3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-16 13:58:45 +00:00

working on lookahead solver

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-02-23 16:00:20 -08:00
parent 54f145b364
commit db9e8d96d4
2 changed files with 378 additions and 137 deletions

View file

@ -27,52 +27,211 @@ namespace sat {
double m_dl_success;
};
config m_config;
double m_delta_trigger;
literal_vector m_trail;
literal_vector m_units;
unsigned_vector m_units_lim;
unsigned_vector m_learned_lim;
unsigned_vector m_binary;
struct statistics {
unsigned m_propagations;
statistics() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
config m_config;
double m_delta_trigger;
literal_vector m_trail;
unsigned_vector m_trail_lim;
literal_vector m_units;
unsigned_vector m_units_lim;
vector<literal_vector> m_binary; // binary clauses
unsigned_vector m_binary_trail; // trail of added binary clauses
unsigned_vector m_binary_trail_lim;
clause_vector m_clauses; // non-binary clauses
clause_allocator m_cls_allocator;
bool m_inconsistent;
unsigned_vector m_bstamp; // timestamp for binary implication, one for each literal
unsigned m_bstamp_id; // unique id for binary implication.
unsigned m_qhead;
unsigned_vector m_qhead_lim;
char_vector m_assignment;
vector<watch_list> m_watches;
indexed_uint_set m_free_vars;
statistics m_stats;
void add_binary(literal l1, literal l2) {
SASSERT(l1 != l2);
SASSERT(~l1 != l2);
m_binary[(~l1).index()].push_back(l2);
m_binary[(~l2).index()].push_back(l1);
m_binary_trail.push_back((~l1).index());
}
void del_binary(unsigned idx) {
literal_vector & lits = m_binary[idx];
literal l = lits.back();
lits.pop_back();
m_binary[(~l).index()].pop_back();
}
// -------------------------------------
// track consequences of binary clauses
// see also 72 - 77 in sat11.w
void inc_bstamp() {
++m_bstamp_id;
if (m_bstamp_id == 0) {
++m_bstamp_id;
m_bstamp.fill(0);
}
}
void set_bstamp(literal l) {
m_bstamp[l.index()] = m_bstamp_id;
}
void set_bstamps(literal l) {
set_bstamp(l);
literal_vector const& conseq = m_binary[l.index()];
for (unsigned i = 0; i < conseq.size(); ++i) {
set_bstamp(conseq[i]);
}
}
bool is_stamped(literal l) const { return m_bstamp[l.index()] == m_bstamp_id; }
/**
\brief add one-step transitive closure of binary implications
return false if we learn a unit literal.
\pre all implicants of ~u are stamped.
u \/ v is true
**/
bool add_tc1(literal u, literal v) {
unsigned sz = m_binary[v.index()].size();
for (unsigned i = 0; i < sz; ++i) {
literal w = m_binary[v.index()][i];
// ~v \/ w
if (!is_fixed(w)) {
if (is_stamped(~w)) {
// u \/ v, ~v \/ w, u \/ ~w => u is unit
assign(u);
return false;
}
add_binary(u, w);
}
}
return true;
}
/**
\brief main routine for adding a new binary clause dynamically.
*/
void try_add_binary(literal u, literal v) {
SASSERT(u.var() != v.var());
inc_bstamp();
set_bstamps(~u);
if (is_stamped(~v)) {
// u \/ ~v is a binary clause, u \/ v is true => u is a unit literal
assign(u);
}
else if (!is_stamped(v) && add_tc1(u, v)) {
// u \/ v is not in index
// all implicants of ~u are stamped.
inc_bstamp();
set_bstamps(~v);
if (is_stamped(~u)) {
// v \/ ~u is a binary clause, u \/ v is true => v is a unit
assign(v);
}
else if (add_tc1(v, u)) {
add_binary(u, v);
}
}
}
void init_var(bool_var v) {
m_assignment.push_back(l_undef);
m_assignment.push_back(l_undef);
m_binary.push_back(literal_vector());
m_binary.push_back(literal_vector());
m_watches.push_back(watch_list());
m_watches.push_back(watch_list());
m_bstamp.push_back(0);
m_bstamp.push_back(0);
}
void init() {
m_delta_trigger = s.num_vars()/10;
m_config.m_dl_success = 0.8;
m_inconsistent = false;
m_qhead = 0;
m_bstamp_id = 0;
for (unsigned i = 0; i < s.num_vars(); ++i) {
init_var(i);
}
// copy binary clauses
unsigned sz = s.m_watches.size();
for (unsigned l_idx = 0; l_idx < sz; ++l_idx) {
literal l = ~to_literal(l_idx);
watch_list const & wlist = s.m_watches[l_idx];
watch_list::const_iterator it = wlist.begin();
watch_list::const_iterator end = wlist.end();
for (; it != end; ++it) {
if (!it->is_binary_non_learned_clause())
continue;
literal l2 = it->get_literal();
if (l.index() < l2.index())
add_binary(l, l2);
}
}
// copy clauses
clause_vector::const_iterator it = s.m_clauses.begin();
clause_vector::const_iterator end = s.m_clauses.end();
for (; it != end; ++it) {
clause& c = *(*it);
m_clauses.push_back(m_cls_allocator.mk_clause(c.size(), c.begin(), false));
// TBD: add watch
}
// copy units
unsigned trail_sz = s.init_trail_size();
for (unsigned i = 0; i < trail_sz; ++i) {
literal l = s.m_trail[i];
m_units.push_back(l);
assign(l);
}
}
void push(literal lit) {
m_learned_lim.push_back(s.m_learned.size());
m_binary_trail_lim.push_back(m_binary_trail.size());
m_units_lim.push_back(m_units.size());
m_trail_lim.push_back(m_trail.size());
m_qhead_lim.push_back(m_qhead);
m_trail.push_back(lit);
m_binary.push_back(0);
s.push();
assign(lit);
propagate();
}
void pop() {
s.pop(1);
unsigned old_sz = m_learned_lim.back();
m_learned_lim.pop_back();
for (unsigned i = old_sz; i < s.m_learned.size(); ++i) {
clause* r = s.m_learned[i];
s.dettach_clause(*r);
s.m_cls_allocator.del_clause(r);
// remove local binary clauses
unsigned old_sz = m_binary_trail_lim.back();
m_binary_trail_lim.pop_back();
for (unsigned i = old_sz; i < m_binary_trail.size(); ++i) {
del_binary(m_binary_trail[i]);
}
s.m_learned.shrink(old_sz);
// add implied binary clauses
unsigned new_unit_sz = m_units_lim.back();
for (unsigned i = new_unit_sz; i < m_units.size(); ++i) {
literal lits[2] = { ~m_trail.back(), m_units[i] };
clause * r = s.m_cls_allocator.mk_clause(2, lits, true);
s.m_learned.push_back(r);
add_binary(~m_trail.back(), m_units[i]);
}
m_units.shrink(new_unit_sz);
m_units_lim.pop_back();
m_trail.pop_back();
m_binary.pop_back();
m_trail.shrink(m_trail_lim.size()); // reset assignment.
m_trail_lim.pop_back();
m_qhead_lim.pop_back();
m_qhead = m_qhead_lim.back();
m_inconsistent = false;
}
unsigned diff() const { return m_binary.back() + m_units.size() - m_units_lim.back(); }
unsigned diff() const { return m_units.size() - m_units_lim.back(); }
unsigned mix_diff(unsigned l, unsigned r) const { return l + r + (1 << 10) * l * r; }
@ -82,52 +241,129 @@ namespace sat {
}
bool is_nary_propagation(clause const& c, literal l) const {
bool r = c.size() > 2 && ((c[0] == l && s.value(c[1]) == l_false) || (c[1] == l && s.value(c[0]) == l_false));
DEBUG_CODE(if (r) for (unsigned j = 2; j < c.size(); ++j) SASSERT(s.value(c[j]) == l_false););
bool r = c.size() > 2 && ((c[0] == l && value(c[1]) == l_false) || (c[1] == l && value(c[0]) == l_false));
DEBUG_CODE(if (r) for (unsigned j = 2; j < c.size(); ++j) SASSERT(value(c[j]) == l_false););
return r;
}
void get_resolvent_units(literal lit) {
void propagate_clauses(literal l) {
SASSERT(value(l) == l_true);
SASSERT(value(~l) == l_false);
if (inconsistent()) return;
for (unsigned i = s.m_trail.size(); i > 0; ) {
--i;
literal l = s.m_trail[i];
if (l == lit) break;
SASSERT(s.lvl(l) == s.scope_lvl());
watch_list& wlist = s.m_watches[(~l).index()];
watch_list::iterator it = wlist.begin(), end = wlist.end();
for (; it != end; ++it) {
switch (it->get_kind()) {
case watched::TERNARY:
if (s.value(it->get_literal1()) == l_false &&
s.value(it->get_literal2()) == l_false) {
m_units.push_back(l);
goto done_finding_unit;
}
break;
case watched::CLAUSE: {
clause const & c = get_clause(it);
SASSERT(c[0] == l || c[1] == l);
if (is_nary_propagation(c, l)) {
m_units.push_back(l);
goto done_finding_unit;
}
break;
watch_list& wlist = m_watches[l.index()];
watch_list::iterator it = wlist.begin(), it2 = it, end = wlist.end();
for (; it != end && !inconsistent(); ++it) {
switch (it->get_kind()) {
case watched::BINARY:
UNREACHABLE();
break;
case watched::TERNARY: {
literal l1 = it->get_literal1();
literal l2 = it->get_literal2();
lbool val1 = value(l1);
lbool val2 = value(l2);
if (val1 == l_false && val2 == l_undef) {
m_stats.m_propagations++;
assign(l2);
}
default:
break;
else if (val1 == l_undef && val2 == l_false) {
m_stats.m_propagations++;
assign(l1);
}
else if (val1 == l_false && val2 == l_false) {
set_conflict();
}
else if (val1 == l_undef && val2 == l_undef) {
// TBD: the clause has become binary.
}
*it2 = *it;
it2++;
break;
}
case watched::CLAUSE: {
clause_offset cls_off = it->get_clause_offset();
clause & c = *(s.m_cls_allocator.get_clause(cls_off));
TRACE("propagate_clause_bug", tout << "processing... " << c << "\nwas_removed: " << c.was_removed() << "\n";);
if (c[0] == ~l)
std::swap(c[0], c[1]);
if (value(c[0]) == l_true) {
it2->set_clause(c[0], cls_off);
it2++;
break;
}
literal * l_it = c.begin() + 2;
literal * l_end = c.end();
unsigned found = 0;
for (; l_it != l_end && found < 2; ++l_it) {
if (value(*l_it) != l_false) {
++found;
if (found == 2) {
break;
}
else {
c[1] = *l_it;
*l_it = ~l;
m_watches[(~c[1]).index()].push_back(watched(c[0], cls_off));
}
}
}
if (found == 1) {
// TBD: clause has become binary
break;
}
if (found > 1) {
// not a binary clause
break;
}
else if (value(c[0]) == l_false) {
set_conflict();
}
else {
SASSERT(value(c[0]) == l_undef);
*it2 = *it;
it2++;
m_stats.m_propagations++;
assign(c[0]);
}
break;
}
case watched::EXT_CONSTRAINT:
UNREACHABLE();
break;
default:
UNREACHABLE();
break;
}
done_finding_unit:
//
// TBD: count binary clauses created by propagation.
// They used to be in the watch list of l.index(),
// both new literals in watch list should be unassigned.
//
continue;
}
for (; it != end; ++it, ++it2) {
*it2 = *it;
}
wlist.set_end(it2);
//
// TBD: count binary clauses created by propagation.
// They used to be in the watch list of l.index(),
// both new literals in watch list should be unassigned.
//
}
void propagate_binary(literal l) {
literal_vector const& lits = m_binary[l.index()];
unsigned sz = lits.size();
for (unsigned i = 0; !inconsistent() && i < sz; ++i) {
assign(lits[i]);
}
}
void propagate() {
for (; m_qhead < m_trail.size(); ++m_qhead) {
if (inconsistent()) break;
literal l = m_trail[m_qhead];
propagate_binary(l);
propagate_clauses(l);
}
TRACE("sat", s.display(tout << scope_lvl() << " " << (inconsistent()?"unsat":"sat") << "\n"););
}
literal choose() {
@ -187,7 +423,7 @@ namespace sat {
bool unsat;
for (unsigned i = 0; !inconsistent() && i < P.size(); ++i) {
literal lit = P[i];
if (s.value(lit) != l_undef) continue;
if (value(lit) != l_undef) continue;
push(lit);
unsat = inconsistent();
@ -205,37 +441,39 @@ namespace sat {
TRACE("sat", tout << "unit: " << lit << "\n";);
assign(lit);
}
}
update_delta_trigger();
}
bool is_fixed(literal l) const { return value(l) != l_undef; }
bool is_contrary(literal l) const { return value(l) == l_false; }
void set_conflict() { m_inconsistent = true; }
lbool value(literal l) const { return static_cast<lbool>(m_assignment[l.index()]); }
unsigned scope_lvl() const { return m_trail_lim.size(); }
void assign(literal l) {
s.assign(l, justification());
s.propagate(false);
get_resolvent_units(l);
TRACE("sat", s.display(tout << l << " @ " << s.scope_lvl() << " " << (inconsistent()?"unsat":"sat") << "\n"););
switch (value(l)) {
case l_true:
break;
case l_false:
set_conflict();
break;
default:
m_assignment[l.index()] = l.sign() ? l_false : l_true;
m_assignment[(~l).index()] = l.sign() ? l_false : l_true;
m_trail.push_back(l);
break;
}
}
bool inconsistent() { return s.inconsistent(); }
void set_inconsistent() { m_inconsistent = true; }
bool inconsistent() { return m_inconsistent; }
void pre_select(literal_vector& P) {
select_variables(P);
order_by_implication_trees(P);
}
void check_binary(clause const& c, literal lit1, literal& lit2) {
if (c.size() == 2) {
if (c[0] == lit1) {
lit2 = c[1];
}
else {
SASSERT(c[1] == lit1);
lit2 = c[0];
}
}
}
void order_by_implication_trees(literal_vector& P) {
literal_set roots;
literal_vector nodes, parent;
@ -253,24 +491,11 @@ namespace sat {
// make lit1 a root instead of lit2
//
watch_list& wlist = s.m_watches[(~lit1).index()];
watch_list::iterator it = wlist.begin(), end = wlist.end();
lit2 = null_literal;
for (; it != end; ++it) {
switch (it->get_kind()) {
case watched::BINARY:
lit2 = it->get_literal();
break;
case watched::CLAUSE: {
clause const & c = get_clause(it);
check_binary(c, lit1, lit2);
break;
}
default:
break;
}
if (lit2 != null_literal && roots.contains(~lit2)) {
literal_vector const& lits1 = m_binary[(~lit1).index()];
unsigned sz = lits1.size();
for (unsigned i = 0; i < sz; ++i) {
literal lit2 = lits1[i];
if (roots.contains(~lit2)) {
// ~lit2 => lit1
// if lit2 is a root, put it under lit2
parent.setx((~lit2).index(), lit1, null_literal);
@ -285,24 +510,11 @@ namespace sat {
// if lit2 is a node, put lit1 above lit2
//
it = s.m_watches[lit1.index()].begin();
end = s.m_watches[lit1.index()].end();
for (; it != end; ++it) {
lit2 = null_literal;
switch (it->get_kind()) {
case watched::BINARY:
lit2 = it->get_literal();
break;
case watched::CLAUSE: {
clause const & c = get_clause(it);
check_binary(c, ~lit1, lit2);
break;
}
default:
break;
}
if (lit2 != null_literal && nodes.contains(lit2)) {
literal_vector const& lits2 = m_binary[(~lit2).index()];
sz = lits2.size();
for (unsigned i = 0; i < sz; ++i) {
literal lit2 = lits2[i];
if (nodes.contains(lit2)) {
// lit1 => lit2
parent.setx(lit1.index(), lit2, null_literal);
nodes.insert(lit1);
@ -329,7 +541,7 @@ namespace sat {
void select_variables(literal_vector& P) {
for (unsigned i = 0; i < s.num_vars(); ++i) {
if (s.value(i) == l_undef) {
if (value(literal(i,false)) == l_undef) {
P.push_back(literal(i, false));
}
}
@ -351,15 +563,12 @@ namespace sat {
}
}
lbool backtrack(literal_vector& trail) {
if (inconsistent()) {
if (trail.empty()) return l_false;
pop();
assign(~trail.back());
trail.pop_back();
return l_true;
}
return l_undef;
bool backtrack(literal_vector& trail) {
if (trail.empty()) return false;
pop();
assign(~trail.back());
trail.pop_back();
return true;
}
lbool search() {
@ -367,17 +576,10 @@ namespace sat {
while (true) {
s.checkpoint();
switch (backtrack(trail)) {
case l_true: continue;
case l_false: return l_false;
case l_undef: break;
}
literal l = choose();
switch (backtrack(trail)) {
case l_true: continue;
case l_false: return l_false;
case l_undef: break;
if (inconsistent()) {
if (!backtrack(trail)) return l_false;
continue;
}
if (l == null_literal) {
return l_true;

View file

@ -333,6 +333,45 @@ public:
}
};
class indexed_uint_set {
unsigned m_size;
unsigned_vector m_elems;
unsigned_vector m_index;
public:
indexed_uint_set():
m_size(0)
{}
void insert(unsigned x) {
SASSERT(!contains(x));
m_index.resize(x + 1, UINT_MAX);
m_elems.resize(m_size + 1);
m_index[x] = m_size;
m_elems[m_size] = x;
m_size++;
}
void remove(unsigned x) {
SASSERT(contains(x));
unsigned y = m_elems[--m_size];
if (x != y) {
unsigned idx = m_index[x];
m_index[y] = idx;
m_elems[idx] = y;
m_index[x] = m_size;
m_elems[m_size] = x;
}
}
bool contains(unsigned x) const { return x < m_index.size() && m_index[x] < m_size && m_elems[m_index[x]] == x; }
void reset() { m_size = 0; }
bool empty() const { return m_size == 0; }
unsigned size() const { return m_size; }
typedef unsigned_vector::const_iterator iterator;
iterator begin() const { return m_elems.begin(); }
iterator end() const { return m_elems.begin() + m_size; }
};
#endif /* UINT_SET_H_ */