3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-09-09 19:21:24 +00:00

Typo Fixes (#6803)

This commit is contained in:
THE Spellchecker 2023-07-09 14:56:10 -04:00 committed by GitHub
parent 28a0c2d18f
commit dc0887db5a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
43 changed files with 1811 additions and 1811 deletions

View file

@ -1121,7 +1121,7 @@ bool arith_rewriter::divides(expr* num, expr* den, expr_ref& result) {
if (m_util.is_numeral(arg, num_r)) num_e = arg;
}
for (expr* arg : args2) {
// dont remove divisor on (div (* -1 x) (* -1 y)) because rewriting would diverge.
// don't remove divisor on (div (* -1 x) (* -1 y)) because rewriting would diverge.
if (mark.is_marked(arg) && (!m_util.is_numeral(arg, num_r) || !num_r.is_minus_one())) {
result = remove_divisor(arg, num, den);
return true;
@ -1619,7 +1619,7 @@ br_status arith_rewriter::mk_abs_core(expr * arg, expr_ref & result) {
}
// Return true if t is of the form c*Pi where c is a numeral.
// Return true if t is of the form c*Pi where c is a numeral.
// Store c into k
bool arith_rewriter::is_pi_multiple(expr * t, rational & k) {
if (m_util.is_pi(t)) {
@ -1630,7 +1630,7 @@ bool arith_rewriter::is_pi_multiple(expr * t, rational & k) {
return m_util.is_mul(t, a, b) && m_util.is_pi(b) && m_util.is_numeral(a, k);
}
// Return true if t is of the form (+ s c*Pi) where c is a numeral.
// Return true if t is of the form (+ s c*Pi) where c is a numeral.
// Store c into k, and c*Pi into m.
bool arith_rewriter::is_pi_offset(expr * t, rational & k, expr * & m) {
if (m_util.is_add(t)) {
@ -1943,7 +1943,7 @@ br_status arith_rewriter::mk_tan_core(expr * arg, expr_ref & result) {
br_status arith_rewriter::mk_asin_core(expr * arg, expr_ref & result) {
// Remark: we assume that ForAll x : asin(-x) == asin(x).
// Mathematica uses this as an axiom. Although asin is an underspecified function for x < -1 or x > 1.
// Actually, in Mathematica, asin(x) is a total function that returns a complex number fo x < -1 or x > 1.
// Actually, in Mathematica, asin(x) is a total function that returns a complex number for x < -1 or x > 1.
rational k;
if (is_numeral(arg, k)) {
if (k.is_zero()) {