mirror of
https://github.com/Z3Prover/z3
synced 2025-09-09 19:21:24 +00:00
Typo Fixes (#6803)
This commit is contained in:
parent
28a0c2d18f
commit
dc0887db5a
43 changed files with 1811 additions and 1811 deletions
|
@ -1121,7 +1121,7 @@ bool arith_rewriter::divides(expr* num, expr* den, expr_ref& result) {
|
|||
if (m_util.is_numeral(arg, num_r)) num_e = arg;
|
||||
}
|
||||
for (expr* arg : args2) {
|
||||
// dont remove divisor on (div (* -1 x) (* -1 y)) because rewriting would diverge.
|
||||
// don't remove divisor on (div (* -1 x) (* -1 y)) because rewriting would diverge.
|
||||
if (mark.is_marked(arg) && (!m_util.is_numeral(arg, num_r) || !num_r.is_minus_one())) {
|
||||
result = remove_divisor(arg, num, den);
|
||||
return true;
|
||||
|
@ -1619,7 +1619,7 @@ br_status arith_rewriter::mk_abs_core(expr * arg, expr_ref & result) {
|
|||
}
|
||||
|
||||
|
||||
// Return true if t is of the form c*Pi where c is a numeral.
|
||||
// Return true if t is of the form c*Pi where c is a numeral.
|
||||
// Store c into k
|
||||
bool arith_rewriter::is_pi_multiple(expr * t, rational & k) {
|
||||
if (m_util.is_pi(t)) {
|
||||
|
@ -1630,7 +1630,7 @@ bool arith_rewriter::is_pi_multiple(expr * t, rational & k) {
|
|||
return m_util.is_mul(t, a, b) && m_util.is_pi(b) && m_util.is_numeral(a, k);
|
||||
}
|
||||
|
||||
// Return true if t is of the form (+ s c*Pi) where c is a numeral.
|
||||
// Return true if t is of the form (+ s c*Pi) where c is a numeral.
|
||||
// Store c into k, and c*Pi into m.
|
||||
bool arith_rewriter::is_pi_offset(expr * t, rational & k, expr * & m) {
|
||||
if (m_util.is_add(t)) {
|
||||
|
@ -1943,7 +1943,7 @@ br_status arith_rewriter::mk_tan_core(expr * arg, expr_ref & result) {
|
|||
br_status arith_rewriter::mk_asin_core(expr * arg, expr_ref & result) {
|
||||
// Remark: we assume that ForAll x : asin(-x) == asin(x).
|
||||
// Mathematica uses this as an axiom. Although asin is an underspecified function for x < -1 or x > 1.
|
||||
// Actually, in Mathematica, asin(x) is a total function that returns a complex number fo x < -1 or x > 1.
|
||||
// Actually, in Mathematica, asin(x) is a total function that returns a complex number for x < -1 or x > 1.
|
||||
rational k;
|
||||
if (is_numeral(arg, k)) {
|
||||
if (k.is_zero()) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue