mirror of
https://github.com/Z3Prover/z3
synced 2025-08-22 19:17:53 +00:00
bmc improvements, move fd_solver to self-contained directory
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
fd09b1a7d0
commit
e041ebbe80
21 changed files with 120 additions and 76 deletions
195
src/tactic/fd_solver/enum2bv_solver.cpp
Normal file
195
src/tactic/fd_solver/enum2bv_solver.cpp
Normal file
|
@ -0,0 +1,195 @@
|
|||
/*++
|
||||
Copyright (c) 2016 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
enum2bv_solver.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Finite domain solver.
|
||||
|
||||
Enumeration data-types are translated into bit-vectors, and then
|
||||
the incremental sat-solver is applied to the resulting assertions.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2016-10-17
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include "ast/bv_decl_plugin.h"
|
||||
#include "ast/datatype_decl_plugin.h"
|
||||
#include "ast/ast_pp.h"
|
||||
#include "model/model_smt2_pp.h"
|
||||
#include "tactic/tactic.h"
|
||||
#include "tactic/generic_model_converter.h"
|
||||
#include "solver/solver_na2as.h"
|
||||
#include "ast/rewriter/enum2bv_rewriter.h"
|
||||
#include "tactic/fd_solver/enum2bv_solver.h"
|
||||
|
||||
class enum2bv_solver : public solver_na2as {
|
||||
ast_manager& m;
|
||||
ref<solver> m_solver;
|
||||
enum2bv_rewriter m_rewriter;
|
||||
|
||||
public:
|
||||
|
||||
enum2bv_solver(ast_manager& m, params_ref const& p, solver* s):
|
||||
solver_na2as(m),
|
||||
m(m),
|
||||
m_solver(s),
|
||||
m_rewriter(m, p)
|
||||
{
|
||||
solver::updt_params(p);
|
||||
}
|
||||
|
||||
~enum2bv_solver() override {}
|
||||
|
||||
solver* translate(ast_manager& dst_m, params_ref const& p) override {
|
||||
solver* result = alloc(enum2bv_solver, dst_m, p, m_solver->translate(dst_m, p));
|
||||
model_converter_ref mc = external_model_converter();
|
||||
if (mc) {
|
||||
ast_translation tr(m, dst_m);
|
||||
result->set_model_converter(mc->translate(tr));
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
void assert_expr_core(expr * t) override {
|
||||
expr_ref tmp(t, m);
|
||||
expr_ref_vector bounds(m);
|
||||
proof_ref tmp_proof(m);
|
||||
m_rewriter(t, tmp, tmp_proof);
|
||||
m_solver->assert_expr(tmp);
|
||||
m_rewriter.flush_side_constraints(bounds);
|
||||
m_solver->assert_expr(bounds);
|
||||
}
|
||||
|
||||
void push_core() override {
|
||||
m_rewriter.push();
|
||||
m_solver->push();
|
||||
}
|
||||
|
||||
void pop_core(unsigned n) override {
|
||||
m_solver->pop(n);
|
||||
m_rewriter.pop(n);
|
||||
}
|
||||
|
||||
lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) override {
|
||||
m_solver->updt_params(get_params());
|
||||
return m_solver->check_sat(num_assumptions, assumptions);
|
||||
}
|
||||
|
||||
void updt_params(params_ref const & p) override { solver::updt_params(p); m_solver->updt_params(p); }
|
||||
void collect_param_descrs(param_descrs & r) override { m_solver->collect_param_descrs(r); }
|
||||
void set_produce_models(bool f) override { m_solver->set_produce_models(f); }
|
||||
void set_progress_callback(progress_callback * callback) override { m_solver->set_progress_callback(callback); }
|
||||
void collect_statistics(statistics & st) const override { m_solver->collect_statistics(st); }
|
||||
void get_unsat_core(expr_ref_vector & r) override { m_solver->get_unsat_core(r); }
|
||||
void get_model_core(model_ref & mdl) override {
|
||||
m_solver->get_model(mdl);
|
||||
if (mdl) {
|
||||
model_converter_ref mc = local_model_converter();
|
||||
if (mc) (*mc)(mdl);
|
||||
}
|
||||
}
|
||||
model_converter* local_model_converter() const {
|
||||
if (m_rewriter.enum2def().empty() &&
|
||||
m_rewriter.enum2bv().empty()) {
|
||||
return nullptr;
|
||||
}
|
||||
generic_model_converter* mc = alloc(generic_model_converter, m, "enum2bv");
|
||||
for (auto const& kv : m_rewriter.enum2bv())
|
||||
mc->hide(kv.m_value);
|
||||
for (auto const& kv : m_rewriter.enum2def())
|
||||
mc->add(kv.m_key, kv.m_value);
|
||||
return mc;
|
||||
}
|
||||
|
||||
model_converter* external_model_converter() const {
|
||||
return concat(mc0(), local_model_converter());
|
||||
}
|
||||
|
||||
model_converter_ref get_model_converter() const override {
|
||||
model_converter_ref mc = external_model_converter();
|
||||
mc = concat(mc.get(), m_solver->get_model_converter().get());
|
||||
return mc;
|
||||
}
|
||||
proof * get_proof() override { return m_solver->get_proof(); }
|
||||
std::string reason_unknown() const override { return m_solver->reason_unknown(); }
|
||||
void set_reason_unknown(char const* msg) override { m_solver->set_reason_unknown(msg); }
|
||||
void get_labels(svector<symbol> & r) override { m_solver->get_labels(r); }
|
||||
ast_manager& get_manager() const override { return m; }
|
||||
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override {
|
||||
return m_solver->find_mutexes(vars, mutexes);
|
||||
}
|
||||
expr_ref_vector cube(expr_ref_vector& vars, unsigned backtrack_level) override {
|
||||
return m_solver->cube(vars, backtrack_level);
|
||||
}
|
||||
|
||||
lbool get_consequences_core(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) override {
|
||||
datatype_util dt(m);
|
||||
bv_util bv(m);
|
||||
expr_ref_vector bvars(m), conseq(m), bounds(m);
|
||||
|
||||
// ensure that enumeration variables that
|
||||
// don't occur in the constraints
|
||||
// are also internalized.
|
||||
for (expr* v : vars) {
|
||||
expr_ref tmp(m.mk_eq(v, v), m);
|
||||
proof_ref proof(m);
|
||||
m_rewriter(tmp, tmp, proof);
|
||||
}
|
||||
m_rewriter.flush_side_constraints(bounds);
|
||||
m_solver->assert_expr(bounds);
|
||||
|
||||
// translate enumeration constants to bit-vectors.
|
||||
for (expr* v : vars) {
|
||||
func_decl* f = 0;
|
||||
if (is_app(v) && is_uninterp_const(v) && m_rewriter.enum2bv().find(to_app(v)->get_decl(), f)) {
|
||||
bvars.push_back(m.mk_const(f));
|
||||
}
|
||||
else {
|
||||
bvars.push_back(v);
|
||||
}
|
||||
}
|
||||
lbool r = m_solver->get_consequences(asms, bvars, consequences);
|
||||
|
||||
// translate bit-vector consequences back to enumeration types
|
||||
for (unsigned i = 0; i < consequences.size(); ++i) {
|
||||
expr* a = nullptr, *b = nullptr, *u = nullptr, *v = nullptr;
|
||||
func_decl* f;
|
||||
rational num;
|
||||
unsigned bvsize;
|
||||
VERIFY(m.is_implies(consequences[i].get(), a, b));
|
||||
if (m.is_eq(b, u, v) && is_uninterp_const(u) && m_rewriter.bv2enum().find(to_app(u)->get_decl(), f) && bv.is_numeral(v, num, bvsize)) {
|
||||
SASSERT(num.is_unsigned());
|
||||
expr_ref head(m);
|
||||
ptr_vector<func_decl> const& enums = *dt.get_datatype_constructors(f->get_range());
|
||||
if (enums.size() > num.get_unsigned()) {
|
||||
head = m.mk_eq(m.mk_const(f), m.mk_const(enums[num.get_unsigned()]));
|
||||
consequences[i] = m.mk_implies(a, head);
|
||||
}
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
|
||||
unsigned get_num_assertions() const override {
|
||||
return m_solver->get_num_assertions();
|
||||
}
|
||||
|
||||
expr * get_assertion(unsigned idx) const override {
|
||||
return m_solver->get_assertion(idx);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
solver * mk_enum2bv_solver(ast_manager & m, params_ref const & p, solver* s) {
|
||||
return alloc(enum2bv_solver, m, p, s);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue