mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 08:35:31 +00:00
updates
This commit is contained in:
parent
eaa6340a0c
commit
e1bc9cc0bb
2 changed files with 84 additions and 69 deletions
|
@ -33,7 +33,7 @@ namespace polysat {
|
|||
for (auto c1 : core) {
|
||||
if (!c1->is_ule())
|
||||
continue;
|
||||
if (!c1.is_currently_false(s))
|
||||
if (c1.is_currently_true(s))
|
||||
continue;
|
||||
auto c = c1.as_inequality();
|
||||
if (try_ugt_x(v, core, c))
|
||||
|
@ -61,40 +61,37 @@ namespace polysat {
|
|||
* Propagate c. It is added to reason and core all other literals in reason are false in current stack.
|
||||
* The lemmas outlined in the rules are valid and therefore c is implied.
|
||||
*/
|
||||
bool inf_saturate::propagate(conflict& core, inequality const& _crit1, inequality const& _crit2, signed_constraint& c, vector<signed_constraint>& new_constraints) {
|
||||
bool inf_saturate::propagate(conflict& core, inequality const& _crit1, inequality const& _crit2, signed_constraint& c) {
|
||||
|
||||
auto crit1 = _crit1.as_signed_constraint();
|
||||
auto crit2 = _crit2.as_signed_constraint();
|
||||
new_constraints.push_back(crit1);
|
||||
new_constraints.push_back(crit2);
|
||||
m_new_constraints.push_back(crit1);
|
||||
m_new_constraints.push_back(crit2);
|
||||
SASSERT(!crit1.is_currently_true(s));
|
||||
|
||||
SASSERT(crit1.is_currently_false(s));
|
||||
if (c.bvalue(s) == l_false) {
|
||||
core.reset();
|
||||
for (auto d : new_constraints)
|
||||
core.insert(d);
|
||||
core.insert(~c);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!c.is_currently_false(s))
|
||||
LOG("critical " << m_rule << " " << crit1);
|
||||
LOG("consequent " << c << " value: " << c.bvalue(s));
|
||||
|
||||
if (!c.is_currently_false(s) && c.bvalue(s) != l_false)
|
||||
return false;
|
||||
|
||||
core.reset();
|
||||
for (auto d : new_constraints)
|
||||
for (auto d : m_new_constraints)
|
||||
core.insert(d);
|
||||
c->set_var_dependent();
|
||||
core.insert(~c);
|
||||
return true;
|
||||
|
||||
if (c.bvalue(s) != l_false)
|
||||
c->set_var_dependent();
|
||||
core.insert(~c);
|
||||
LOG("Core " << core);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool inf_saturate::propagate(conflict& core, inequality const& crit1, inequality const& crit2, bool is_strict, pdd const& lhs, pdd const& rhs, vector<signed_constraint>& new_constraints) {
|
||||
bool inf_saturate::propagate(conflict& core, inequality const& crit1, inequality const& crit2, bool is_strict, pdd const& lhs, pdd const& rhs) {
|
||||
signed_constraint c = ineq(is_strict, lhs, rhs);
|
||||
return propagate(core, crit1, crit2, c, new_constraints);
|
||||
return propagate(core, crit1, crit2, c);
|
||||
}
|
||||
|
||||
/// Add premises for Ω*(x, y)
|
||||
void inf_saturate::push_omega_bisect(vector<signed_constraint>& new_constraints, pdd const& x, rational x_max, pdd const& y, rational y_max) {
|
||||
void inf_saturate::push_omega_bisect(pdd const& x, rational x_max, pdd const& y, rational y_max) {
|
||||
rational x_val, y_val;
|
||||
auto& pddm = x.manager();
|
||||
rational bound = pddm.max_value();
|
||||
|
@ -103,12 +100,15 @@ namespace polysat {
|
|||
SASSERT(x_val * y_val <= bound);
|
||||
|
||||
rational x_lo = x_val, x_hi = x_max, y_lo = y_val, y_hi = y_max;
|
||||
SASSERT(x_lo <= x_hi && y_lo <= y_hi);
|
||||
rational two(2);
|
||||
while (x_lo < x_hi || y_lo < y_hi) {
|
||||
rational x_mid = div(x_hi + x_lo, two);
|
||||
rational y_mid = div(y_hi + y_lo, two);
|
||||
if (x_mid * y_mid > bound)
|
||||
x_hi = x_mid - 1, y_hi = y_mid - 1;
|
||||
rational x_mid = div(x_hi + x_lo + 1, two);
|
||||
rational y_mid = div(y_hi + y_lo + 1, two);
|
||||
if (x_mid * y_mid > bound) {
|
||||
x_hi = x_lo < x_hi ? x_mid - 1 : x_lo;
|
||||
y_hi = y_lo < y_hi ? y_mid - 1 : y_lo;
|
||||
}
|
||||
else
|
||||
x_lo = x_mid, y_lo = y_mid;
|
||||
}
|
||||
|
@ -136,8 +136,8 @@ namespace polysat {
|
|||
}
|
||||
}
|
||||
SASSERT(x_lo * y_lo <= bound);
|
||||
SASSERT((x_lo + 1) * y_lo > bound);
|
||||
SASSERT(x_lo * (y_lo + 1) > bound);
|
||||
SASSERT((x_lo + 1) * y_lo > bound || x_val == x_max);
|
||||
SASSERT(x_lo * (y_lo + 1) > bound || y_val == y_max);
|
||||
|
||||
// inequalities are justified by current assignments to x, y
|
||||
// conflict resolution should be able to pick up this as a valid justification.
|
||||
|
@ -145,8 +145,8 @@ namespace polysat {
|
|||
// where we add explicit equality propagations from the current assignment.
|
||||
auto c1 = s.ule(x, pddm.mk_val(x_lo));
|
||||
auto c2 = s.ule(y, pddm.mk_val(y_lo));
|
||||
new_constraints.insert(c1);
|
||||
new_constraints.insert(c2);
|
||||
m_new_constraints.insert(c1);
|
||||
m_new_constraints.insert(c2);
|
||||
LOG("bounded " << bound << " : " << x << " " << x_max << " " << y << " " << y_max << " " << c1 << " " << c2);
|
||||
}
|
||||
|
||||
|
@ -161,7 +161,7 @@ namespace polysat {
|
|||
|
||||
// determine worst case upper bounds for x, y
|
||||
// then extract premises for a non-worst-case bound.
|
||||
void inf_saturate::push_omega(vector<signed_constraint>& new_constraints, pdd const& x, pdd const& y) {
|
||||
void inf_saturate::push_omega(pdd const& x, pdd const& y) {
|
||||
auto& pddm = x.manager();
|
||||
rational x_max = max_value(x);
|
||||
rational y_max = max_value(y);
|
||||
|
@ -169,12 +169,12 @@ namespace polysat {
|
|||
LOG("pushing " << x << " " << y);
|
||||
|
||||
if (x_max * y_max > pddm.max_value())
|
||||
push_omega_bisect(new_constraints, x, x_max, y, y_max);
|
||||
push_omega_bisect(x, x_max, y, y_max);
|
||||
else {
|
||||
for (auto c : s.m_cjust[y.var()])
|
||||
new_constraints.insert(c);
|
||||
m_new_constraints.insert(c);
|
||||
for (auto c : s.m_cjust[x.var()])
|
||||
new_constraints.insert(c);
|
||||
m_new_constraints.insert(c);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -273,6 +273,7 @@ namespace polysat {
|
|||
* [x] yx <= zx ==> Ω*(x,y) \/ y <= z \/ x = 0
|
||||
*/
|
||||
bool inf_saturate::try_ugt_x(pvar v, conflict& core, inequality const& c) {
|
||||
set_rule("zx <= yx");
|
||||
pdd x = s.var(v);
|
||||
pdd y = x;
|
||||
pdd z = x;
|
||||
|
@ -283,11 +284,11 @@ namespace polysat {
|
|||
if (!c.is_strict && s.get_value(v).is_zero())
|
||||
return false;
|
||||
|
||||
vector<signed_constraint> new_constraints;
|
||||
m_new_constraints.reset();
|
||||
if (!c.is_strict)
|
||||
new_constraints.push_back(~s.eq(x));
|
||||
push_omega(new_constraints, x, y);
|
||||
return propagate(core, c, c, c.is_strict, y, z, new_constraints);
|
||||
m_new_constraints.push_back(~s.eq(x));
|
||||
push_omega(x, y);
|
||||
return propagate(core, c, c, c.is_strict, y, z);
|
||||
}
|
||||
|
||||
/// [y] z' <= y /\ zx > yx ==> Ω*(x,y) \/ zx > z'x
|
||||
|
@ -301,16 +302,14 @@ namespace polysat {
|
|||
return false;
|
||||
|
||||
pdd const& z_prime = le_y.lhs;
|
||||
|
||||
vector<signed_constraint> new_constraints;
|
||||
new_constraints.push_back(le_y.as_signed_constraint());
|
||||
new_constraints.push_back(yx_l_zx.as_signed_constraint());
|
||||
push_omega(new_constraints, x, y);
|
||||
m_new_constraints.reset();
|
||||
push_omega(x, y);
|
||||
// z'x <= zx
|
||||
return propagate(core, le_y, yx_l_zx, yx_l_zx.is_strict || le_y.is_strict, z_prime * x, z * x, new_constraints);
|
||||
return propagate(core, le_y, yx_l_zx, yx_l_zx.is_strict || le_y.is_strict, z_prime * x, z * x);
|
||||
}
|
||||
|
||||
bool inf_saturate::try_ugt_y(pvar v, conflict& core, inequality const& c) {
|
||||
set_rule("z' <= y & yx <= zx");
|
||||
if (!is_l_v(v, c))
|
||||
return false;
|
||||
pdd x = s.var(v);
|
||||
|
@ -332,41 +331,44 @@ namespace polysat {
|
|||
/// [x] y <= ax /\ x <= z (non-overflow case)
|
||||
/// ==> Ω*(a, z) \/ y <= az
|
||||
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& c) {
|
||||
if (!is_g_v(x, c))
|
||||
return false;
|
||||
set_rule("y <= ax & x <= z");
|
||||
pdd y = s.var(x);
|
||||
pdd a = y;
|
||||
if (!is_Y_l_Ax(x, c, a, y))
|
||||
return false;
|
||||
|
||||
for (auto si : s.m_search) {
|
||||
if (!si.is_boolean())
|
||||
continue;
|
||||
auto dd = s.lit2cnstr(si.lit());
|
||||
if (!dd->is_ule())
|
||||
continue;
|
||||
if (dd.is_currently_true(s))
|
||||
continue;
|
||||
auto d = dd.as_inequality();
|
||||
if (is_Y_l_Ax(x, d, a, y) && try_y_l_ax_and_x_l_z(x, core, c, d, a, y))
|
||||
if (is_g_v(x, d) && try_y_l_ax_and_x_l_z(x, core, c, d, a, y))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& x_l_z, inequality const& y_l_ax, pdd const& a, pdd const& y) {
|
||||
bool inf_saturate::try_y_l_ax_and_x_l_z(pvar x, conflict& core, inequality const& y_l_ax, inequality const& x_l_z, pdd const& a, pdd const& y) {
|
||||
|
||||
SASSERT(is_g_v(x, x_l_z));
|
||||
SASSERT(verify_Y_l_Ax(x, y_l_ax, a, y));
|
||||
pdd z = x_l_z.rhs;
|
||||
if (!is_non_overflow(a, z))
|
||||
return false;
|
||||
vector<signed_constraint> new_constraints;
|
||||
new_constraints.push_back(x_l_z.as_signed_constraint());
|
||||
new_constraints.push_back(y_l_ax.as_signed_constraint());
|
||||
push_omega(new_constraints, a, z);
|
||||
return propagate(core, x_l_z, y_l_ax, x_l_z.is_strict || y_l_ax.is_strict, y, a * z, new_constraints);
|
||||
m_new_constraints.reset();
|
||||
push_omega(a, z);
|
||||
return propagate(core, x_l_z, y_l_ax, x_l_z.is_strict || y_l_ax.is_strict, y, a * z);
|
||||
}
|
||||
|
||||
|
||||
/// [z] z <= y' /\ zx > yx ==> Ω*(x,y') \/ y'x > yx
|
||||
/// [z] z <= y' /\ yx <= zx ==> Ω*(x,y') \/ yx <= y'x
|
||||
bool inf_saturate::try_ugt_z(pvar z, conflict& core, inequality const& c) {
|
||||
set_rule("ugt_z");
|
||||
if (!is_g_v(z, c))
|
||||
return false;
|
||||
pdd y = s.var(z);
|
||||
|
@ -377,6 +379,8 @@ namespace polysat {
|
|||
auto dd = s.lit2cnstr(si.lit());
|
||||
if (!dd->is_ule())
|
||||
continue;
|
||||
if (!dd.is_currently_false(s))
|
||||
continue;
|
||||
auto d = dd.as_inequality();
|
||||
if (is_YX_l_zX(z, d, x, y) && try_ugt_z(z, core, c, d, x, y))
|
||||
return true;
|
||||
|
@ -390,12 +394,10 @@ namespace polysat {
|
|||
pdd const& y_prime = z_l_y.rhs;
|
||||
if (!is_non_overflow(x, y_prime))
|
||||
return false;
|
||||
vector<signed_constraint> new_constraints;
|
||||
new_constraints.push_back(z_l_y.as_signed_constraint());
|
||||
new_constraints.push_back(yx_l_zx.as_signed_constraint());
|
||||
push_omega(new_constraints, x, y_prime);
|
||||
m_new_constraints.reset();
|
||||
push_omega(x, y_prime);
|
||||
// yx <= y'x
|
||||
return propagate(core, z_l_y, yx_l_zx, z_l_y.is_strict || yx_l_zx.is_strict, y * x, y_prime * x, new_constraints);
|
||||
return propagate(core, yx_l_zx, z_l_y, z_l_y.is_strict || yx_l_zx.is_strict, y * x, y_prime * x);
|
||||
}
|
||||
|
||||
// [x] p(x) <= q(x) where value(p) > value(q)
|
||||
|
@ -405,7 +407,8 @@ namespace polysat {
|
|||
// p(x) < q(x) where value(p) >= value(q)
|
||||
// ==> value(p) <= p => value(p) < q
|
||||
|
||||
bool inf_saturate::try_tangent(pvar v, conflict& core, inequality const& c) {
|
||||
bool inf_saturate::try_tangent(pvar v, conflict& core, inequality const& c) {
|
||||
set_rule("tangent");
|
||||
if (c.is_strict)
|
||||
return false;
|
||||
if (!c.src->contains_var(v))
|
||||
|
@ -421,17 +424,23 @@ namespace polysat {
|
|||
return false;
|
||||
SASSERT(c.is_strict || l_val > r_val);
|
||||
SASSERT(!c.is_strict || l_val >= r_val);
|
||||
vector<signed_constraint> new_constraints;
|
||||
new_constraints.push_back(c.as_signed_constraint());
|
||||
m_new_constraints.reset();
|
||||
m_new_constraints.push_back(c.as_signed_constraint());
|
||||
if (c.is_strict) {
|
||||
new_constraints.push_back(s.ule(l_val, c.lhs));
|
||||
auto d = s.ule(l_val, c.lhs);
|
||||
if (d.bvalue(s) == l_false) // it is a different value conflict that contains v
|
||||
return false;
|
||||
m_new_constraints.push_back(d);
|
||||
auto conseq = s.ult(r_val, c.rhs);
|
||||
return propagate(core, c, c, conseq, new_constraints);
|
||||
return propagate(core, c, c, conseq);
|
||||
}
|
||||
else {
|
||||
new_constraints.push_back(s.ule(c.rhs, r_val));
|
||||
auto d = s.ule(c.rhs, r_val);
|
||||
if (d.bvalue(s) == l_false) // it is a different value conflict that contains v
|
||||
return false;
|
||||
m_new_constraints.push_back(d);
|
||||
auto conseq = s.ule(c.lhs, r_val);
|
||||
return propagate(core, c, c, conseq, new_constraints);
|
||||
return propagate(core, c, c, conseq);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -34,13 +34,19 @@ namespace polysat {
|
|||
};
|
||||
|
||||
class inf_saturate : public inference_engine {
|
||||
|
||||
vector<signed_constraint> m_new_constraints;
|
||||
char const* m_rule = nullptr;
|
||||
|
||||
void set_rule(char const* r) { m_rule = r; }
|
||||
|
||||
bool find_upper_bound(pvar x, signed_constraint& c, rational& bound);
|
||||
|
||||
void push_omega(vector<signed_constraint>& new_constraints, pdd const& x, pdd const& y);
|
||||
void push_omega_bisect(vector<signed_constraint>& new_constraints, pdd const& x, rational x_max, pdd const& y, rational y_max);
|
||||
void push_omega(pdd const& x, pdd const& y);
|
||||
void push_omega_bisect(pdd const& x, rational x_max, pdd const& y, rational y_max);
|
||||
signed_constraint ineq(bool strict, pdd const& lhs, pdd const& rhs);
|
||||
bool propagate(conflict& core, inequality const& crit1, inequality const& crit2, signed_constraint& c, vector<signed_constraint>& new_constraints);
|
||||
bool propagate(conflict& core, inequality const& crit1, inequality const& crit2, bool strict, pdd const& lhs, pdd const& rhs, vector<signed_constraint>& new_constraints);
|
||||
bool propagate(conflict& core, inequality const& crit1, inequality const& crit2, signed_constraint& c);
|
||||
bool propagate(conflict& core, inequality const& crit1, inequality const& crit2, bool strict, pdd const& lhs, pdd const& rhs);
|
||||
|
||||
bool try_ugt_x(pvar v, conflict& core, inequality const& c);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue