3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-05 17:14:07 +00:00

Add new tactic bound-simplifier for integer-based bit-vector reasoning.

This commit is contained in:
Nikolaj Bjorner 2023-01-22 22:07:18 -08:00
parent 83662701b6
commit db79346ef7
14 changed files with 460 additions and 12 deletions

View file

@ -14,6 +14,11 @@ Version 4.next
Version 4.12.2
==============
- remove MSF (Microsoft Solver Foundation) plugin
- add bound_simplifier tactic.
It eliminates occurrences of "mod" operators when bounds information
implies that the modulus is redundant. This tactic is useful for
benchmarks created by converting bit-vector semantics to integer
reasoning.
Version 4.12.1
==============

View file

@ -2,6 +2,8 @@ z3_add_component(simplifiers
SOURCES
bit_blaster.cpp
bound_manager.cpp
bound_propagator.cpp
bound_simplifier.cpp
bv_slice.cpp
card2bv.cpp
demodulator_simplifier.cpp
@ -11,6 +13,7 @@ z3_add_component(simplifiers
eliminate_predicates.cpp
euf_completion.cpp
extract_eqs.cpp
linear_equation.cpp
max_bv_sharing.cpp
model_reconstruction_trail.cpp
propagate_values.cpp

View file

@ -17,7 +17,7 @@ Author:
Revision History:
--*/
#include "tactic/arith/bound_propagator.h"
#include "ast/simplifiers/bound_propagator.h"
#include<cmath>
// -------------------------------

View file

@ -24,7 +24,7 @@ Revision History:
#include "util/params.h"
#include "util/statistics.h"
#include "util/numeral_buffer.h"
#include "tactic/arith/linear_equation.h"
#include "ast/simplifiers/linear_equation.h"
class bound_propagator {
public:

View file

@ -0,0 +1,306 @@
/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
bounds_simplifier.cpp
Author:
Nikolaj Bjorner (nbjorner) 2023-01-22
--*/
#include "ast/ast_pp.h"
#include "ast/simplifiers/bound_simplifier.h"
#include "ast/rewriter/rewriter_def.h"
struct bound_simplifier::rw_cfg : public default_rewriter_cfg {
ast_manager& m;
bound_propagator& bp;
bound_simplifier& s;
arith_util a;
rw_cfg(bound_simplifier& s):m(s.m), bp(s.bp), s(s), a(m) {}
br_status reduce_app(func_decl* f, unsigned num_args, expr * const* args, expr_ref& result, proof_ref& pr) {
rational N, hi, lo;
bool strict;
if (a.is_mod(f) && num_args == 2 && a.is_numeral(args[1], N)) {
expr* x = args[0];
if (!s.has_upper(x, hi, strict) || strict)
return BR_FAILED;
if (!s.has_lower(x, lo, strict) || strict)
return BR_FAILED;
if (hi - lo >= N)
return BR_FAILED;
if (N > hi && lo >= 0) {
result = x;
return BR_DONE;
}
if (2*N > hi && lo >= N) {
result = a.mk_sub(x, a.mk_int(N));
s.m_rewriter(result);
return BR_DONE;
}
IF_VERBOSE(2, verbose_stream() << "potentially missed simplification: " << mk_pp(x, m) << " " << lo << " " << hi << " not reduced\n");
}
return BR_FAILED;
}
};
struct bound_simplifier::rw : public rewriter_tpl<rw_cfg> {
rw_cfg m_cfg;
rw(bound_simplifier& s):
rewriter_tpl<rw_cfg>(s.m, false, m_cfg),
m_cfg(s) {
}
};
void bound_simplifier::reduce() {
m_updated = true;
for (unsigned i = 0; i < 5 && m_updated; ++i) {
m_updated = false;
reset();
for (unsigned idx : indices())
insert_bound(m_fmls[idx]);
for (unsigned idx : indices())
tighten_bound(m_fmls[idx]);
rw rw(*this);
// TODO: take over propagate_ineq:
// bp.propagate();
// serialize bounds
proof_ref pr(m);
expr_ref r(m);
for (unsigned idx : indices()) {
auto const& d = m_fmls[idx];
rw(d.fml(), r, pr);
if (r != d.fml()) {
m_fmls.update(idx, dependent_expr(m, r, mp(d.pr(), pr), d.dep()));
m_updated = true;
}
}
}
}
// generalization to summations?
bool bound_simplifier::is_offset(expr* e, expr* x, rational& n) {
expr* y, *z;
if (a.is_add(e, y, z)) {
if (x != y)
std::swap(y, z);
return x == y && a.is_numeral(z, n);
}
return false;
}
bool bound_simplifier::insert_bound(dependent_expr const& de) {
if (de.pr())
return false;
if (de.dep())
return false;
rational n, n0;
expr* x, *y, *f = de.fml();
if (m.is_eq(f, x, y)) {
if (a.is_numeral(y))
std::swap(x, y);
if (a.is_numeral(x, n)) {
assert_lower(y, n, false);
assert_upper(y, n, false);
return true;
}
}
else if (a.is_le(f, x, y)) {
if (a.is_numeral(x, n))
assert_lower(y, n, false);
else if (a.is_numeral(y, n))
assert_upper(x, n, false);
else
return false;
return true;
}
else if (a.is_ge(f, x, y)) {
if (a.is_numeral(x, n))
assert_upper(y, n, false);
else if (a.is_numeral(y, n))
assert_lower(x, n, false);
else
return false;
return true;
}
else if (m.is_not(f, f)) {
if (a.is_le(f, x, y)) {
if (a.is_numeral(x, n))
assert_upper(y, n, true);
else if (a.is_numeral(y, n))
assert_lower(x, n, true);
else
return false;
return true;
}
else if (a.is_ge(f, x, y)) {
if (a.is_numeral(x, n))
assert_lower(y, n, true);
else if (a.is_numeral(y, n))
assert_upper(x, n, true);
else
return false;
return true;
}
}
return false;
}
void bound_simplifier::tighten_bound(dependent_expr const& de) {
if (de.pr())
return;
if (de.dep())
return;
rational n, k;
expr* x, *y, *f = de.fml();
expr* z, *u;
bool strict;
if (a.is_le(f, x, y)) {
// x <= (x + k) mod N && x >= 0 -> x + k < N
if (a.is_mod(y, z, u) && a.is_numeral(u, n) && has_lower(x, k, strict) && k >= 0 && is_offset(z, x, k) && k > 0 && k < n) {
assert_upper(x, n - k, true);
}
}
if (m.is_not(f, f) && m.is_eq(f, x, y)) {
if (a.is_numeral(x))
std::swap(x, y);
bool strict;
if (a.is_numeral(y, n)) {
if (has_lower(x, k, strict) && !strict && k == n)
assert_lower(x, k, true);
else if (has_upper(x, k, strict) && !strict && k == n)
assert_upper(x, k, true);
}
}
}
void bound_simplifier::assert_upper(expr* x, rational const& n, bool strict) {
scoped_mpq c(nm);
nm.set(c, n.to_mpq());
bp.assert_upper(to_var(x), c, strict);
}
void bound_simplifier::assert_lower(expr* x, rational const& n, bool strict) {
scoped_mpq c(nm);
nm.set(c, n.to_mpq());
bp.assert_lower(to_var(x), c, strict);
}
//
// TODO: Use math/interval/interval.h
//
bool bound_simplifier::has_lower(expr* x, rational& n, bool& strict) {
if (is_var(x)) {
unsigned v = to_var(x);
if (bp.has_lower(v)) {
mpq const & q = bp.lower(v, strict);
n = rational(q);
return true;
}
}
if (a.is_numeral(x, n)) {
strict = false;
return true;
}
if (a.is_mod(x)) {
n = rational::zero();
strict = false;
return true;
}
expr* y, *z;
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_lower(y, n, strict))
return true;
if (a.is_add(x)) {
rational bound;
strict = false;
n = 0;
bool is_strict;
for (expr* arg : *to_app(x)) {
if (!has_lower(arg, bound, is_strict))
return false;
strict |= is_strict;
n += bound;
}
return true;
}
if (a.is_mul(x, y, z)) {
// TODO: this is done generally using math/interval/interval.h
rational bound1, bound2;
bool strict1, strict2;
if (has_lower(y, bound1, strict1) && !strict1 &&
has_lower(z, bound1, strict2) && !strict2 &&
bound1 >= 0 && bound2 >= 0) {
n = bound1*bound2;
strict = false;
return true;
}
}
return false;
}
bool bound_simplifier::has_upper(expr* x, rational& n, bool& strict) {
if (is_var(x)) {
unsigned v = to_var(x);
if (bp.has_upper(v)) {
mpq const & q = bp.upper(v, strict);
n = rational(q);
return true;
}
}
// perform light-weight abstract analysis
// y * (u / y) is bounded by u, if y > 0
if (a.is_numeral(x, n)) {
strict = false;
return true;
}
if (a.is_add(x)) {
rational bound;
strict = false;
n = 0;
bool is_strict;
for (expr* arg : *to_app(x)) {
if (!has_upper(arg, bound, is_strict))
return false;
strict |= is_strict;
n += bound;
}
return true;
}
expr* y, *z, *u, *v;
if (a.is_mul(x, y, z) && a.is_idiv(z, u, v) && v == y && has_lower(y, n, strict) && n > 0 && has_upper(u, n, strict))
return true;
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_upper(y, n, strict))
return true;
return false;
}
void bound_simplifier::reset() {
bp.reset();
m_var2expr.reset();
m_expr2var.reset();
m_num_vars = 0;
}

View file

@ -0,0 +1,90 @@
/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
bound_simplifier.h
Author:
Nikolaj Bjorner (nbjorner) 2023-01-22
Description:
Collects bounds of sub-expressions and uses them to simplify modulus
expressions.
propagate_ineqs_tactic handles other propagations with bounds.
--*/
#pragma once
#include "ast/arith_decl_plugin.h"
#include "ast/rewriter/th_rewriter.h"
#include "ast/simplifiers/dependent_expr_state.h"
#include "ast/simplifiers/bound_propagator.h"
class bound_simplifier : public dependent_expr_simplifier {
arith_util a;
th_rewriter m_rewriter;
unsynch_mpq_manager nm;
small_object_allocator m_alloc;
bound_propagator bp;
unsigned m_num_vars = 0;
ptr_vector<expr> m_var2expr;
unsigned_vector m_expr2var;
bool m_updated = false;
struct rw_cfg;
struct rw;
bool insert_bound(dependent_expr const& de);
void tighten_bound(dependent_expr const& de);
void reset();
expr* to_expr(unsigned v) const {
return m_var2expr.get(v, nullptr);
}
bool is_var(expr* e) const {
return UINT_MAX != m_expr2var.get(e->get_id(), UINT_MAX);
}
unsigned to_var(expr* e) {
unsigned v = m_expr2var.get(e->get_id(), UINT_MAX);
if (v == UINT_MAX) {
v = m_num_vars++;
bp.mk_var(v, a.is_int(e));
m_expr2var.setx(e->get_id(), v, UINT_MAX);
m_var2expr.setx(v, e, nullptr);
}
return v;
}
void assert_lower(expr* x, rational const& n, bool strict);
void assert_upper(expr* x, rational const& n, bool strict);
bool has_upper(expr* x, rational& n, bool& strict);
bool has_lower(expr* x, rational& n, bool& strict);
// e = x + offset
bool is_offset(expr* e, expr* x, rational& offset);
public:
bound_simplifier(ast_manager& m, params_ref const& p, dependent_expr_state& fmls):
dependent_expr_simplifier(m, fmls),
a(m),
m_rewriter(m),
bp(nm, m_alloc, p) {
}
char const* name() const override { return "bounds-simplifier"; }
bool supports_proofs() const override { return false; }
void reduce() override;
};

View file

@ -88,10 +88,13 @@ namespace euf {
expr_ref_vector m_args, m_trail;
expr_sparse_mark m_nonzero;
bool m_enabled = true;
bool m_eliminate_mod = true;
// solve u mod r1 = y -> u = r1*mod!1 + y
void solve_mod(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
if (!m_eliminate_mod)
return;
expr* u, * z;
rational r1, r2;
if (!a.is_mod(x, u, z))
@ -296,13 +299,12 @@ break;
add_pos(f);
m_bm(f, d, p);
}
}
void updt_params(params_ref const& p) override {
tactic_params tp(p);
m_enabled = p.get_bool("theory_solver", tp.solve_eqs_ite_solver());
m_eliminate_mod = p.get_bool("eliminate_mod", true);
}
};

View file

@ -18,7 +18,7 @@ Author:
Revision History:
--*/
#include "tactic/arith/linear_equation.h"
#include "ast/simplifiers/linear_equation.h"
/**
\brief Return the position of variable x_i in the linear equation.

View file

@ -294,6 +294,7 @@ namespace euf {
r.insert("theory_solver", CPK_BOOL, "theory solvers.", "true");
r.insert("ite_solver", CPK_BOOL, "use if-then-else solver.", "true");
r.insert("context_solve", CPK_BOOL, "solve equalities under disjunctions.", "false");
r.insert("eliminate_mod", CPK_BOOL, "eliminate modulus from equations", "true");
}
void solve_eqs::collect_statistics(statistics& st) const {

View file

@ -2,7 +2,6 @@ z3_add_component(arith_tactics
SOURCES
add_bounds_tactic.cpp
arith_bounds_tactic.cpp
bound_propagator.cpp
bv2int_rewriter.cpp
bv2real_rewriter.cpp
degree_shift_tactic.cpp
@ -13,7 +12,6 @@ z3_add_component(arith_tactics
fm_tactic.cpp
lia2card_tactic.cpp
lia2pb_tactic.cpp
linear_equation.cpp
nla2bv_tactic.cpp
normalize_bounds_tactic.cpp
pb2bv_model_converter.cpp
@ -27,6 +25,7 @@ z3_add_component(arith_tactics
sat
TACTIC_HEADERS
add_bounds_tactic.h
bound_simplifier_tactic.h
card2bv_tactic.h
degree_shift_tactic.h
diff_neq_tactic.h

View file

@ -0,0 +1,41 @@
/*++
Copyright (c) 2023 Microsoft Corporation
Module Name:
bound_simplifier_tactic.h
Author:
Nikolaj Bjorner (nbjorner) 2023-01-22
Tactic Documentation:
## Tactic bound-simplifier
### Short Description
Tactic for simplifying arithmetical expressions modulo bounds
### Long Description
The tactic is used to eliminate occurrences of modulus expressions when it is known that terms are within the bounds
of the modulus.
--*/
#pragma once
#include "util/params.h"
#include "tactic/tactic.h"
#include "tactic/dependent_expr_state_tactic.h"
#include "ast/simplifiers/bound_simplifier.h"
inline tactic* mk_bound_simplifier_tactic(ast_manager& m, params_ref const& p = params_ref()) {
return alloc(dependent_expr_state_tactic, m, p,
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(bound_simplifier, m, p, s); });
}
/*
ADD_TACTIC("bound-simplifier", "Simplify arithmetical expressions modulo bounds.", "mk_bound_simplifier_tactic(m, p)")
*/

View file

@ -3,7 +3,7 @@ Copyright (c) 2014 Microsoft Corporation
Module Name:
card2bv_tactic.cpp
card2bv_tactic.h
Author:

View file

@ -31,7 +31,7 @@ Notes:
--*/
#include "tactic/tactical.h"
#include "tactic/arith/bound_propagator.h"
#include "ast/simplifiers/bound_propagator.h"
#include "ast/arith_decl_plugin.h"
#include "tactic/core/simplify_tactic.h"
#include "ast/ast_smt2_pp.h"
@ -221,9 +221,9 @@ struct propagate_ineqs_tactic::imp {
strict = true;
}
}
else {
else
return false;
}
expr * lhs = to_app(t)->get_arg(0);
expr * rhs = to_app(t)->get_arg(1);
expr* a, *b;
@ -251,6 +251,7 @@ struct propagate_ineqs_tactic::imp {
a_var x = mk_linear_pol(lhs);
mpq c_prime;
nm.set(c_prime, c.to_mpq());
verbose_stream() << mk_ismt2_pp(t, m) << " bound " << c << "\n";
if (k == EQ) {
SASSERT(!strict);
bp.assert_lower(x, c_prime, false);