mirror of
https://github.com/Z3Prover/z3
synced 2025-04-23 09:05:31 +00:00
Typo Fixes (#6803)
This commit is contained in:
parent
28a0c2d18f
commit
dc0887db5a
43 changed files with 1811 additions and 1811 deletions
|
@ -651,7 +651,7 @@ func_decl * bv_decl_plugin::mk_func_decl(decl_kind k, unsigned num_parameters, p
|
|||
for (unsigned i = 0; i < num_args; ++i) {
|
||||
if (args[i]->get_sort() != r->get_domain(i)) {
|
||||
std::ostringstream buffer;
|
||||
buffer << "Argument " << mk_pp(args[i], m) << " at position " << i << " has sort " << mk_pp(args[i]->get_sort(), m) << " it does does not match declaration " << mk_pp(r, m);
|
||||
buffer << "Argument " << mk_pp(args[i], m) << " at position " << i << " has sort " << mk_pp(args[i]->get_sort(), m) << " it does not match declaration " << mk_pp(r, m);
|
||||
m.raise_exception(buffer.str());
|
||||
return nullptr;
|
||||
}
|
||||
|
|
|
@ -96,7 +96,7 @@ enum bv_op_kind {
|
|||
OP_BUMUL_OVFL, // unsigned multiplication overflow predicate (negation of OP_BUMUL_NO_OVFL)
|
||||
OP_BSMUL_OVFL, // signed multiplication over/underflow predicate
|
||||
|
||||
OP_BSDIV_OVFL, // signed division overflow perdicate
|
||||
OP_BSDIV_OVFL, // signed division overflow predicate
|
||||
|
||||
OP_BNEG_OVFL, // negation overflow predicate
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@ Module Name:
|
|||
|
||||
Abstract:
|
||||
|
||||
char_plugin for unicode suppport
|
||||
char_plugin for unicode support
|
||||
|
||||
Author:
|
||||
|
||||
|
|
|
@ -7,7 +7,7 @@ Module Name:
|
|||
|
||||
Abstract:
|
||||
|
||||
char_plugin for unicode suppport
|
||||
char_plugin for unicode support
|
||||
|
||||
Author:
|
||||
|
||||
|
|
|
@ -78,7 +78,7 @@ public:
|
|||
*
|
||||
* x = t -> fresh
|
||||
* x := if(fresh, t, diff(t))
|
||||
* where diff is a diagnonalization function available in domains of size > 1.
|
||||
* where diff is a diagonalization function available in domains of size > 1.
|
||||
*
|
||||
*/
|
||||
|
||||
|
@ -807,7 +807,7 @@ bool iexpr_inverter::uncnstr(unsigned num, expr * const * args) const {
|
|||
|
||||
/**
|
||||
\brief Create a fresh variable for abstracting (f args[0] ... args[num-1])
|
||||
Return true if it a new variable was created, and false if the variable already existed for this
|
||||
Return true if a new variable was created, and false if the variable already existed for this
|
||||
application. Store the variable in v
|
||||
*/
|
||||
void iexpr_inverter::mk_fresh_uncnstr_var_for(sort * s, expr_ref & v) {
|
||||
|
|
|
@ -275,7 +275,7 @@ namespace datatype {
|
|||
}
|
||||
parameter const & name = parameters[0];
|
||||
if (!name.is_symbol()) {
|
||||
TRACE("datatype", tout << "expected symol parameter at position " << 0 << " got: " << name << "\n";);
|
||||
TRACE("datatype", tout << "expected symbol parameter at position " << 0 << " got: " << name << "\n";);
|
||||
throw invalid_datatype();
|
||||
}
|
||||
for (unsigned i = 1; i < num_parameters; ++i) {
|
||||
|
|
|
@ -52,7 +52,7 @@ namespace datatype {
|
|||
class accessor {
|
||||
symbol m_name;
|
||||
sort_ref m_range;
|
||||
unsigned m_index; // reference to recursive data-type may only get resolved after all mutually recursive data-types are procssed.
|
||||
unsigned m_index; // reference to recursive data-type may only get resolved after all mutually recursive data-types are processed.
|
||||
constructor* m_constructor{ nullptr };
|
||||
public:
|
||||
accessor(ast_manager& m, symbol const& n, sort* range):
|
||||
|
|
|
@ -19,7 +19,7 @@ Notes:
|
|||
- data structures form the (legacy) SMT solver.
|
||||
- it still uses eager path compression.
|
||||
|
||||
NB. The worklist is in reality inheritied from the legacy SMT solver.
|
||||
NB. The worklist is in reality inherited from the legacy SMT solver.
|
||||
It is claimed to have the same effect as delayed congruence table reconstruction from egg.
|
||||
Similar to the legacy solver, parents are partially deduplicated.
|
||||
|
||||
|
|
|
@ -16,7 +16,7 @@ Author:
|
|||
Notes:
|
||||
|
||||
- congruence closure justifications are given a timestamp so it is easy to sort them.
|
||||
See the longer descriptoin in euf_proof_checker.cpp
|
||||
See the longer description in euf_proof_checker.cpp
|
||||
|
||||
--*/
|
||||
|
||||
|
|
|
@ -65,7 +65,7 @@ bool macro_finder::is_arith_macro(expr * n, proof * pr, bool deps_valid, expr_de
|
|||
// functions introduced within macros are Skolem functions
|
||||
// To avoid unsound expansion of these as macros (because they
|
||||
// appear in model conversions and are therefore not fully
|
||||
// replacable) we prevent these from being treated as macro functions.
|
||||
// replaceable) we prevent these from being treated as macro functions.
|
||||
if (m_macro_manager.contains(f) || f->is_skolem())
|
||||
return false;
|
||||
|
||||
|
|
|
@ -32,7 +32,7 @@ Revision History:
|
|||
where T[X] does not contain f.
|
||||
|
||||
This class is responsible for storing macros and expanding them.
|
||||
It has support for backtracking and tagging declarations in an expression as forbidded for being macros.
|
||||
It has support for backtracking and tagging declarations in an expression as forbidden for being macros.
|
||||
*/
|
||||
class macro_manager {
|
||||
ast_manager & m;
|
||||
|
|
|
@ -207,7 +207,7 @@ void defined_names::impl::mk_definition(expr * e, app * n, sort_ref_buffer & var
|
|||
// the instantiation rules for store(a, i, v) are:
|
||||
// store(a, i, v)[j] = if i = j then v else a[j] with patterns {a[j], store(a, i, v)} { store(a, i, v)[j] }
|
||||
// The first pattern is not included.
|
||||
// TBD use a model-based scheme for exracting instantiations instead of
|
||||
// TBD use a model-based scheme for extracting instantiations instead of
|
||||
// using multi-patterns.
|
||||
//
|
||||
|
||||
|
|
|
@ -260,7 +260,7 @@ class reduce_hypotheses {
|
|||
{ cls.push_back(cls_fact->get_arg(i)); }
|
||||
} else { cls.push_back(cls_fact); }
|
||||
|
||||
// construct new resovent
|
||||
// construct new resolvent
|
||||
ptr_buffer<expr> new_fact_cls;
|
||||
bool found;
|
||||
// XXX quadratic
|
||||
|
@ -604,7 +604,7 @@ public:
|
|||
// -- otherwise, the fact has not changed. nothing to simplify
|
||||
SASSERT(m.get_fact(tmp) == m.get_fact(m.get_parent(p, i)));
|
||||
parents.push_back(tmp);
|
||||
// remember that we have this derivation while we have not poped the trail
|
||||
// remember that we have this derivation while we have not popped the trail
|
||||
// but only if the proof is closed (i.e., a real unit)
|
||||
if (is_closed(tmp) && !m_units.contains(m.get_fact(tmp))) {
|
||||
m_units.insert(m.get_fact(tmp), tmp);
|
||||
|
|
|
@ -1121,7 +1121,7 @@ bool arith_rewriter::divides(expr* num, expr* den, expr_ref& result) {
|
|||
if (m_util.is_numeral(arg, num_r)) num_e = arg;
|
||||
}
|
||||
for (expr* arg : args2) {
|
||||
// dont remove divisor on (div (* -1 x) (* -1 y)) because rewriting would diverge.
|
||||
// don't remove divisor on (div (* -1 x) (* -1 y)) because rewriting would diverge.
|
||||
if (mark.is_marked(arg) && (!m_util.is_numeral(arg, num_r) || !num_r.is_minus_one())) {
|
||||
result = remove_divisor(arg, num, den);
|
||||
return true;
|
||||
|
@ -1619,7 +1619,7 @@ br_status arith_rewriter::mk_abs_core(expr * arg, expr_ref & result) {
|
|||
}
|
||||
|
||||
|
||||
// Return true if t is of the form c*Pi where c is a numeral.
|
||||
// Return true if t is of the form c*Pi where c is a numeral.
|
||||
// Store c into k
|
||||
bool arith_rewriter::is_pi_multiple(expr * t, rational & k) {
|
||||
if (m_util.is_pi(t)) {
|
||||
|
@ -1630,7 +1630,7 @@ bool arith_rewriter::is_pi_multiple(expr * t, rational & k) {
|
|||
return m_util.is_mul(t, a, b) && m_util.is_pi(b) && m_util.is_numeral(a, k);
|
||||
}
|
||||
|
||||
// Return true if t is of the form (+ s c*Pi) where c is a numeral.
|
||||
// Return true if t is of the form (+ s c*Pi) where c is a numeral.
|
||||
// Store c into k, and c*Pi into m.
|
||||
bool arith_rewriter::is_pi_offset(expr * t, rational & k, expr * & m) {
|
||||
if (m_util.is_add(t)) {
|
||||
|
@ -1943,7 +1943,7 @@ br_status arith_rewriter::mk_tan_core(expr * arg, expr_ref & result) {
|
|||
br_status arith_rewriter::mk_asin_core(expr * arg, expr_ref & result) {
|
||||
// Remark: we assume that ForAll x : asin(-x) == asin(x).
|
||||
// Mathematica uses this as an axiom. Although asin is an underspecified function for x < -1 or x > 1.
|
||||
// Actually, in Mathematica, asin(x) is a total function that returns a complex number fo x < -1 or x > 1.
|
||||
// Actually, in Mathematica, asin(x) is a total function that returns a complex number for x < -1 or x > 1.
|
||||
rational k;
|
||||
if (is_numeral(arg, k)) {
|
||||
if (k.is_zero()) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue