sz; ++j) { + expr_ref src(ctx.m), dst(pctx.m); + dst = tr(unit_trail.get(j)); + pctx.assert_expr(dst); + } + unit_lim[i] = pctx.assigned_literals().size(); + } + IF_VERBOSE(1, verbose_stream() << "(smt.thread :units " << sz << ")\n"); + }; + + std::mutex mux; + + auto worker_thread = [&](int i) { + try { + context& pctx = *pctxs[i]; + ast_manager& pm = *pms[i]; + expr_ref_vector lasms(pasms[i]); + expr_ref c(pm); + + pctx.get_fparams().m_max_conflicts = std::min(thread_max_conflicts, max_conflicts); + if (num_rounds > 0 && (num_rounds % pctx.get_fparams().m_threads_cube_frequency) == 0) + cube(pctx, lasms, c); + IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i; + if (num_rounds > 0) verbose_stream() << " :round " << num_rounds; + if (c) verbose_stream() << " :cube " << mk_bounded_pp(c, pm, 3); + verbose_stream() << ")\n";); + lbool r = pctx.check(lasms.size(), lasms.data()); + + if (r == l_undef && pctx.m_num_conflicts >= max_conflicts) + ; // no-op + else if (r == l_undef && pctx.m_num_conflicts >= thread_max_conflicts) + return; + else if (r == l_false && pctx.unsat_core().contains(c)) { + IF_VERBOSE(1, verbose_stream() << "(smt.thread " << i << " :learn " << mk_bounded_pp(c, pm, 3) << ")"); + pctx.assert_expr(mk_not(mk_and(pctx.unsat_core()))); + return; + } + + + bool first = false; + { + std::lock_guard lock(mux); + if (finished_id == UINT_MAX) { + finished_id = i; + first = true; + result = r; + done = true; + } + if (!first && r != l_undef && result == l_undef) { + finished_id = i; + result = r; + } + else if (!first) return; + } + + for (ast_manager* m : pms) { + if (m != &pm) m->limit().cancel(); + } + + } + catch (z3_error & err) { + if (finished_id == UINT_MAX) { + error_code = err.error_code(); + ex_kind = ERROR_EX; + done = true; + } + } + catch (z3_exception & ex) { + if (finished_id == UINT_MAX) { + ex_msg = ex.what(); + ex_kind = DEFAULT_EX; + done = true; + } + } + catch (...) { + if (finished_id == UINT_MAX) { + ex_msg = "unknown exception"; + ex_kind = ERROR_EX; + done = true; + } + } + }; + + // for debugging: num_threads = 1; + + while (true) { + vector threads(num_threads); + for (unsigned i = 0; i < num_threads; ++i) { + threads[i] = std::thread([&, i]() { worker_thread(i); }); + } + for (auto & th : threads) { + th.join(); + } + if (done) break; + + collect_units(); + ++num_rounds; + max_conflicts = (max_conflicts < thread_max_conflicts) ? 0 : (max_conflicts - thread_max_conflicts); + thread_max_conflicts *= 2; + } + + for (context* c : pctxs) { + c->collect_statistics(ctx.m_aux_stats); + } + + if (finished_id == UINT_MAX) { + switch (ex_kind) { + case ERROR_EX: throw z3_error(error_code); + default: throw default_exception(std::move(ex_msg)); + } + } + + model_ref mdl; + context& pctx = *pctxs[finished_id]; + ast_translation tr(*pms[finished_id], m); + switch (result) { + case l_true: + pctx.get_model(mdl); + if (mdl) + ctx.set_model(mdl->translate(tr)); + break; + case l_false: + ctx.m_unsat_core.reset(); + for (expr* e : pctx.unsat_core()) + ctx.m_unsat_core.push_back(tr(e)); + break; + default: + break; + } + + return result; } } diff --git a/src/smt/smt_parallel.h b/src/smt/smt_parallel.h index b337d5e45..07b04019d 100644 --- a/src/smt/smt_parallel.h +++ b/src/smt/smt_parallel.h @@ -19,124 +19,16 @@ Revision History: #pragma once #include "smt/smt_context.h" -#include namespace smt { class parallel { context& ctx; - unsigned num_threads; - - struct shared_clause { - unsigned source_worker_id; - expr_ref clause; - }; - - class batch_manager { - enum state { - is_running, - is_sat, - is_unsat, - is_exception_msg, - is_exception_code - }; - - ast_manager& m; - parallel& p; - std::mutex mux; - state m_state = state::is_running; - expr_ref_vector m_split_atoms; // atoms to split on - vector m_cubes; - unsigned m_max_batch_size = 10; - unsigned m_exception_code = 0; - std::string m_exception_msg; - vector shared_clause_trail; // store all shared clauses with worker IDs - obj_hashtable shared_clause_set; // for duplicate filtering on per-thread clause expressions - - // called from batch manager to cancel other workers if we've reached a verdict - void cancel_workers() { - IF_VERBOSE(1, verbose_stream() << "Canceling workers\n"); - for (auto& w : p.m_workers) - w->cancel(); - } - - public: - batch_manager(ast_manager& m, parallel& p) : m(m), p(p), m_split_atoms(m) { } - - void initialize(); - - void set_unsat(ast_translation& l2g, expr_ref_vector const& unsat_core); - void set_sat(ast_translation& l2g, model& m); - void set_exception(std::string const& msg); - void set_exception(unsigned error_code); - - // - // worker threads ask the batch manager for a supply of cubes to check. - // they pass in a translation function from the global context to local context (ast-manager). It is called g2l. - // The batch manager returns a list of cubes to solve. - // - void get_cubes(ast_translation& g2l, vector& cubes); - - // - // worker threads return unprocessed cubes to the batch manager together with split literal candidates. - // the batch manager re-enqueues unprocessed cubes and optionally splits them using the split_atoms returned by this and workers. - // - void return_cubes(ast_translation& l2g, vectorconst& cubes, expr_ref_vector const& split_atoms); - void report_assumption_used(ast_translation& l2g, expr* assumption); - void collect_clause(ast_translation& l2g, unsigned source_worker_id, expr* e); - expr_ref_vector return_shared_clauses(ast_translation& g2l, unsigned& worker_limit, unsigned worker_id); - lbool get_result() const; - }; - - class worker { - unsigned id; // unique identifier for the worker - parallel& p; - batch_manager& b; - ast_manager m; - expr_ref_vector asms; - smt_params m_smt_params; - scoped_ptr ctx; - unsigned m_max_conflicts = 800; // the global budget for all work this worker can do across cubes in the current run. - unsigned m_max_thread_conflicts = 100; // the per-cube limit for how many conflicts the worker can spend on a single cube before timing out on it and moving on - unsigned m_num_shared_units = 0; - unsigned m_shared_clause_limit = 0; // remembers the index into shared_clause_trail marking the boundary between "old" and "new" clauses to share - void share_units(ast_translation& l2g); - lbool check_cube(expr_ref_vector const& cube); - void update_max_thread_conflicts() { - m_max_thread_conflicts *= 2; - } // allow for backoff scheme of conflicts within the thread for cube timeouts. - public: - worker(unsigned id, parallel& p, expr_ref_vector const& _asms); - void run(); - expr_ref_vector get_split_atoms(); - void collect_shared_clauses(ast_translation& g2l); - - void cancel() { - IF_VERBOSE(1, verbose_stream() << "Worker " << id << " canceling\n"); - m.limit().cancel(); - } - void collect_statistics(::statistics& st) const { - IF_VERBOSE(1, verbose_stream() << "Collecting statistics for worker " << id << "\n"); - ctx->collect_statistics(st); - } - reslimit& limit() { - return m.limit(); - } - }; - - obj_hashtable m_assumptions_used; // assumptions used in unsat cores, to be used in final core - batch_manager m_batch_manager; - ptr_vector m_workers; - public: - parallel(context& ctx) : - ctx(ctx), - num_threads(std::min( - (unsigned)std::thread::hardware_concurrency(), - ctx.get_fparams().m_threads)), - m_batch_manager(ctx.m, *this) {} + parallel(context& ctx): ctx(ctx) {} lbool operator()(expr_ref_vector const& asms); + }; }