mirror of
https://github.com/Z3Prover/z3
synced 2026-02-20 07:24:40 +00:00
solve send-more-money_lev.smt2
Signed-off-by: Lev Nachmanson <levnach@microsoft.com> handle integer vars in random_update Signed-off-by: Lev Nachmanson <levnach@microsoft.com> call the assert in gomory_cut and branching to a correct place Signed-off-by: Lev Nachmanson <levnach@microsoft.com> fixes in goromy cut Signed-off-by: Lev Nachmanson <levnach@microsoft.com> disable x values tracking in random_update Signed-off-by: Lev Nachmanson <levnach@microsoft.com> more fixes in gomory cut Signed-off-by: Lev Nachmanson <levnach@microsoft.com> change in mk_bound by Nikolaj Signed-off-by: Lev Nachmanson <levnach@hotmail.com> fixes in gomory cut and setup Signed-off-by: Lev Nachmanson <levnach@microsoft.com> fixes in int_solver Signed-off-by: Lev Nachmanson <levnach@microsoft.com> change a printout Signed-off-by: Lev Nachmanson <levnach@microsoft.com> fix by Nikolaj in treating terms returned by int_solver Signed-off-by: Lev Nachmanson <levnach@microsoft.com> fix syntax Signed-off-by: Lev Nachmanson <levnach@hotmail.com> fix a free coefficient bug in bound propagaion and simplify gomory cut Signed-off-by: Lev Nachmanson <levnach@microsoft.com> avoid tracking pivoted rows during int_solver::check()
This commit is contained in:
parent
aba7dcab3e
commit
db8f01894f
31 changed files with 894 additions and 767 deletions
|
|
@ -8,7 +8,6 @@
|
|||
namespace lp {
|
||||
|
||||
void int_solver::fix_non_base_columns() {
|
||||
lp_assert(is_feasible() && inf_int_set_is_correct());
|
||||
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
||||
bool change = false;
|
||||
for (unsigned j : lcs.m_r_nbasis) {
|
||||
|
|
@ -66,6 +65,10 @@ const int_set& int_solver::inf_int_set() const {
|
|||
return m_lar_solver->m_inf_int_set;
|
||||
}
|
||||
|
||||
bool int_solver::has_inf_int() const {
|
||||
return !inf_int_set().is_empty();
|
||||
}
|
||||
|
||||
int int_solver::find_inf_int_base_column() {
|
||||
if (inf_int_set().is_empty())
|
||||
return -1;
|
||||
|
|
@ -81,11 +84,12 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
|
|||
mpq range;
|
||||
mpq new_range;
|
||||
mpq small_range_thresold(1024);
|
||||
unsigned n = 0;
|
||||
unsigned n;
|
||||
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
||||
|
||||
for (int j : inf_int_set().m_index) {
|
||||
lp_assert(is_base(j) && column_is_int_inf(j));
|
||||
lp_assert(!is_fixed(j));
|
||||
if (!is_boxed(j))
|
||||
continue;
|
||||
new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_low_bounds()[j].x;
|
||||
|
|
@ -104,8 +108,8 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
|
|||
continue;
|
||||
}
|
||||
if (new_range == range) {
|
||||
n++;
|
||||
if (settings().random_next() % n == 0) {
|
||||
lp_assert(n >= 1);
|
||||
if (settings().random_next() % (++n) == 0) {
|
||||
result = j;
|
||||
continue;
|
||||
}
|
||||
|
|
@ -115,32 +119,30 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range() {
|
|||
|
||||
}
|
||||
|
||||
bool int_solver::is_gomory_cut_target() {
|
||||
m_iter_on_gomory_row->reset();
|
||||
bool int_solver::is_gomory_cut_target(linear_combination_iterator<mpq> &iter) {
|
||||
unsigned j;
|
||||
TRACE("gomory_cut", m_lar_solver->print_linear_iterator(m_iter_on_gomory_row, tout);
|
||||
m_iter_on_gomory_row->reset();
|
||||
);
|
||||
|
||||
while (m_iter_on_gomory_row->next(j)) {
|
||||
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
|
||||
if (j != m_gomory_cut_inf_column && (!at_bound(j) || !is_zero(get_value(j).y))) {
|
||||
lp_assert(iter.is_reset());
|
||||
// All non base variables must be at their bounds and assigned to rationals (that is, infinitesimals are not allowed).
|
||||
while (iter.next(j)) {
|
||||
if (is_base(j)) continue;
|
||||
if (!is_zero(get_value(j).y)) {
|
||||
TRACE("gomory_cut", tout << "row is not gomory cut target:\n";
|
||||
display_column(tout, j);
|
||||
tout << "at_bound: " << at_bound(j) << "\n";
|
||||
tout << "infinitesimal: " << !is_zero(get_value(j).y) << "\n";);
|
||||
iter.reset();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
m_iter_on_gomory_row->reset();
|
||||
iter.reset();
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void int_solver::real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term& pol, explanation & expl) {
|
||||
mpq f_0 = fractional_part(get_value(m_gomory_cut_inf_column));
|
||||
void int_solver::real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term& pol, explanation & expl, unsigned gomory_cut_inf_column) {
|
||||
TRACE("gomory_cut_detail_real", tout << "real\n";);
|
||||
mpq f_0 = fractional_part(get_value(gomory_cut_inf_column));
|
||||
mpq new_a;
|
||||
if (at_lower(x_j)) {
|
||||
if (at_low(x_j)) {
|
||||
if (a.is_pos()) {
|
||||
new_a = a / (1 - f_0);
|
||||
}
|
||||
|
|
@ -148,8 +150,8 @@ void int_solver::real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, l
|
|||
new_a = a / f_0;
|
||||
new_a.neg();
|
||||
}
|
||||
k += lower_bound(x_j).x * k; // k.addmul(new_a, lower_bound(x_j).x); // is it a faster operation
|
||||
|
||||
k.addmul(new_a, low_bound(x_j).x); // is it a faster operation than
|
||||
// k += lower_bound(x_j).x * new_a;
|
||||
expl.push_justification(column_low_bound_constraint(x_j), new_a);
|
||||
}
|
||||
else {
|
||||
|
|
@ -161,11 +163,11 @@ void int_solver::real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, l
|
|||
else {
|
||||
new_a = a / (mpq(1) - f_0);
|
||||
}
|
||||
k += upper_bound(x_j).x * k; // k.addmul(new_a, upper_bound(x_j).get_rational());
|
||||
k.addmul(new_a, upper_bound(x_j).x); // k += upper_bound(x_j).x * new_a;
|
||||
expl.push_justification(column_upper_bound_constraint(x_j), new_a);
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << a << "*v" << x_j << " k: " << k << "\n";);
|
||||
pol.add_monoid(new_a, x_j);
|
||||
TRACE("gomory_cut_detail_real", tout << a << "*v" << x_j << " k: " << k << "\n";);
|
||||
pol.add_monomial(new_a, x_j);
|
||||
}
|
||||
|
||||
constraint_index int_solver::column_upper_bound_constraint(unsigned j) const {
|
||||
|
|
@ -177,152 +179,203 @@ constraint_index int_solver::column_low_bound_constraint(unsigned j) const {
|
|||
}
|
||||
|
||||
|
||||
void int_solver::int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term & pol, explanation& expl, mpq & lcm_den) {
|
||||
mpq f_0 = fractional_part(get_value(m_gomory_cut_inf_column));
|
||||
void int_solver::int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, lar_term & t, explanation& expl, mpq & lcm_den, unsigned inf_column) {
|
||||
lp_assert(is_int(x_j));
|
||||
lp_assert(!a.is_int());
|
||||
mpq f_0 = fractional_part(get_value(inf_column));
|
||||
lp_assert(f_0 > zero_of_type<mpq>() && f_0 < one_of_type<mpq>());
|
||||
mpq f_j = fractional_part(a);
|
||||
TRACE("gomory_cut_detail",
|
||||
tout << a << "*v" << x_j << "\n";
|
||||
tout << "fractional_part: " << fractional_part(a) << "\n";
|
||||
tout << a << " x_j" << x_j << " k = " << k << "\n";
|
||||
tout << "f_j: " << f_j << "\n";
|
||||
tout << "f_0: " << f_0 << "\n";
|
||||
tout << "one_minus_f_0: " << 1 - f_0 << "\n";);
|
||||
if (!f_j.is_zero()) {
|
||||
mpq new_a;
|
||||
if (at_lower(x_j)) {
|
||||
auto one_minus_f_0 = 1 - f_0;
|
||||
if (f_j <= one_minus_f_0) {
|
||||
new_a = f_j / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (1 - f_j) / f_0;
|
||||
}
|
||||
k.addmul(new_a, lower_bound(x_j).x);
|
||||
expl.push_justification(column_low_bound_constraint(x_j), new_a);
|
||||
tout << "1 - f_0: " << 1 - f_0 << "\n";
|
||||
tout << "at_low(" << x_j << ") = " << at_low(x_j) << std::endl;
|
||||
);
|
||||
lp_assert (!f_j.is_zero());
|
||||
mpq new_a;
|
||||
if (at_low(x_j)) {
|
||||
auto one_minus_f_0 = 1 - f_0;
|
||||
if (f_j <= one_minus_f_0) {
|
||||
new_a = f_j / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
SASSERT(at_upper(x_j));
|
||||
if (f_j <= f_0) {
|
||||
new_a = f_j / f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (mpq(1) - f_j) / 1 - f_0;
|
||||
}
|
||||
new_a.neg(); // the upper terms are inverted
|
||||
k.addmul(new_a, upper_bound(x_j).x);
|
||||
expl.push_justification(column_upper_bound_constraint(x_j), new_a);
|
||||
new_a = (1 - f_j) / f_0;
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "new_a: " << new_a << " k: " << k << "\n";);
|
||||
pol.add_monoid(new_a, x_j);
|
||||
lcm_den = lcm(lcm_den, denominator(new_a));
|
||||
k.addmul(new_a, low_bound(x_j).x);
|
||||
expl.push_justification(column_low_bound_constraint(x_j), new_a);
|
||||
}
|
||||
else {
|
||||
lp_assert(at_upper(x_j));
|
||||
if (f_j <= f_0) {
|
||||
new_a = f_j / f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (mpq(1) - f_j) / (1 - f_0);
|
||||
}
|
||||
new_a.neg(); // the upper terms are inverted
|
||||
k.addmul(new_a, upper_bound(x_j).x);
|
||||
expl.push_justification(column_upper_bound_constraint(x_j), new_a);
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "new_a: " << new_a << " k: " << k << "\n";);
|
||||
t.add_monomial(new_a, x_j);
|
||||
lcm_den = lcm(lcm_den, denominator(new_a));
|
||||
}
|
||||
|
||||
lia_move int_solver::report_conflict_from_gomory_cut(mpq & k) {
|
||||
TRACE("empty_pol",
|
||||
display_row_info(tout,
|
||||
m_lar_solver->m_mpq_lar_core_solver.m_r_heading[m_gomory_cut_inf_column]););
|
||||
TRACE("empty_pol",);
|
||||
lp_assert(k.is_pos());
|
||||
// conflict 0 >= k where k is positive
|
||||
k.neg(); // returning 0 <= -k
|
||||
return lia_move::conflict;
|
||||
}
|
||||
|
||||
void int_solver::gomory_cut_adjust_t_and_k_for_size_gt_1(
|
||||
vector<std::pair<mpq, unsigned>> & pol,
|
||||
lar_term & t,
|
||||
mpq &k,
|
||||
unsigned num_ints,
|
||||
mpq & lcm_den) {
|
||||
if (num_ints > 0) {
|
||||
lcm_den = lcm(lcm_den, denominator(k));
|
||||
TRACE("gomory_cut_detail", tout << "k: " << k << " lcm_den: " << lcm_den << "\n";
|
||||
linear_combination_iterator_on_vector<mpq> pi(pol);
|
||||
m_lar_solver->print_linear_iterator(&pi, tout);
|
||||
tout << "\nk: " << k << "\n";);
|
||||
lp_assert(lcm_den.is_pos());
|
||||
if (!lcm_den.is_one()) {
|
||||
// normalize coefficients of integer parameters to be integers.
|
||||
for (auto & pi: pol) {
|
||||
pi.first *= lcm_den;
|
||||
SASSERT(!is_int(pi.second) || pi.first.is_int());
|
||||
}
|
||||
k *= lcm_den;
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "after *lcm_den\n";
|
||||
for (unsigned i = 0; i < pol.size(); i++) {
|
||||
tout << pol[i].first << " * v" << pol[i].second << "\n";
|
||||
}
|
||||
tout << "k: " << k << "\n";);
|
||||
void int_solver::gomory_cut_adjust_t_and_k(vector<std::pair<mpq, unsigned>> & pol,
|
||||
lar_term & t,
|
||||
mpq &k,
|
||||
bool some_ints,
|
||||
mpq & lcm_den) {
|
||||
if (!some_ints)
|
||||
return;
|
||||
|
||||
t.clear();
|
||||
if (pol.size() == 1) {
|
||||
unsigned v = pol[0].second;
|
||||
lp_assert(is_int(v));
|
||||
bool k_is_int = k.is_int();
|
||||
const mpq& a = pol[0].first;
|
||||
k /= a;
|
||||
if (a.is_pos()) { // we have av >= k
|
||||
if (!k_is_int)
|
||||
k = ceil(k);
|
||||
// switch size
|
||||
t.add_monomial(- mpq(1), v);
|
||||
k.neg();
|
||||
} else {
|
||||
if (!k_is_int)
|
||||
k = floor(k);
|
||||
t.add_monomial(mpq(1), v);
|
||||
}
|
||||
} else if (some_ints) {
|
||||
lcm_den = lcm(lcm_den, denominator(k));
|
||||
lp_assert(lcm_den.is_pos());
|
||||
if (!lcm_den.is_one()) {
|
||||
// normalize coefficients of integer parameters to be integers.
|
||||
for (auto & pi: pol) {
|
||||
pi.first *= lcm_den;
|
||||
SASSERT(!is_int(pi.second) || pi.first.is_int());
|
||||
}
|
||||
k *= lcm_den;
|
||||
}
|
||||
t.clear();
|
||||
// negate everything to return -pol <= -k
|
||||
for (const auto & pi: pol)
|
||||
t.add_monoid(-pi.first, pi.second);
|
||||
t.add_monomial(-pi.first, pi.second);
|
||||
k.neg();
|
||||
}
|
||||
|
||||
|
||||
void int_solver::gomory_cut_adjust_t_and_k_for_size_1(const vector<std::pair<mpq, unsigned>> & pol, lar_term& t, mpq &k) {
|
||||
lp_assert(pol.size() == 1);
|
||||
unsigned j = pol[0].second;
|
||||
k /= pol[0].first;
|
||||
bool is_lower = pol[0].first.is_pos();
|
||||
if (is_int(j) && !k.is_int()) {
|
||||
k = is_lower?ceil(k):floor(k);
|
||||
}
|
||||
if (is_lower) { // returning -t <= -k which is equivalent to t >= k
|
||||
k.neg();
|
||||
t.negate();
|
||||
}
|
||||
}
|
||||
|
||||
bool int_solver::current_solution_is_inf_on_cut(const lar_term& t, const mpq& k) const {
|
||||
const auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x;
|
||||
impq v = t.apply(x);
|
||||
TRACE(
|
||||
"current_solution_is_inf_on_cut", tout << "v = " << v << " k = " << k << std::endl;
|
||||
if (v <=k) {
|
||||
tout << "v <= k - it should not happen!\n";
|
||||
}
|
||||
);
|
||||
|
||||
return v > k;
|
||||
}
|
||||
|
||||
|
||||
lia_move int_solver::report_gomory_cut(lar_term& t, mpq& k, mpq &lcm_den, unsigned num_ints) {
|
||||
void int_solver::adjust_term_and_k_for_some_ints_case_gomory(lar_term& t, mpq& k, mpq &lcm_den) {
|
||||
lp_assert(!t.is_empty());
|
||||
auto pol = t.coeffs_as_vector();
|
||||
if (pol.size() == 1)
|
||||
gomory_cut_adjust_t_and_k_for_size_1(pol, t, k);
|
||||
else
|
||||
gomory_cut_adjust_t_and_k_for_size_gt_1(pol, t, k, num_ints, lcm_den);
|
||||
m_lar_solver->subs_terms_for_debugging(t); // todo: remove later
|
||||
return lia_move::cut;
|
||||
t.clear();
|
||||
if (pol.size() == 1) {
|
||||
TRACE("gomory_cut_detail", tout << "pol.size() is 1" << std::endl;);
|
||||
unsigned v = pol[0].second;
|
||||
lp_assert(is_int(v));
|
||||
const mpq& a = pol[0].first;
|
||||
k /= a;
|
||||
if (a.is_pos()) { // we have av >= k
|
||||
if (!k.is_int())
|
||||
k = ceil(k);
|
||||
// switch size
|
||||
t.add_monomial(- mpq(1), v);
|
||||
k.neg();
|
||||
} else {
|
||||
if (!k.is_int())
|
||||
k = floor(k);
|
||||
t.add_monomial(mpq(1), v);
|
||||
}
|
||||
} else {
|
||||
TRACE("gomory_cut_detail", tout << "pol.size() > 1" << std::endl;);
|
||||
lcm_den = lcm(lcm_den, denominator(k));
|
||||
lp_assert(lcm_den.is_pos());
|
||||
if (!lcm_den.is_one()) {
|
||||
// normalize coefficients of integer parameters to be integers.
|
||||
for (auto & pi: pol) {
|
||||
pi.first *= lcm_den;
|
||||
SASSERT(!is_int(pi.second) || pi.first.is_int());
|
||||
}
|
||||
k *= lcm_den;
|
||||
}
|
||||
// negate everything to return -pol <= -k
|
||||
for (const auto & pi: pol)
|
||||
t.add_monomial(-pi.first, pi.second);
|
||||
k.neg();
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "k = " << k << std::endl;);
|
||||
lp_assert(k.is_int());
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
lia_move int_solver::mk_gomory_cut(lar_term& t, mpq& k, explanation & expl) {
|
||||
lia_move int_solver::mk_gomory_cut(lar_term& t, mpq& k, explanation & expl, unsigned inf_col, linear_combination_iterator<mpq>& iter) {
|
||||
|
||||
lp_assert(column_is_int_inf(m_gomory_cut_inf_column));
|
||||
lp_assert(column_is_int_inf(inf_col));
|
||||
|
||||
TRACE("gomory_cut", tout << "applying cut at:\n"; m_lar_solver->print_linear_iterator(m_iter_on_gomory_row, tout); tout << std::endl; m_iter_on_gomory_row->reset(););
|
||||
TRACE("gomory_cut",
|
||||
tout << "applying cut at:\n"; m_lar_solver->print_linear_iterator_indices_only(&iter, tout); tout << std::endl;
|
||||
iter.reset();
|
||||
unsigned j;
|
||||
while(iter.next(j)) {
|
||||
m_lar_solver->m_mpq_lar_core_solver.m_r_solver.print_column_info(j, tout);
|
||||
}
|
||||
iter.reset();
|
||||
tout << "inf_col = " << inf_col << std::endl;
|
||||
);
|
||||
|
||||
// gomory will be t >= k
|
||||
k = 1;
|
||||
mpq lcm_den(1);
|
||||
unsigned num_ints = 0;
|
||||
unsigned x_j;
|
||||
mpq a;
|
||||
while (m_iter_on_gomory_row->next(a, x_j)) {
|
||||
if (x_j == m_gomory_cut_inf_column)
|
||||
bool some_int_columns = false;
|
||||
lp_assert(iter.is_reset());
|
||||
while (iter.next(a, x_j)) {
|
||||
if (x_j == inf_col)
|
||||
continue;
|
||||
// make the format compatible with the format used in: Integrating Simplex with DPLL(T)
|
||||
a.neg();
|
||||
if (is_real(x_j))
|
||||
real_case_in_gomory_cut(a, x_j, k, t, expl);
|
||||
real_case_in_gomory_cut(a, x_j, k, t, expl, inf_col);
|
||||
else {
|
||||
num_ints++;
|
||||
int_case_in_gomory_cut(a, x_j, k, t, expl, lcm_den);
|
||||
if (a.is_int()) continue; // f_j will be zero and no monomial will be added
|
||||
some_int_columns = true;
|
||||
int_case_in_gomory_cut(a, x_j, k, t, expl, lcm_den, inf_col);
|
||||
}
|
||||
}
|
||||
|
||||
if (t.is_empty())
|
||||
return report_conflict_from_gomory_cut(k);
|
||||
if (some_int_columns)
|
||||
adjust_term_and_k_for_some_ints_case_gomory(t, k, lcm_den);
|
||||
|
||||
return report_gomory_cut(t, k, lcm_den, num_ints);
|
||||
|
||||
lp_assert(current_solution_is_inf_on_cut(t, k));
|
||||
m_lar_solver->subs_term_columns(t);
|
||||
return lia_move::cut;
|
||||
}
|
||||
|
||||
void int_solver::init_check_data() {
|
||||
|
|
@ -331,61 +384,53 @@ void int_solver::init_check_data() {
|
|||
m_old_values_data.resize(n);
|
||||
}
|
||||
|
||||
int int_solver::find_next_free_var_in_gomory_row() {
|
||||
lp_assert(m_iter_on_gomory_row != nullptr);
|
||||
int int_solver::find_free_var_in_gomory_row(linear_combination_iterator<mpq>& iter) {
|
||||
unsigned j;
|
||||
while(m_iter_on_gomory_row->next(j)) {
|
||||
if (j != m_gomory_cut_inf_column && is_free(j))
|
||||
while(iter.next(j)) {
|
||||
if (!is_base(j) && is_free(j))
|
||||
return static_cast<int>(j);
|
||||
}
|
||||
iter.reset();
|
||||
return -1;
|
||||
}
|
||||
|
||||
lia_move int_solver::proceed_with_gomory_cut(lar_term& t, mpq& k, explanation& ex) {
|
||||
int j = find_next_free_var_in_gomory_row();
|
||||
if (j != -1) {
|
||||
m_found_free_var_in_gomory_row = true;
|
||||
lia_move int_solver::proceed_with_gomory_cut(lar_term& t, mpq& k, explanation& ex, unsigned j, linear_combination_iterator<mpq>& iter) {
|
||||
int free_j = find_free_var_in_gomory_row(iter);
|
||||
if (free_j != -1) {
|
||||
lp_assert(t.is_empty());
|
||||
t.add_monoid(mpq(1), j);
|
||||
t.add_monomial(mpq(1), m_lar_solver->adjust_column_index_to_term_index(free_j));
|
||||
k = zero_of_type<mpq>();
|
||||
return lia_move::branch; // branch on a free column
|
||||
}
|
||||
if (m_found_free_var_in_gomory_row || !is_gomory_cut_target()) {
|
||||
m_found_free_var_in_gomory_row = false;
|
||||
delete m_iter_on_gomory_row;
|
||||
m_iter_on_gomory_row = nullptr;
|
||||
return lia_move::continue_with_check;
|
||||
}
|
||||
|
||||
lia_move ret = mk_gomory_cut(t, k, ex);
|
||||
delete m_iter_on_gomory_row;
|
||||
m_iter_on_gomory_row = nullptr;
|
||||
return ret;
|
||||
if (!is_gomory_cut_target(iter))
|
||||
return create_branch_on_column(j, t, k);
|
||||
|
||||
return mk_gomory_cut(t, k, ex, j, iter);
|
||||
}
|
||||
|
||||
|
||||
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
|
||||
if (m_iter_on_gomory_row != nullptr) {
|
||||
auto ret = proceed_with_gomory_cut(t, k, ex);
|
||||
TRACE("gomory_cut", tout << "term t = "; m_lar_solver->print_term_as_indices(t, tout););
|
||||
if (ret != lia_move::continue_with_check)
|
||||
return ret;
|
||||
}
|
||||
unsigned int_solver::row_of_basic_column(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_r_heading[j];
|
||||
}
|
||||
|
||||
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
|
||||
init_check_data();
|
||||
lp_assert(inf_int_set_is_correct());
|
||||
// currently it is a reimplementation of
|
||||
// it is mostly a reimplementation of
|
||||
// final_check_status theory_arith<Ext>::check_int_feasibility()
|
||||
// from theory_arith_int.h
|
||||
if (m_lar_solver->model_is_int_feasible())
|
||||
if (!has_inf_int())
|
||||
return lia_move::ok;
|
||||
if (!gcd_test(ex))
|
||||
return lia_move::conflict;
|
||||
if (settings().m_run_gcd_test)
|
||||
if (!gcd_test(ex))
|
||||
return lia_move::conflict;
|
||||
/*
|
||||
if (m_params.m_arith_euclidean_solver)
|
||||
apply_euclidean_solver();
|
||||
|
||||
*/
|
||||
bool track_pivoted_rows = m_lar_solver->get_track_pivoted_rows();
|
||||
m_lar_solver->set_track_pivoted_rows(false);
|
||||
m_lar_solver->pivot_fixed_vars_from_basis();
|
||||
lean_assert(m_lar_solver->m_mpq_lar_core_solver.r_basis_is_OK());
|
||||
patch_int_infeasible_columns();
|
||||
|
|
@ -395,93 +440,90 @@ lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex) {
|
|||
lean_assert(is_feasible());
|
||||
TRACE("arith_int_rows", trace_inf_rows(););
|
||||
|
||||
if (find_inf_int_base_column() == -1)
|
||||
if (!has_inf_int()) {
|
||||
m_lar_solver->set_track_pivoted_rows(track_pivoted_rows);
|
||||
return lia_move::ok;
|
||||
|
||||
|
||||
if ((++m_branch_cut_counter) % settings().m_int_branch_cut_threshold == 0) {
|
||||
move_non_base_vars_to_bounds(); // todo track changed variables
|
||||
lp_status st = m_lar_solver->find_feasible_solution();
|
||||
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
|
||||
return lia_move::give_up;
|
||||
}
|
||||
lp_assert(inf_int_set_is_correct());
|
||||
// init_inf_int_set(); // todo - can we avoid this call?
|
||||
int j = find_inf_int_base_column();
|
||||
if (j != -1) {
|
||||
TRACE("arith_int", tout << "j = " << j << " does not have an integer assignment: " << get_value(j) << "\n";);
|
||||
unsigned row_index = m_lar_solver->m_mpq_lar_core_solver.m_r_heading[j];
|
||||
if (!mk_gomory_cut(row_index, ex)) {
|
||||
}
|
||||
TRACE("gomory_cut", tout << m_branch_cut_counter+1 << ", " << settings().m_int_branch_cut_gomory_threshold << std::endl;);
|
||||
if ((++m_branch_cut_counter) % settings().m_int_branch_cut_gomory_threshold == 0) {
|
||||
if (move_non_base_vars_to_bounds()) {
|
||||
lp_status st = m_lar_solver->find_feasible_solution();
|
||||
lp_assert(non_basic_columns_are_at_bounds());
|
||||
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
|
||||
TRACE("arith_int", tout << "give_up\n";);
|
||||
m_lar_solver->set_track_pivoted_rows(track_pivoted_rows);
|
||||
return lia_move::give_up;
|
||||
// silent failure
|
||||
}
|
||||
return lia_move::cut;
|
||||
}
|
||||
}
|
||||
else {
|
||||
int j = find_inf_int_base_column();
|
||||
if (j != -1) {
|
||||
TRACE("arith_int", tout << "j" << j << " does not have an integer assignment: " << get_value(j) << "\n";);
|
||||
|
||||
lp_assert(t.is_empty());
|
||||
t.add_monoid(1, j);
|
||||
k = floor(get_value(j));
|
||||
TRACE("arith_int", tout << "branching v" << j << " = " << get_value(j) << "\n";
|
||||
display_column(tout, j);
|
||||
tout << "k = " << k << std::endl;
|
||||
);
|
||||
return lia_move::branch;
|
||||
}
|
||||
lp_assert(j != -1);
|
||||
TRACE("arith_int", tout << "j = " << j << " does not have an integer assignment: " << get_value(j) << "\n";);
|
||||
auto iter_on_gomory_row = m_lar_solver->get_iterator_on_row(row_of_basic_column(j));
|
||||
lia_move ret = proceed_with_gomory_cut(t, k, ex, j, *iter_on_gomory_row);
|
||||
delete iter_on_gomory_row;
|
||||
m_lar_solver->set_track_pivoted_rows(track_pivoted_rows);
|
||||
return ret;
|
||||
}
|
||||
lp_assert(m_lar_solver->m_mpq_lar_core_solver.r_basis_is_OK());
|
||||
// return true;
|
||||
return lia_move::give_up;
|
||||
|
||||
m_lar_solver->set_track_pivoted_rows(track_pivoted_rows);
|
||||
return create_branch_on_column(find_inf_int_base_column(), t, k);
|
||||
}
|
||||
|
||||
void int_solver::move_non_base_vars_to_bounds() {
|
||||
bool int_solver::move_non_base_vars_to_bounds() {
|
||||
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
||||
bool change = false;
|
||||
for (unsigned j : lcs.m_r_nbasis) {
|
||||
auto & val = lcs.m_r_x[j];
|
||||
switch (lcs.m_column_types()[j]) {
|
||||
case column_type::boxed:
|
||||
if (val != lcs.m_r_low_bounds()[j] && val != lcs.m_r_upper_bounds()[j])
|
||||
set_value(j, lcs.m_r_low_bounds()[j]);
|
||||
if (val != lcs.m_r_low_bounds()[j] && val != lcs.m_r_upper_bounds()[j]) {
|
||||
set_value_for_nbasic_column(j, lcs.m_r_low_bounds()[j]);
|
||||
change = true;
|
||||
}
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (val != lcs.m_r_low_bounds()[j])
|
||||
set_value(j, lcs.m_r_low_bounds()[j]);
|
||||
if (val != lcs.m_r_low_bounds()[j]) {
|
||||
set_value_for_nbasic_column(j, lcs.m_r_low_bounds()[j]);
|
||||
change = true;
|
||||
}
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (val != lcs.m_r_upper_bounds()[j])
|
||||
set_value(j, lcs.m_r_upper_bounds()[j]);
|
||||
if (val != lcs.m_r_upper_bounds()[j]) {
|
||||
set_value_for_nbasic_column(j, lcs.m_r_upper_bounds()[j]);
|
||||
change = true;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
if (is_int(j) && !val.is_int()) {
|
||||
set_value(j, impq(floor(val)));
|
||||
if (is_int(j) && !val.is_int()) {
|
||||
set_value_for_nbasic_column(j, impq(floor(val)));
|
||||
change = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
return change;
|
||||
}
|
||||
|
||||
void int_solver::set_value_for_nbasic_column_ignore_old_values(unsigned j, const impq & new_val) {
|
||||
lp_assert(!is_base(j));
|
||||
auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
|
||||
auto delta = new_val - x;
|
||||
x = new_val;
|
||||
update_column_in_int_inf_set(j);
|
||||
m_lar_solver->change_basic_columns_dependend_on_a_given_nb_column(j, delta);
|
||||
}
|
||||
|
||||
|
||||
void int_solver::set_value_for_nbasic_column(unsigned j, const impq & new_val) {
|
||||
lp_assert(!is_base(j));
|
||||
auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x[j];
|
||||
if (!m_old_values_set.contains(j)) {
|
||||
if (m_lar_solver->has_int_var() && !m_old_values_set.contains(j)) {
|
||||
m_old_values_set.insert(j);
|
||||
m_old_values_data[j] = x;
|
||||
}
|
||||
auto delta = new_val - x;
|
||||
x = new_val;
|
||||
m_lar_solver->change_basic_x_by_delta_on_column(j, delta);
|
||||
|
||||
auto * it = get_column_iterator(j);
|
||||
update_column_in_int_inf_set(j);
|
||||
unsigned i;
|
||||
while (it->next(i))
|
||||
update_column_in_int_inf_set(m_lar_solver->m_mpq_lar_core_solver.m_r_basis[i]);
|
||||
delete it;
|
||||
m_lar_solver->change_basic_columns_dependend_on_a_given_nb_column(j, delta);
|
||||
}
|
||||
|
||||
void int_solver::patch_int_infeasible_columns() {
|
||||
|
|
@ -660,7 +702,7 @@ bool int_solver::ext_gcd_test(iterator_on_row<mpq> & it,
|
|||
else {
|
||||
// l += ncoeff * upper_bound(j).get_rational();
|
||||
l.addmul(ncoeff, m_lar_solver->column_upper_bound(j).x);
|
||||
// u += ncoeff * lower_bound(j).get_rational();
|
||||
// u += ncoeff * low_bound(j).get_rational();
|
||||
u.addmul(ncoeff, m_lar_solver->column_low_bound(j).x);
|
||||
}
|
||||
add_to_explanation_from_fixed_or_boxed_column(j, ex);
|
||||
|
|
@ -702,10 +744,11 @@ int_solver::int_solver(lar_solver* lar_slv) :
|
|||
m_branch_cut_counter(0) {
|
||||
lp_assert(m_old_values_set.size() == 0);
|
||||
m_old_values_set.resize(lar_slv->A_r().column_count());
|
||||
m_old_values_data.resize(lar_slv->A_r().column_count(), zero_of_type<impq>());
|
||||
m_old_values_data.resize(lar_slv->A_r().column_count(), zero_of_type<impq>());
|
||||
m_lar_solver->set_int_solver(this);
|
||||
}
|
||||
|
||||
bool int_solver::lower(unsigned j) const {
|
||||
bool int_solver::has_low(unsigned j) const {
|
||||
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
|
|
@ -716,7 +759,7 @@ bool int_solver::lower(unsigned j) const {
|
|||
}
|
||||
}
|
||||
|
||||
bool int_solver::upper(unsigned j) const {
|
||||
bool int_solver::has_upper(unsigned j) const {
|
||||
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
|
|
@ -727,14 +770,6 @@ bool int_solver::upper(unsigned j) const {
|
|||
}
|
||||
}
|
||||
|
||||
const impq& int_solver::lower_bound(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_r_low_bounds()[j];
|
||||
}
|
||||
|
||||
const impq& int_solver::upper_bound(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_r_upper_bounds()[j];
|
||||
}
|
||||
|
||||
|
||||
void set_lower(impq & l,
|
||||
bool & inf_l,
|
||||
|
|
@ -754,73 +789,62 @@ void set_upper(impq & u,
|
|||
}
|
||||
}
|
||||
|
||||
bool int_solver::get_freedom_interval_for_column(unsigned x_j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) {
|
||||
bool int_solver::get_freedom_interval_for_column(unsigned j, bool & inf_l, impq & l, bool & inf_u, impq & u, mpq & m) {
|
||||
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
||||
if (lcs.m_r_heading[x_j] >= 0) // the basic var
|
||||
if (lcs.m_r_heading[j] >= 0) // the basic var
|
||||
return false;
|
||||
|
||||
impq const & x_j_val = lcs.m_r_x[x_j];
|
||||
linear_combination_iterator<mpq> *it = get_column_iterator(x_j);
|
||||
impq const & xj = get_value(j);
|
||||
linear_combination_iterator<mpq> *it = get_column_iterator(j);
|
||||
|
||||
inf_l = true;
|
||||
inf_u = true;
|
||||
l = u = zero_of_type<impq>();
|
||||
m = mpq(1);
|
||||
|
||||
if (lower(x_j)) {
|
||||
set_lower(l, inf_l, lower_bound(x_j));
|
||||
if (has_low(j)) {
|
||||
set_lower(l, inf_l, low_bound(j));
|
||||
}
|
||||
if (upper(x_j)) {
|
||||
set_upper(u, inf_u, upper_bound(x_j));
|
||||
if (has_upper(j)) {
|
||||
set_upper(u, inf_u, upper_bound(j));
|
||||
}
|
||||
|
||||
mpq a_ij; unsigned i;
|
||||
while (it->next(a_ij, i)) {
|
||||
unsigned x_i = lcs.m_r_basis[i];
|
||||
impq const & x_i_val = lcs.m_r_x[x_i];
|
||||
if (is_int(x_i) && is_int(x_j) && !a_ij.is_int())
|
||||
m = lcm(m, denominator(a_ij));
|
||||
bool x_i_lower = lower(x_i);
|
||||
bool x_i_upper = upper(x_i);
|
||||
if (a_ij.is_neg()) {
|
||||
if (x_i_lower) {
|
||||
impq new_l = x_j_val + ((x_i_val - lcs.m_r_low_bounds()[x_i]) / a_ij);
|
||||
set_lower(l, inf_l, new_l);
|
||||
if (!inf_l && !inf_u && l == u) break;;
|
||||
}
|
||||
if (x_i_upper) {
|
||||
impq new_u = x_j_val + ((x_i_val - lcs.m_r_upper_bounds()[x_i]) / a_ij);
|
||||
set_upper(u, inf_u, new_u);
|
||||
if (!inf_l && !inf_u && l == u) break;;
|
||||
}
|
||||
mpq a; // the coefficient in the column
|
||||
unsigned row_index;
|
||||
while (it->next(a, row_index)) {
|
||||
unsigned i = lcs.m_r_basis[row_index];
|
||||
impq const & xi = get_value(i);
|
||||
if (is_int(i) && is_int(j) && !a.is_int())
|
||||
m = lcm(m, denominator(a));
|
||||
if (a.is_neg()) {
|
||||
if (has_low(i))
|
||||
set_lower(l, inf_l, xj + (xi - lcs.m_r_low_bounds()[i]) / a);
|
||||
|
||||
if (has_upper(i))
|
||||
set_upper(u, inf_u, xj + (xi - lcs.m_r_upper_bounds()[i]) / a);
|
||||
}
|
||||
else {
|
||||
if (x_i_upper) {
|
||||
impq new_l = x_j_val + ((x_i_val - lcs.m_r_upper_bounds()[x_i]) / a_ij);
|
||||
set_lower(l, inf_l, new_l);
|
||||
if (!inf_l && !inf_u && l == u) break;;
|
||||
}
|
||||
if (x_i_lower) {
|
||||
impq new_u = x_j_val + ((x_i_val - lcs.m_r_low_bounds()[x_i]) / a_ij);
|
||||
set_upper(u, inf_u, new_u);
|
||||
if (!inf_l && !inf_u && l == u) break;;
|
||||
}
|
||||
if (has_upper(i))
|
||||
set_lower(l, inf_l, xj + (xi - lcs.m_r_upper_bounds()[i]) / a);
|
||||
if (has_low(i))
|
||||
set_upper(u, inf_u, xj + (xi - lcs.m_r_low_bounds()[i]) / a);
|
||||
}
|
||||
if (!inf_l && !inf_u && l == u) break;;
|
||||
}
|
||||
|
||||
delete it;
|
||||
TRACE("freedom_interval",
|
||||
tout << "freedom variable for:\n";
|
||||
tout << m_lar_solver->get_column_name(x_j);
|
||||
tout << m_lar_solver->get_column_name(j);
|
||||
tout << "[";
|
||||
if (inf_l) tout << "-oo"; else tout << l;
|
||||
tout << "; ";
|
||||
if (inf_u) tout << "oo"; else tout << u;
|
||||
tout << "]\n";
|
||||
tout << "val = " << get_value(x_j) << "\n";
|
||||
tout << "val = " << get_value(j) << "\n";
|
||||
);
|
||||
lp_assert(inf_l || l <= get_value(x_j));
|
||||
lp_assert(inf_u || u >= get_value(x_j));
|
||||
lp_assert(inf_l || l <= get_value(j));
|
||||
lp_assert(inf_u || u >= get_value(j));
|
||||
return true;
|
||||
|
||||
}
|
||||
|
|
@ -834,7 +858,7 @@ bool int_solver::is_real(unsigned j) const {
|
|||
}
|
||||
|
||||
bool int_solver::value_is_int(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_r_x[j].is_int();
|
||||
return m_lar_solver->column_value_is_int(j);
|
||||
}
|
||||
|
||||
|
||||
|
|
@ -856,8 +880,10 @@ void int_solver::display_column(std::ostream & out, unsigned j) const {
|
|||
|
||||
bool int_solver::inf_int_set_is_correct() const {
|
||||
for (unsigned j = 0; j < m_lar_solver->A_r().column_count(); j++) {
|
||||
if (inf_int_set().contains(j) != (is_int(j) && (!value_is_int(j))))
|
||||
if (inf_int_set().contains(j) != (is_int(j) && (!value_is_int(j)))) {
|
||||
TRACE("arith_int", tout << "j= " << j << " inf_int_set().contains(j) = " << inf_int_set().contains(j) << ", is_int(j) = " << is_int(j) << "\nvalue_is_int(j) = " << value_is_int(j) << ", val = " << get_value(j) << std::endl;);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
|
@ -881,6 +907,10 @@ bool int_solver::is_boxed(unsigned j) const {
|
|||
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::boxed;
|
||||
}
|
||||
|
||||
bool int_solver::is_fixed(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::fixed;
|
||||
}
|
||||
|
||||
bool int_solver::is_free(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_column_types[j] == column_type::free_column;
|
||||
}
|
||||
|
|
@ -902,7 +932,7 @@ bool int_solver::at_bound(unsigned j) const {
|
|||
}
|
||||
}
|
||||
|
||||
bool int_solver::at_lower(unsigned j) const {
|
||||
bool int_solver::at_low(unsigned j) const {
|
||||
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
switch (mpq_solver.m_column_types[j] ) {
|
||||
case column_type::fixed:
|
||||
|
|
@ -950,4 +980,115 @@ void int_solver::display_row_info(std::ostream & out, unsigned row_index) const
|
|||
rslv.print_column_bound_info(rslv.m_basis[row_index], out);
|
||||
delete it;
|
||||
}
|
||||
|
||||
unsigned int_solver::random() {
|
||||
return m_lar_solver->get_core_solver().settings().random_next();
|
||||
}
|
||||
|
||||
bool int_solver::shift_var(unsigned j, unsigned range) {
|
||||
if (is_fixed(j) || is_base(j))
|
||||
return false;
|
||||
|
||||
bool inf_l, inf_u;
|
||||
impq l, u;
|
||||
mpq m;
|
||||
get_freedom_interval_for_column(j, inf_l, l, inf_u, u, m);
|
||||
if (inf_l && inf_u) {
|
||||
impq new_val = impq(random() % (range + 1));
|
||||
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
||||
return true;
|
||||
}
|
||||
if (is_int(j)) {
|
||||
if (!inf_l) {
|
||||
l = ceil(l);
|
||||
if (!m.is_one())
|
||||
l = m*ceil(l/m);
|
||||
}
|
||||
if (!inf_u) {
|
||||
u = floor(u);
|
||||
if (!m.is_one())
|
||||
u = m*floor(u/m);
|
||||
}
|
||||
}
|
||||
if (!inf_l && !inf_u && l >= u)
|
||||
return false;
|
||||
if (inf_u) {
|
||||
SASSERT(!inf_l);
|
||||
impq delta = impq(random() % (range + 1));
|
||||
impq new_val = l + m*delta;
|
||||
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
||||
return true;
|
||||
}
|
||||
if (inf_l) {
|
||||
SASSERT(!inf_u);
|
||||
impq delta = impq(random() % (range + 1));
|
||||
impq new_val = u - m*delta;
|
||||
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
||||
return true;
|
||||
}
|
||||
if (!is_int(j)) {
|
||||
SASSERT(!inf_l && !inf_u);
|
||||
mpq delta = mpq(random() % (range + 1));
|
||||
impq new_val = l + ((delta * (u - l)) / mpq(range));
|
||||
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
||||
return true;
|
||||
}
|
||||
else {
|
||||
mpq r = (u.x - l.x) / m;
|
||||
if (r < mpq(range))
|
||||
range = static_cast<unsigned>(r.get_uint64());
|
||||
impq new_val = l + m * (impq(random() % (range + 1)));
|
||||
set_value_for_nbasic_column_ignore_old_values(j, new_val);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool int_solver::non_basic_columns_are_at_bounds() const {
|
||||
auto & lcs = m_lar_solver->m_mpq_lar_core_solver;
|
||||
for (unsigned j :lcs.m_r_nbasis) {
|
||||
auto & val = lcs.m_r_x[j];
|
||||
switch (lcs.m_column_types()[j]) {
|
||||
case column_type::boxed:
|
||||
if (val != lcs.m_r_low_bounds()[j] && val != lcs.m_r_upper_bounds()[j])
|
||||
return false;
|
||||
break;
|
||||
case column_type::low_bound:
|
||||
if (val != lcs.m_r_low_bounds()[j])
|
||||
return false;
|
||||
break;
|
||||
case column_type::upper_bound:
|
||||
if (val != lcs.m_r_upper_bounds()[j])
|
||||
return false;
|
||||
break;
|
||||
default:
|
||||
if (is_int(j) && !val.is_int()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
const impq& int_solver::low_bound(unsigned j) const {
|
||||
return m_lar_solver->column_low_bound(j);
|
||||
}
|
||||
|
||||
lia_move int_solver::create_branch_on_column(int j, lar_term& t, mpq& k) const {
|
||||
lp_assert(t.is_empty());
|
||||
lp_assert(j != -1);
|
||||
t.add_monomial(mpq(1), j);
|
||||
k = floor(get_value(j));
|
||||
TRACE("arith_int", tout << "branching v" << j << " = " << get_value(j) << "\n";
|
||||
display_column(tout, j);
|
||||
tout << "k = " << k << std::endl;
|
||||
);
|
||||
lp_assert(current_solution_is_inf_on_cut(t, k));
|
||||
m_lar_solver->subs_term_columns(t);
|
||||
return lia_move::branch;
|
||||
|
||||
}
|
||||
|
||||
const impq& int_solver::upper_bound(unsigned j) const {
|
||||
return m_lar_solver->column_upper_bound(j);
|
||||
}
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue