3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

add intersection using symbolic automata facility

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2016-02-28 17:05:12 -08:00
parent 4cf72e23e6
commit df2d7e7628
8 changed files with 561 additions and 28 deletions

View file

@ -178,15 +178,19 @@ public:
return alloc(automaton, a.m, a.init(), final, mvs);
}
automaton* clone() const {
return clone(*this);
}
// create the sum of disjoint automata
static automaton* mk_union(automaton const& a, automaton const& b) {
SASSERT(&a.m == &b.m);
M& m = a.m;
if (a.is_empty()) {
return clone(b);
return b.clone();
}
if (b.is_empty()) {
return clone(a);
return a.clone();
}
moves mvs;
unsigned_vector final;
@ -213,7 +217,7 @@ public:
mvs.push_back(move(m, 0, a.init() + offset));
}
if (a.is_empty()) {
return clone(a);
return a.clone();
}
mvs.push_back(move(m, init, a.final_state() + offset));
@ -227,16 +231,16 @@ public:
SASSERT(&a.m == &b.m);
M& m = a.m;
if (a.is_empty()) {
return clone(a);
return a.clone();
}
if (b.is_empty()) {
return clone(b);
return b.clone();
}
if (a.is_epsilon()) {
return clone(b);
return b.clone();
}
if (b.is_epsilon()) {
return clone(a);
return a.clone();
}
moves mvs;
@ -458,6 +462,7 @@ public:
}
unsigned init() const { return m_init; }
unsigned_vector const& final_states() const { return m_final_states; }
unsigned in_degree(unsigned state) const { return m_delta_inv[state].size(); }
unsigned out_degree(unsigned state) const { return m_delta[state].size(); }
move const& get_move_from(unsigned state) const { SASSERT(m_delta[state].size() == 1); return m_delta[state][0]; }

View file

@ -0,0 +1,46 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
boolean_algebra.h
Abstract:
Boolean Algebra, a la Margus Veanes Automata library.
Author:
Nikolaj Bjorner (nbjorner) 2016-2-27
Revision History:
--*/
#ifndef BOOLEAN_ALGEBRA_H_
#define BOOLEAN_ALGEBRA_H_
#include "util.h"
template<class T>
class positive_boolean_algebra {
public:
virtual T mk_false() = 0;
virtual T mk_true() = 0;
virtual T mk_and(T x, T y) = 0;
virtual T mk_or(T x, T y) = 0;
virtual T mk_and(unsigned sz, T const* ts) = 0;
virtual T mk_or(unsigned sz, T const* ts) = 0;
virtual lbool is_sat(T x) = 0;
};
template<class T>
class boolean_algebra : public positive_boolean_algebra<T> {
public:
virtual T mk_not(T x) = 0;
//virtual lbool are_equivalent(T x, T y) = 0;
//virtual T simplify(T x) = 0;
};
#endif

View file

@ -0,0 +1,104 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
symbolic_automata.h
Abstract:
Symbolic Automata over Boolean Algebras, a la Margus Veanes Automata library.
Author:
Nikolaj Bjorner (nbjorner) 2016-02-27.
Revision History:
--*/
#ifndef SYMBOLIC_AUTOMATA_H_
#define SYMBOLIC_AUTOMATA_H_
#include "automaton.h"
#include "boolean_algebra.h"
template<class T, class M = default_value_manager<T> >
class symbolic_automata {
typedef automaton<T, M> automaton_t;
typedef boolean_algebra<T*> ba_t;
typedef typename automaton_t::move move_t;
typedef vector<move_t> moves_t;
typedef obj_ref<T, M> ref_t;
typedef ref_vector<T, M> refs_t;
M& m;
ba_t& m_ba;
class block {
uint_set m_set;
unsigned m_rep;
bool m_rep_chosen;
public:
block(): m_rep(0), m_rep_chosen(false) {}
block(uint_set const& s):
m_set(s),
m_rep(0),
m_rep_chosen(false) {
}
block(unsigned_vector const& vs) {
for (unsigned i = 0; i < vs.size(); ++i) {
m_set.insert(vs[i]);
}
m_rep_chosen = false;
m_rep = 0;
}
block& operator=(block const& b) {
m_set = b.m_set;
m_rep = 0;
m_rep_chosen = false;
return *this;
}
unsigned get_representative() {
if (!m_rep_chosen) {
uint_set::iterator it = m_set.begin();
if (m_set.end() != it) {
m_rep = *it;
}
m_rep_chosen = true;
}
return m_rep;
}
void add(unsigned i) { m_set.insert(i); }
bool contains(unsigned i) const { return m_set.contains(i); }
bool is_empty() const { return m_set.empty(); }
unsigned size() const { return m_set.num_elems(); }
void remove(unsigned i) { m_set.remove(i); m_rep_chosen = false; }
void clear() { m_set.reset(); m_rep_chosen = false; }
uint_set::iterator begin() { return m_set.begin(); }
uint_set::iterator end() { return m_set.end(); }
};
public:
symbolic_automata(M& m, ba_t& ba): m(m), m_ba(ba) {}
automaton_t* mk_determinstic(automaton_t& a);
automaton_t* mk_complement(automaton_t& a);
automaton_t* remove_epsilons(automaton_t& a);
automaton_t* mk_total(automaton_t& a);
automaton_t* mk_minimize(automaton_t& a);
automaton_t* mk_product(automaton_t& a, automaton_t& b);
};
#endif

