mirror of
https://github.com/Z3Prover/z3
synced 2025-04-05 09:04:07 +00:00
Add new tactic bound-simplifier for integer-based bit-vector reasoning.
This commit is contained in:
parent
83662701b6
commit
db79346ef7
|
@ -14,6 +14,11 @@ Version 4.next
|
|||
Version 4.12.2
|
||||
==============
|
||||
- remove MSF (Microsoft Solver Foundation) plugin
|
||||
- add bound_simplifier tactic.
|
||||
It eliminates occurrences of "mod" operators when bounds information
|
||||
implies that the modulus is redundant. This tactic is useful for
|
||||
benchmarks created by converting bit-vector semantics to integer
|
||||
reasoning.
|
||||
|
||||
Version 4.12.1
|
||||
==============
|
||||
|
|
|
@ -2,6 +2,8 @@ z3_add_component(simplifiers
|
|||
SOURCES
|
||||
bit_blaster.cpp
|
||||
bound_manager.cpp
|
||||
bound_propagator.cpp
|
||||
bound_simplifier.cpp
|
||||
bv_slice.cpp
|
||||
card2bv.cpp
|
||||
demodulator_simplifier.cpp
|
||||
|
@ -11,6 +13,7 @@ z3_add_component(simplifiers
|
|||
eliminate_predicates.cpp
|
||||
euf_completion.cpp
|
||||
extract_eqs.cpp
|
||||
linear_equation.cpp
|
||||
max_bv_sharing.cpp
|
||||
model_reconstruction_trail.cpp
|
||||
propagate_values.cpp
|
||||
|
|
|
@ -17,7 +17,7 @@ Author:
|
|||
Revision History:
|
||||
|
||||
--*/
|
||||
#include "tactic/arith/bound_propagator.h"
|
||||
#include "ast/simplifiers/bound_propagator.h"
|
||||
#include<cmath>
|
||||
|
||||
// -------------------------------
|
|
@ -24,7 +24,7 @@ Revision History:
|
|||
#include "util/params.h"
|
||||
#include "util/statistics.h"
|
||||
#include "util/numeral_buffer.h"
|
||||
#include "tactic/arith/linear_equation.h"
|
||||
#include "ast/simplifiers/linear_equation.h"
|
||||
|
||||
class bound_propagator {
|
||||
public:
|
306
src/ast/simplifiers/bound_simplifier.cpp
Normal file
306
src/ast/simplifiers/bound_simplifier.cpp
Normal file
|
@ -0,0 +1,306 @@
|
|||
/*++
|
||||
Copyright (c) 2022 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bounds_simplifier.cpp
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2023-01-22
|
||||
|
||||
--*/
|
||||
|
||||
|
||||
#include "ast/ast_pp.h"
|
||||
#include "ast/simplifiers/bound_simplifier.h"
|
||||
#include "ast/rewriter/rewriter_def.h"
|
||||
|
||||
struct bound_simplifier::rw_cfg : public default_rewriter_cfg {
|
||||
ast_manager& m;
|
||||
bound_propagator& bp;
|
||||
bound_simplifier& s;
|
||||
arith_util a;
|
||||
rw_cfg(bound_simplifier& s):m(s.m), bp(s.bp), s(s), a(m) {}
|
||||
|
||||
br_status reduce_app(func_decl* f, unsigned num_args, expr * const* args, expr_ref& result, proof_ref& pr) {
|
||||
rational N, hi, lo;
|
||||
bool strict;
|
||||
if (a.is_mod(f) && num_args == 2 && a.is_numeral(args[1], N)) {
|
||||
expr* x = args[0];
|
||||
if (!s.has_upper(x, hi, strict) || strict)
|
||||
return BR_FAILED;
|
||||
if (!s.has_lower(x, lo, strict) || strict)
|
||||
return BR_FAILED;
|
||||
if (hi - lo >= N)
|
||||
return BR_FAILED;
|
||||
if (N > hi && lo >= 0) {
|
||||
result = x;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (2*N > hi && lo >= N) {
|
||||
result = a.mk_sub(x, a.mk_int(N));
|
||||
s.m_rewriter(result);
|
||||
return BR_DONE;
|
||||
}
|
||||
IF_VERBOSE(2, verbose_stream() << "potentially missed simplification: " << mk_pp(x, m) << " " << lo << " " << hi << " not reduced\n");
|
||||
}
|
||||
return BR_FAILED;
|
||||
}
|
||||
};
|
||||
|
||||
struct bound_simplifier::rw : public rewriter_tpl<rw_cfg> {
|
||||
rw_cfg m_cfg;
|
||||
|
||||
rw(bound_simplifier& s):
|
||||
rewriter_tpl<rw_cfg>(s.m, false, m_cfg),
|
||||
m_cfg(s) {
|
||||
}
|
||||
};
|
||||
|
||||
void bound_simplifier::reduce() {
|
||||
|
||||
m_updated = true;
|
||||
for (unsigned i = 0; i < 5 && m_updated; ++i) {
|
||||
m_updated = false;
|
||||
reset();
|
||||
for (unsigned idx : indices())
|
||||
insert_bound(m_fmls[idx]);
|
||||
for (unsigned idx : indices())
|
||||
tighten_bound(m_fmls[idx]);
|
||||
|
||||
rw rw(*this);
|
||||
|
||||
// TODO: take over propagate_ineq:
|
||||
// bp.propagate();
|
||||
// serialize bounds
|
||||
|
||||
proof_ref pr(m);
|
||||
expr_ref r(m);
|
||||
for (unsigned idx : indices()) {
|
||||
auto const& d = m_fmls[idx];
|
||||
rw(d.fml(), r, pr);
|
||||
if (r != d.fml()) {
|
||||
m_fmls.update(idx, dependent_expr(m, r, mp(d.pr(), pr), d.dep()));
|
||||
m_updated = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// generalization to summations?
|
||||
|
||||
bool bound_simplifier::is_offset(expr* e, expr* x, rational& n) {
|
||||
expr* y, *z;
|
||||
if (a.is_add(e, y, z)) {
|
||||
if (x != y)
|
||||
std::swap(y, z);
|
||||
return x == y && a.is_numeral(z, n);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool bound_simplifier::insert_bound(dependent_expr const& de) {
|
||||
if (de.pr())
|
||||
return false;
|
||||
if (de.dep())
|
||||
return false;
|
||||
rational n, n0;
|
||||
expr* x, *y, *f = de.fml();
|
||||
|
||||
if (m.is_eq(f, x, y)) {
|
||||
if (a.is_numeral(y))
|
||||
std::swap(x, y);
|
||||
if (a.is_numeral(x, n)) {
|
||||
assert_lower(y, n, false);
|
||||
assert_upper(y, n, false);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
else if (a.is_le(f, x, y)) {
|
||||
if (a.is_numeral(x, n))
|
||||
assert_lower(y, n, false);
|
||||
else if (a.is_numeral(y, n))
|
||||
assert_upper(x, n, false);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_ge(f, x, y)) {
|
||||
if (a.is_numeral(x, n))
|
||||
assert_upper(y, n, false);
|
||||
else if (a.is_numeral(y, n))
|
||||
assert_lower(x, n, false);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
else if (m.is_not(f, f)) {
|
||||
if (a.is_le(f, x, y)) {
|
||||
if (a.is_numeral(x, n))
|
||||
assert_upper(y, n, true);
|
||||
else if (a.is_numeral(y, n))
|
||||
assert_lower(x, n, true);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
else if (a.is_ge(f, x, y)) {
|
||||
if (a.is_numeral(x, n))
|
||||
assert_lower(y, n, true);
|
||||
else if (a.is_numeral(y, n))
|
||||
assert_upper(x, n, true);
|
||||
else
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void bound_simplifier::tighten_bound(dependent_expr const& de) {
|
||||
if (de.pr())
|
||||
return;
|
||||
if (de.dep())
|
||||
return;
|
||||
rational n, k;
|
||||
expr* x, *y, *f = de.fml();
|
||||
expr* z, *u;
|
||||
bool strict;
|
||||
if (a.is_le(f, x, y)) {
|
||||
// x <= (x + k) mod N && x >= 0 -> x + k < N
|
||||
if (a.is_mod(y, z, u) && a.is_numeral(u, n) && has_lower(x, k, strict) && k >= 0 && is_offset(z, x, k) && k > 0 && k < n) {
|
||||
assert_upper(x, n - k, true);
|
||||
}
|
||||
}
|
||||
if (m.is_not(f, f) && m.is_eq(f, x, y)) {
|
||||
if (a.is_numeral(x))
|
||||
std::swap(x, y);
|
||||
bool strict;
|
||||
if (a.is_numeral(y, n)) {
|
||||
if (has_lower(x, k, strict) && !strict && k == n)
|
||||
assert_lower(x, k, true);
|
||||
else if (has_upper(x, k, strict) && !strict && k == n)
|
||||
assert_upper(x, k, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void bound_simplifier::assert_upper(expr* x, rational const& n, bool strict) {
|
||||
scoped_mpq c(nm);
|
||||
nm.set(c, n.to_mpq());
|
||||
bp.assert_upper(to_var(x), c, strict);
|
||||
}
|
||||
|
||||
|
||||
void bound_simplifier::assert_lower(expr* x, rational const& n, bool strict) {
|
||||
scoped_mpq c(nm);
|
||||
nm.set(c, n.to_mpq());
|
||||
bp.assert_lower(to_var(x), c, strict);
|
||||
}
|
||||
|
||||
//
|
||||
// TODO: Use math/interval/interval.h
|
||||
//
|
||||
|
||||
bool bound_simplifier::has_lower(expr* x, rational& n, bool& strict) {
|
||||
if (is_var(x)) {
|
||||
unsigned v = to_var(x);
|
||||
if (bp.has_lower(v)) {
|
||||
mpq const & q = bp.lower(v, strict);
|
||||
n = rational(q);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
if (a.is_numeral(x, n)) {
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
if (a.is_mod(x)) {
|
||||
n = rational::zero();
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
expr* y, *z;
|
||||
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_lower(y, n, strict))
|
||||
return true;
|
||||
|
||||
if (a.is_add(x)) {
|
||||
rational bound;
|
||||
strict = false;
|
||||
n = 0;
|
||||
bool is_strict;
|
||||
for (expr* arg : *to_app(x)) {
|
||||
if (!has_lower(arg, bound, is_strict))
|
||||
return false;
|
||||
strict |= is_strict;
|
||||
n += bound;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
if (a.is_mul(x, y, z)) {
|
||||
// TODO: this is done generally using math/interval/interval.h
|
||||
rational bound1, bound2;
|
||||
bool strict1, strict2;
|
||||
if (has_lower(y, bound1, strict1) && !strict1 &&
|
||||
has_lower(z, bound1, strict2) && !strict2 &&
|
||||
bound1 >= 0 && bound2 >= 0) {
|
||||
n = bound1*bound2;
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
bool bound_simplifier::has_upper(expr* x, rational& n, bool& strict) {
|
||||
if (is_var(x)) {
|
||||
unsigned v = to_var(x);
|
||||
if (bp.has_upper(v)) {
|
||||
mpq const & q = bp.upper(v, strict);
|
||||
n = rational(q);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// perform light-weight abstract analysis
|
||||
// y * (u / y) is bounded by u, if y > 0
|
||||
|
||||
if (a.is_numeral(x, n)) {
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (a.is_add(x)) {
|
||||
rational bound;
|
||||
strict = false;
|
||||
n = 0;
|
||||
bool is_strict;
|
||||
for (expr* arg : *to_app(x)) {
|
||||
if (!has_upper(arg, bound, is_strict))
|
||||
return false;
|
||||
strict |= is_strict;
|
||||
n += bound;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
expr* y, *z, *u, *v;
|
||||
if (a.is_mul(x, y, z) && a.is_idiv(z, u, v) && v == y && has_lower(y, n, strict) && n > 0 && has_upper(u, n, strict))
|
||||
return true;
|
||||
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_upper(y, n, strict))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void bound_simplifier::reset() {
|
||||
bp.reset();
|
||||
m_var2expr.reset();
|
||||
m_expr2var.reset();
|
||||
m_num_vars = 0;
|
||||
}
|
90
src/ast/simplifiers/bound_simplifier.h
Normal file
90
src/ast/simplifiers/bound_simplifier.h
Normal file
|
@ -0,0 +1,90 @@
|
|||
/*++
|
||||
Copyright (c) 2022 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bound_simplifier.h
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2023-01-22
|
||||
|
||||
Description:
|
||||
|
||||
Collects bounds of sub-expressions and uses them to simplify modulus
|
||||
expressions.
|
||||
propagate_ineqs_tactic handles other propagations with bounds.
|
||||
|
||||
--*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "ast/simplifiers/dependent_expr_state.h"
|
||||
#include "ast/simplifiers/bound_propagator.h"
|
||||
|
||||
|
||||
class bound_simplifier : public dependent_expr_simplifier {
|
||||
arith_util a;
|
||||
th_rewriter m_rewriter;
|
||||
unsynch_mpq_manager nm;
|
||||
small_object_allocator m_alloc;
|
||||
bound_propagator bp;
|
||||
unsigned m_num_vars = 0;
|
||||
ptr_vector<expr> m_var2expr;
|
||||
unsigned_vector m_expr2var;
|
||||
bool m_updated = false;
|
||||
|
||||
struct rw_cfg;
|
||||
struct rw;
|
||||
|
||||
bool insert_bound(dependent_expr const& de);
|
||||
void tighten_bound(dependent_expr const& de);
|
||||
|
||||
void reset();
|
||||
|
||||
expr* to_expr(unsigned v) const {
|
||||
return m_var2expr.get(v, nullptr);
|
||||
}
|
||||
|
||||
bool is_var(expr* e) const {
|
||||
return UINT_MAX != m_expr2var.get(e->get_id(), UINT_MAX);
|
||||
}
|
||||
|
||||
unsigned to_var(expr* e) {
|
||||
unsigned v = m_expr2var.get(e->get_id(), UINT_MAX);
|
||||
if (v == UINT_MAX) {
|
||||
v = m_num_vars++;
|
||||
bp.mk_var(v, a.is_int(e));
|
||||
m_expr2var.setx(e->get_id(), v, UINT_MAX);
|
||||
m_var2expr.setx(v, e, nullptr);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
void assert_lower(expr* x, rational const& n, bool strict);
|
||||
void assert_upper(expr* x, rational const& n, bool strict);
|
||||
|
||||
bool has_upper(expr* x, rational& n, bool& strict);
|
||||
bool has_lower(expr* x, rational& n, bool& strict);
|
||||
|
||||
// e = x + offset
|
||||
bool is_offset(expr* e, expr* x, rational& offset);
|
||||
|
||||
public:
|
||||
|
||||
bound_simplifier(ast_manager& m, params_ref const& p, dependent_expr_state& fmls):
|
||||
dependent_expr_simplifier(m, fmls),
|
||||
a(m),
|
||||
m_rewriter(m),
|
||||
bp(nm, m_alloc, p) {
|
||||
}
|
||||
|
||||
char const* name() const override { return "bounds-simplifier"; }
|
||||
|
||||
bool supports_proofs() const override { return false; }
|
||||
|
||||
void reduce() override;
|
||||
};
|
||||
|
|
@ -88,10 +88,13 @@ namespace euf {
|
|||
expr_ref_vector m_args, m_trail;
|
||||
expr_sparse_mark m_nonzero;
|
||||
bool m_enabled = true;
|
||||
bool m_eliminate_mod = true;
|
||||
|
||||
|
||||
// solve u mod r1 = y -> u = r1*mod!1 + y
|
||||
void solve_mod(expr* orig, expr* x, expr* y, expr_dependency* d, dep_eq_vector& eqs) {
|
||||
if (!m_eliminate_mod)
|
||||
return;
|
||||
expr* u, * z;
|
||||
rational r1, r2;
|
||||
if (!a.is_mod(x, u, z))
|
||||
|
@ -296,13 +299,12 @@ break;
|
|||
add_pos(f);
|
||||
m_bm(f, d, p);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
void updt_params(params_ref const& p) override {
|
||||
tactic_params tp(p);
|
||||
m_enabled = p.get_bool("theory_solver", tp.solve_eqs_ite_solver());
|
||||
m_eliminate_mod = p.get_bool("eliminate_mod", true);
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -18,7 +18,7 @@ Author:
|
|||
Revision History:
|
||||
|
||||
--*/
|
||||
#include "tactic/arith/linear_equation.h"
|
||||
#include "ast/simplifiers/linear_equation.h"
|
||||
|
||||
/**
|
||||
\brief Return the position of variable x_i in the linear equation.
|
|
@ -294,6 +294,7 @@ namespace euf {
|
|||
r.insert("theory_solver", CPK_BOOL, "theory solvers.", "true");
|
||||
r.insert("ite_solver", CPK_BOOL, "use if-then-else solver.", "true");
|
||||
r.insert("context_solve", CPK_BOOL, "solve equalities under disjunctions.", "false");
|
||||
r.insert("eliminate_mod", CPK_BOOL, "eliminate modulus from equations", "true");
|
||||
}
|
||||
|
||||
void solve_eqs::collect_statistics(statistics& st) const {
|
||||
|
|
|
@ -2,7 +2,6 @@ z3_add_component(arith_tactics
|
|||
SOURCES
|
||||
add_bounds_tactic.cpp
|
||||
arith_bounds_tactic.cpp
|
||||
bound_propagator.cpp
|
||||
bv2int_rewriter.cpp
|
||||
bv2real_rewriter.cpp
|
||||
degree_shift_tactic.cpp
|
||||
|
@ -13,7 +12,6 @@ z3_add_component(arith_tactics
|
|||
fm_tactic.cpp
|
||||
lia2card_tactic.cpp
|
||||
lia2pb_tactic.cpp
|
||||
linear_equation.cpp
|
||||
nla2bv_tactic.cpp
|
||||
normalize_bounds_tactic.cpp
|
||||
pb2bv_model_converter.cpp
|
||||
|
@ -27,6 +25,7 @@ z3_add_component(arith_tactics
|
|||
sat
|
||||
TACTIC_HEADERS
|
||||
add_bounds_tactic.h
|
||||
bound_simplifier_tactic.h
|
||||
card2bv_tactic.h
|
||||
degree_shift_tactic.h
|
||||
diff_neq_tactic.h
|
||||
|
|
41
src/tactic/arith/bound_simplifier_tactic.h
Normal file
41
src/tactic/arith/bound_simplifier_tactic.h
Normal file
|
@ -0,0 +1,41 @@
|
|||
/*++
|
||||
Copyright (c) 2023 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
bound_simplifier_tactic.h
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2023-01-22
|
||||
|
||||
Tactic Documentation:
|
||||
|
||||
## Tactic bound-simplifier
|
||||
|
||||
### Short Description
|
||||
|
||||
Tactic for simplifying arithmetical expressions modulo bounds
|
||||
|
||||
### Long Description
|
||||
|
||||
The tactic is used to eliminate occurrences of modulus expressions when it is known that terms are within the bounds
|
||||
of the modulus.
|
||||
|
||||
|
||||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "util/params.h"
|
||||
#include "tactic/tactic.h"
|
||||
#include "tactic/dependent_expr_state_tactic.h"
|
||||
#include "ast/simplifiers/bound_simplifier.h"
|
||||
|
||||
inline tactic* mk_bound_simplifier_tactic(ast_manager& m, params_ref const& p = params_ref()) {
|
||||
return alloc(dependent_expr_state_tactic, m, p,
|
||||
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(bound_simplifier, m, p, s); });
|
||||
}
|
||||
|
||||
/*
|
||||
ADD_TACTIC("bound-simplifier", "Simplify arithmetical expressions modulo bounds.", "mk_bound_simplifier_tactic(m, p)")
|
||||
*/
|
|
@ -3,7 +3,7 @@ Copyright (c) 2014 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
card2bv_tactic.cpp
|
||||
card2bv_tactic.h
|
||||
|
||||
Author:
|
||||
|
||||
|
|
|
@ -31,7 +31,7 @@ Notes:
|
|||
|
||||
--*/
|
||||
#include "tactic/tactical.h"
|
||||
#include "tactic/arith/bound_propagator.h"
|
||||
#include "ast/simplifiers/bound_propagator.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "tactic/core/simplify_tactic.h"
|
||||
#include "ast/ast_smt2_pp.h"
|
||||
|
@ -221,9 +221,9 @@ struct propagate_ineqs_tactic::imp {
|
|||
strict = true;
|
||||
}
|
||||
}
|
||||
else {
|
||||
return false;
|
||||
}
|
||||
else
|
||||
return false;
|
||||
|
||||
expr * lhs = to_app(t)->get_arg(0);
|
||||
expr * rhs = to_app(t)->get_arg(1);
|
||||
expr* a, *b;
|
||||
|
@ -251,6 +251,7 @@ struct propagate_ineqs_tactic::imp {
|
|||
a_var x = mk_linear_pol(lhs);
|
||||
mpq c_prime;
|
||||
nm.set(c_prime, c.to_mpq());
|
||||
verbose_stream() << mk_ismt2_pp(t, m) << " bound " << c << "\n";
|
||||
if (k == EQ) {
|
||||
SASSERT(!strict);
|
||||
bp.assert_lower(x, c_prime, false);
|
||||
|
|
Loading…
Reference in a new issue