3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-24 06:43:40 +00:00

add sorting-based pb encoding in the style of minisat+

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-02-19 11:31:34 -08:00
parent c347018cb8
commit dc588b54f7
3 changed files with 263 additions and 88 deletions

View file

@ -96,10 +96,10 @@ struct pb2bv_rewriter::imp {
case l_undef: tout << "= "; break;
case l_false: tout << ">= "; break;
}
tout << m_k << "\n";);
tout << k << "\n";);
if (k.is_zero()) {
if (is_le != l_false) {
return expr_ref(m.mk_not(mk_or(m, sz, args)), m);
return expr_ref(m.mk_not(::mk_or(m, sz, args)), m);
}
else {
return expr_ref(m.mk_true(), m);
@ -108,6 +108,15 @@ struct pb2bv_rewriter::imp {
if (k.is_neg()) {
return expr_ref((is_le == l_false)?m.mk_true():m.mk_false(), m);
}
expr_ref result(m);
switch (is_le) {
case l_true: if (mk_le(sz, args, k, result)) return result; else break;
case l_false: if (mk_ge(sz, args, k, result)) return result; else break;
case l_undef: if (mk_eq(sz, args, k, result)) return result; else break;
}
// fall back to divide and conquer encoding.
SASSERT(k.is_pos());
expr_ref zero(m), bound(m);
expr_ref_vector es(m), fmls(m);
@ -139,12 +148,12 @@ struct pb2bv_rewriter::imp {
}
switch (is_le) {
case l_true:
return mk_and(fmls);
return ::mk_and(fmls);
case l_false:
if (!es.empty()) {
fmls.push_back(bv.mk_ule(bound, es.back()));
}
return mk_or(fmls);
return ::mk_or(fmls);
case l_undef:
if (es.empty()) {
fmls.push_back(m.mk_bool_val(k.is_zero()));
@ -152,13 +161,180 @@ struct pb2bv_rewriter::imp {
else {
fmls.push_back(m.mk_eq(bound, es.back()));
}
return mk_and(fmls);
return ::mk_and(fmls);
default:
UNREACHABLE();
return expr_ref(m.mk_true(), m);
}
}
/**
\brief MiniSat+ based encoding of PB constraints.
The procedure is described in "Translating Pseudo-Boolean Constraints into SAT "
         Niklas Een, Niklas Sörensson, JSAT 2006.
*/
const unsigned primes[7] = { 2, 3, 5, 7, 11, 13, 17};
vector<rational> m_min_base;
rational m_min_cost;
vector<rational> m_base;
void create_basis(vector<rational> const& seq, rational carry_in, rational cost) {
if (cost >= m_min_cost) {
return;
}
rational delta_cost(0);
for (unsigned i = 0; i < seq.size(); ++i) {
delta_cost += seq[i];
}
if (cost + delta_cost < m_min_cost) {
m_min_cost = cost + delta_cost;
m_min_base = m_base;
m_min_base.push_back(delta_cost + rational::one());
}
for (unsigned i = 0; i < sizeof(primes)/sizeof(*primes); ++i) {
vector<rational> seq1;
rational p(primes[i]);
rational rest = carry_in;
// create seq1
for (unsigned j = 0; j < seq.size(); ++j) {
rest += seq[j] % p;
if (seq[j] >= p) {
seq1.push_back(div(seq[j], p));
}
}
m_base.push_back(p);
create_basis(seq1, div(rest, p), cost + rest);
m_base.pop_back();
}
}
bool create_basis() {
m_base.reset();
m_min_cost = rational(INT_MAX);
m_min_base.reset();
rational cost(0);
create_basis(m_coeffs, rational::zero(), cost);
m_base = m_min_base;
TRACE("pb",
tout << "Base: ";
for (unsigned i = 0; i < m_base.size(); ++i) {
tout << m_base[i] << " ";
}
tout << "\n";);
return
!m_base.empty() &&
m_base.back().is_unsigned() &&
m_base.back().get_unsigned() <= 20*m_base.size();
}
/**
\brief Check if 'out mod n >= lim'.
*/
expr_ref mod_ge(ptr_vector<expr> const& out, unsigned n, unsigned lim) {
TRACE("pb", for (unsigned i = 0; i < out.size(); ++i) tout << mk_pp(out[i], m) << " "; tout << "\n";
tout << "n:" << n << " lim: " << lim << "\n";);
if (lim == n) {
return expr_ref(m.mk_false(), m);
}
if (lim == 0) {
return expr_ref(m.mk_true(), m);
}
SASSERT(0 < lim && lim < n);
expr_ref_vector ors(m);
for (unsigned j = 0; j + lim - 1 < out.size(); j += n) {
expr_ref tmp(m);
tmp = out[j + lim - 1];
if (j + n < out.size()) {
tmp = m.mk_and(tmp, m.mk_not(out[j + n]));
}
ors.push_back(tmp);
}
return ::mk_or(ors);
}
bool mk_ge(unsigned sz, expr * const* args, rational bound, expr_ref& result) {
if (!create_basis()) return false;
if (!bound.is_unsigned()) return false;
vector<rational> coeffs(m_coeffs);
result = m.mk_true();
expr_ref_vector carry(m), new_carry(m);
for (unsigned i = 0; i < m_base.size(); ++i) {
rational b_i = m_base[i];
unsigned B = b_i.get_unsigned();
unsigned d_i = (bound % b_i).get_unsigned();
bound = div(bound, b_i);
for (unsigned j = 0; j < coeffs.size(); ++j) {
rational c = coeffs[j] % b_i;
SASSERT(c.is_unsigned());
for (unsigned k = 0; k < c.get_unsigned(); ++k) {
carry.push_back(args[j]);
}
coeffs[j] = div(coeffs[j], b_i);
}
TRACE("pb", tout << "Carry: " << carry << "\n";
for (unsigned j = 0; j < coeffs.size(); ++j) tout << coeffs[j] << " ";
tout << "\n";
);
ptr_vector<expr> out;
m_sort.sorting(carry.size(), carry.c_ptr(), out);
expr_ref gt = mod_ge(out, B, d_i + 1);
expr_ref ge = mod_ge(out, B, d_i);
result = mk_or(gt, mk_and(ge, result));
TRACE("pb", tout << result << "\n";);
new_carry.reset();
for (unsigned j = B - 1; j < out.size(); j += B) {
new_carry.push_back(out[j]);
}
carry.reset();
carry.append(new_carry);
}
TRACE("pb", tout << result << "\n";);
return true;
}
expr_ref mk_and(expr_ref& a, expr_ref& b) {
if (m.is_true(a)) return b;
if (m.is_true(b)) return a;
if (m.is_false(a)) return a;
if (m.is_false(b)) return b;
return expr_ref(m.mk_and(a, b), m);
}
expr_ref mk_or(expr_ref& a, expr_ref& b) {
if (m.is_true(a)) return a;
if (m.is_true(b)) return b;
if (m.is_false(a)) return b;
if (m.is_false(b)) return a;
return expr_ref(m.mk_or(a, b), m);
}
bool mk_le(unsigned sz, expr * const* args, rational const& k, expr_ref& result) {
expr_ref_vector args1(m);
rational bound(-k);
for (unsigned i = 0; i < sz; ++i) {
args1.push_back(mk_not(args[i]));
bound += m_coeffs[i];
}
return mk_ge(sz, args1.c_ptr(), bound, result);
}
bool mk_eq(unsigned sz, expr * const* args, rational const& k, expr_ref& result) {
expr_ref r1(m), r2(m);
if (mk_ge(sz, args, k, r1) && mk_le(sz, args, k, r2)) {
result = m.mk_and(r1, r2);
return true;
}
else {
return false;
}
}
expr_ref mk_bv(func_decl * f, unsigned sz, expr * const* args) {
decl_kind kind = f->get_decl_kind();
rational k = pb.get_k(f);
@ -403,7 +579,7 @@ struct pb2bv_rewriter::imp {
}
void mk_clause(unsigned n, literal const* lits) {
m_imp.m_lemmas.push_back(mk_or(m, n, lits));
m_imp.m_lemmas.push_back(::mk_or(m, n, lits));
}
void keep_cardinality_constraints(bool f) {