View file

@ -0,0 +1,227 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
symbolic_automata_def.h
Abstract:
Symbolic Automata over Boolean Algebras, a la Margus Veanes Automata library.
Author:
Nikolaj Bjorner (nbjorner) 2016-02-27.
Revision History:
--*/
#ifndef SYMBOLIC_AUTOMATA_DEF_H_
#define SYMBOLIC_AUTOMATA_DEF_H_
#include "symbolic_automata.h"
#include "hashtable.h"
typedef std::pair<unsigned, unsigned> unsigned_pair;
template<class T, class M>
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_total(automaton_t& a) {
unsigned dead_state = a.num_states();
moves_t mvs;
for (unsigned i = 0; i < dead_state; ++i) {
mvs.reset();
a.get_moves(i, mvs, true);
refs_t vs(m);
for (unsigned j = 0; j < mvs.size(); ++j) {
mv.push_back(mvs[j]());
}
ref_t cond(m_ba.mk_not(m_ba.mk_or(vs.size(), vs.c_ptr())), m);
lbool is_sat = m_ba.is_sat(cond);
if (is_sat == l_undef) {
return 0;
}
if (is_sat == l_true) {
new_mvs.push_back(move_t(m, i, dead_state, cond));
}
}
if (new_mvs.empty()) {
return a.clone();
}
new_mvs.push_back(move_t(m, dead_state, dead_state, m_ba.mk_true()));
automaton_t::append_moves(0, a, new_mvs);
return alloc(automaton_t, m, a.init(), a.final_states(), new_mvs);
}
template<class T, class M>
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_minimize(automaton_t& a) {
if (a.is_empty()) {
return a.clone();
}
if (a.is_epsilon()) {
return a.clone();
}
// SASSERT(a.is_deterministic());
scoped_ptr<automaton_t> fa = mk_total(a);
if (!fa) {
return 0;
}
block final_block(fa->final_states());
block non_final_block(fa->non_final_states());
vector<block> blocks;
for (unsigned i = 0; i < fa->num_states(); ++i) {
if (fa->is_final_state(i)) {
blocks.push_back(final_block);
}
else {
blocks.push_back(non_final_block);
}
}
vector<block> W;
if (final_block.size() > non_final_block.size()) {
W.push_back(non_final_block);
}
else {
W.push_back(final_block);
}
#if 0
refs_t trail(m);
u_map<T*> gamma;
moves_t mvs;
while (!W.empty()) {
block R(W.back());
W.pop_back();
block Rcopy(R);
gamma.reset();
uint_set::iterator it = Rcopy.begin(), end = Rcopy.end();
for (; it != end; ++it) {
unsigned q = *it;
mvs.reset();
fa->get_moves_to(q, mvs);
for (unsigned i = 0; i < mvs.size(); ++i) {
unsigned src = mvs[i].src();
if (blocks[src].size() > 1) {
T* t = mvs[i]();
if (gamma.find(src, t1)) {
t = m_ba.mk_or(t, t1);
trail.push_back(t);
}
gamma.insert(src, t);
}
}
}
hashtable<block*> relevant;
u_map<T*>::iterator end = gamma.end();
for (u_map<T*>::iterator it = gamma.begin(); it != end; ++it) {
relevant.insert(blocks[it->m_key]);
}
}
#endif
return 0;
}
template<class T, class M>
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_product(automaton_t& a, automaton_t& b) {
map<unsigned_pair, unsigned, pair_hash<unsigned_hash, unsigned_hash>, default_eq<unsigned_pair> > state_ids;
unsigned_pair init_pair(a.init(), b.init());
svector<unsigned_pair> todo;
todo.push_back(init_pair);
state_ids.insert(init_pair, 0);
moves_t mvs;
unsigned_vector final;
if (a.is_final_state(a.init()) && b.is_final_state(b.init())) {
final.push_back(0);
}
unsigned n = 1;
moves_t mvsA, mvsB;
while (!todo.empty()) {
unsigned_pair curr_pair = todo.back();
todo.pop_back();
unsigned src = state_ids[curr_pair];
mvsA.reset(); mvsB.reset();
a.get_moves_from(curr_pair.first, mvsA, true);
b.get_moves_from(curr_pair.second, mvsB, true);
for (unsigned i = 0; i < mvsA.size(); ++i) {
for (unsigned j = 0; j < mvsB.size(); ++j) {
ref_t ab(m_ba.mk_and(mvsA[i].t(), mvsB[j].t()), m);
lbool is_sat = m_ba.is_sat(ab);
if (is_sat == l_false) {
continue;
}
else if (is_sat == l_undef) {
return 0;
}
unsigned_pair tgt_pair(mvsA[i].dst(), mvsB[j].dst());
unsigned tgt;
if (!state_ids.find(tgt_pair, tgt)) {
tgt = n++;
state_ids.insert(tgt_pair, tgt);
todo.push_back(tgt_pair);
if (a.is_final_state(tgt_pair.first) && b.is_final_state(tgt_pair.second)) {
final.push_back(tgt);
}
}
mvs.push_back(move_t(m, src, tgt, ab));
}
}
}
if (final.empty()) {
return alloc(automaton_t, m);
}
vector<moves_t> inv(n, moves_t());
for (unsigned i = 0; i < mvs.size(); ++i) {
move_t const& mv = mvs[i];
inv[mv.dst()].push_back(move_t(m, mv.dst(), mv.src(), mv.t()));
}
svector<bool> back_reachable(n, false);
for (unsigned i = 0; i < final.size(); ++i) {
back_reachable[final[i]] = true;
}
unsigned_vector stack(final);
while (!stack.empty()) {
unsigned state = stack.back();
stack.pop_back();
moves_t const& mv = inv[state];
for (unsigned i = 0; i < mv.size(); ++i) {
state = mv[i].dst();
if (!back_reachable[state]) {
back_reachable[state] = true;
stack.push_back(state);
}
}
}
moves_t mvs1;
for (unsigned i = 0; i < mvs.size(); ++i) {
move_t const& mv = mvs[i];
if (back_reachable[mv.dst()]) {
mvs1.push_back(mv);
}
}
if (mvs1.empty()) {
return alloc(automaton_t, m);
}
else {
return alloc(automaton_t, m, 0, final, mvs1);
}
}
#endif