mirror of
https://github.com/Z3Prover/z3
synced 2025-04-05 17:14:07 +00:00
use intervals for tracking bounds on arithmetic variables
leverage interval propagation for bounds. merge functionality with propagate-ineqs tactic remove the new propagate-bounds tactic and instead use propagate-ineqs
This commit is contained in:
parent
eb751bec4c
commit
d9f9cceea4
|
@ -14,8 +14,8 @@ Version 4.next
|
|||
Version 4.12.2
|
||||
==============
|
||||
- remove MSF (Microsoft Solver Foundation) plugin
|
||||
- add bound_simplifier tactic.
|
||||
It eliminates occurrences of "mod" operators when bounds information
|
||||
- updated propagate-ineqs tactic and implementing it as a simplifier, bound_simplifier.
|
||||
It now eliminates occurrences of "mod" operators when bounds information
|
||||
implies that the modulus is redundant. This tactic is useful for
|
||||
benchmarks created by converting bit-vector semantics to integer
|
||||
reasoning.
|
||||
|
|
|
@ -3,12 +3,35 @@ Copyright (c) 2022 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
bounds_simplifier.cpp
|
||||
bound_simplifier.cpp
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2023-01-22
|
||||
|
||||
Description:
|
||||
|
||||
Extract bounds for sub-expressions and use the bounds for propagation and simplification.
|
||||
It applies the simplificaitons from the bounds_propagator and it applies nested rewriting
|
||||
of sub-expressions based on bounds information. Initially, rewriting amounts to eliminating
|
||||
occurrences of mod N.
|
||||
|
||||
From the description of propagate_ineqs_tactic:
|
||||
|
||||
- Propagate bounds using the bound_propagator.
|
||||
- Eliminate subsumed inequalities.
|
||||
For example:
|
||||
x - y >= 3
|
||||
can be replaced with true if we know that
|
||||
x >= 3 and y <= 0
|
||||
|
||||
- Convert inequalities of the form p <= k and p >= k into p = k,
|
||||
where p is a polynomial and k is a constant.
|
||||
|
||||
This strategy assumes the input is in arith LHS mode.
|
||||
This can be achieved by using option :arith-lhs true in the
|
||||
simplifier.
|
||||
|
||||
--*/
|
||||
|
||||
|
||||
|
@ -17,74 +40,86 @@ Author:
|
|||
#include "ast/rewriter/rewriter_def.h"
|
||||
|
||||
struct bound_simplifier::rw_cfg : public default_rewriter_cfg {
|
||||
ast_manager& m;
|
||||
bound_propagator& bp;
|
||||
bound_simplifier& s;
|
||||
arith_util a;
|
||||
rw_cfg(bound_simplifier& s):m(s.m), bp(s.bp), s(s), a(m) {}
|
||||
|
||||
rw_cfg(bound_simplifier& s): s(s) {}
|
||||
br_status reduce_app(func_decl* f, unsigned num_args, expr * const* args, expr_ref& result, proof_ref& pr) {
|
||||
rational N, hi, lo;
|
||||
bool strict;
|
||||
if (a.is_mod(f) && num_args == 2 && a.is_numeral(args[1], N)) {
|
||||
expr* x = args[0];
|
||||
if (!s.has_upper(x, hi, strict) || strict)
|
||||
return BR_FAILED;
|
||||
if (!s.has_lower(x, lo, strict) || strict)
|
||||
return BR_FAILED;
|
||||
if (hi - lo >= N)
|
||||
return BR_FAILED;
|
||||
if (N > hi && lo >= 0) {
|
||||
result = x;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (2*N > hi && lo >= N) {
|
||||
result = a.mk_sub(x, a.mk_int(N));
|
||||
s.m_rewriter(result);
|
||||
return BR_DONE;
|
||||
}
|
||||
IF_VERBOSE(2, verbose_stream() << "potentially missed simplification: " << mk_pp(x, m) << " " << lo << " " << hi << " not reduced\n");
|
||||
}
|
||||
return BR_FAILED;
|
||||
return s.reduce_app(f, num_args, args, result, pr);
|
||||
}
|
||||
};
|
||||
|
||||
struct bound_simplifier::rw : public rewriter_tpl<rw_cfg> {
|
||||
rw_cfg m_cfg;
|
||||
|
||||
rw(bound_simplifier& s):
|
||||
rewriter_tpl<rw_cfg>(s.m, false, m_cfg),
|
||||
m_cfg(s) {
|
||||
}
|
||||
};
|
||||
|
||||
br_status bound_simplifier::reduce_app(func_decl* f, unsigned num_args, expr* const* args, expr_ref& result, proof_ref& pr) {
|
||||
rational N, hi, lo;
|
||||
if (a.is_mod(f) && num_args == 2 && a.is_numeral(args[1], N)) {
|
||||
expr* x = args[0];
|
||||
auto& im = m_interval;
|
||||
scoped_dep_interval i(im);
|
||||
get_bounds(x, i);
|
||||
if (im.upper_is_inf(i) || im.lower_is_inf(i))
|
||||
return BR_FAILED;
|
||||
if (im.upper_is_open(i) || im.lower_is_open(i))
|
||||
return BR_FAILED;
|
||||
lo = im.lower(i);
|
||||
hi = im.upper(i);
|
||||
if (hi - lo >= N)
|
||||
return BR_FAILED;
|
||||
if (N > hi && lo >= 0) {
|
||||
result = x;
|
||||
return BR_DONE;
|
||||
}
|
||||
if (2 * N > hi && lo >= N) {
|
||||
result = a.mk_sub(x, a.mk_int(N));
|
||||
m_rewriter(result);
|
||||
return BR_DONE;
|
||||
}
|
||||
IF_VERBOSE(2, verbose_stream() << "potentially missed simplification: " << mk_pp(x, m) << " " << lo << " " << hi << " not reduced\n");
|
||||
}
|
||||
return BR_FAILED;
|
||||
}
|
||||
|
||||
void bound_simplifier::reduce() {
|
||||
|
||||
m_updated = true;
|
||||
for (unsigned i = 0; i < 5 && m_updated; ++i) {
|
||||
m_updated = false;
|
||||
bool updated = true, found_bound = false;
|
||||
for (unsigned i = 0; i < 5 && updated; ++i) {
|
||||
updated = false;
|
||||
found_bound = false;
|
||||
reset();
|
||||
for (unsigned idx : indices())
|
||||
insert_bound(m_fmls[idx]);
|
||||
for (unsigned idx : indices()) {
|
||||
if (insert_bound(m_fmls[idx])) {
|
||||
m_fmls.update(idx, dependent_expr(m, m.mk_true(), nullptr, nullptr));
|
||||
found_bound = true;
|
||||
}
|
||||
}
|
||||
if (!found_bound)
|
||||
break;
|
||||
|
||||
for (unsigned idx : indices())
|
||||
tighten_bound(m_fmls[idx]);
|
||||
|
||||
rw rw(*this);
|
||||
|
||||
// TODO: take over propagate_ineq:
|
||||
// bp.propagate();
|
||||
// serialize bounds
|
||||
bp.propagate();
|
||||
|
||||
proof_ref pr(m);
|
||||
expr_ref r(m);
|
||||
rw rw(*this);
|
||||
for (unsigned idx : indices()) {
|
||||
auto const& d = m_fmls[idx];
|
||||
if (d.pr())
|
||||
continue;
|
||||
rw(d.fml(), r, pr);
|
||||
if (r != d.fml()) {
|
||||
m_fmls.update(idx, dependent_expr(m, r, mp(d.pr(), pr), d.dep()));
|
||||
m_updated = true;
|
||||
++m_num_reduced;
|
||||
updated = true;
|
||||
}
|
||||
}
|
||||
restore_bounds();
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -169,19 +204,22 @@ void bound_simplifier::tighten_bound(dependent_expr const& de) {
|
|||
bool strict;
|
||||
if (a.is_le(f, x, y)) {
|
||||
// x <= (x + k) mod N && x >= 0 -> x + k < N
|
||||
if (a.is_mod(y, z, u) && a.is_numeral(u, n) && has_lower(x, k, strict) && k >= 0 && is_offset(z, x, k) && k > 0 && k < n) {
|
||||
if (a.is_mod(y, z, u) && a.is_numeral(u, n) && has_lower(x, k, strict) && k >= 0 && is_offset(z, x, k) && k > 0 && k < n)
|
||||
assert_upper(x, n - k, true);
|
||||
}
|
||||
|
||||
}
|
||||
// x != k, k <= x -> k < x
|
||||
if (m.is_not(f, f) && m.is_eq(f, x, y)) {
|
||||
if (a.is_numeral(x))
|
||||
std::swap(x, y);
|
||||
bool strict;
|
||||
if (a.is_numeral(y, n)) {
|
||||
if (has_lower(x, k, strict) && !strict && k == n)
|
||||
assert_lower(x, k, true);
|
||||
else if (has_upper(x, k, strict) && !strict && k == n)
|
||||
assert_upper(x, k, true);
|
||||
scoped_dep_interval i(m_interval);
|
||||
get_bounds(x, i);
|
||||
scoped_mpq k(nm);
|
||||
if (!i.m().lower_is_inf(i) && !i.m().lower_is_open(i) && i.m().lower(i) == n)
|
||||
assert_lower(x, n, true);
|
||||
else if (!i.m().upper_is_inf(i) && !i.m().upper_is_open(i) && i.m().upper(i) == n)
|
||||
assert_upper(x, n, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -199,111 +237,33 @@ void bound_simplifier::assert_lower(expr* x, rational const& n, bool strict) {
|
|||
bp.assert_lower(to_var(x), c, strict);
|
||||
}
|
||||
|
||||
//
|
||||
// TODO: Use math/interval/interval.h
|
||||
//
|
||||
|
||||
bool bound_simplifier::has_lower(expr* x, rational& n, bool& strict) {
|
||||
if (is_var(x)) {
|
||||
unsigned v = to_var(x);
|
||||
if (bp.has_lower(v)) {
|
||||
mpq const & q = bp.lower(v, strict);
|
||||
n = rational(q);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
if (a.is_numeral(x, n)) {
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
if (a.is_mod(x)) {
|
||||
n = rational::zero();
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
expr* y, *z;
|
||||
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_lower(y, n, strict))
|
||||
return true;
|
||||
|
||||
if (a.is_add(x)) {
|
||||
rational bound;
|
||||
strict = false;
|
||||
n = 0;
|
||||
bool is_strict;
|
||||
for (expr* arg : *to_app(x)) {
|
||||
if (!has_lower(arg, bound, is_strict))
|
||||
return false;
|
||||
strict |= is_strict;
|
||||
n += bound;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
if (a.is_mul(x, y, z)) {
|
||||
// TODO: this is done generally using math/interval/interval.h
|
||||
rational bound1, bound2;
|
||||
bool strict1, strict2;
|
||||
if (has_lower(y, bound1, strict1) && !strict1 &&
|
||||
has_lower(z, bound1, strict2) && !strict2 &&
|
||||
bound1 >= 0 && bound2 >= 0) {
|
||||
n = bound1*bound2;
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
scoped_dep_interval i(m_interval);
|
||||
get_bounds(x, i);
|
||||
if (m_interval.lower_is_inf(i))
|
||||
return false;
|
||||
strict = m_interval.lower_is_open(i);
|
||||
n = m_interval.lower(i);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool bound_simplifier::has_upper(expr* x, rational& n, bool& strict) {
|
||||
if (is_var(x)) {
|
||||
unsigned v = to_var(x);
|
||||
if (bp.has_upper(v)) {
|
||||
mpq const & q = bp.upper(v, strict);
|
||||
n = rational(q);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
// perform light-weight abstract analysis
|
||||
// y * (u / y) is bounded by u, if y > 0
|
||||
|
||||
if (a.is_numeral(x, n)) {
|
||||
strict = false;
|
||||
return true;
|
||||
}
|
||||
|
||||
if (a.is_add(x)) {
|
||||
rational bound;
|
||||
strict = false;
|
||||
n = 0;
|
||||
bool is_strict;
|
||||
for (expr* arg : *to_app(x)) {
|
||||
if (!has_upper(arg, bound, is_strict))
|
||||
return false;
|
||||
strict |= is_strict;
|
||||
n += bound;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
expr* y, *z, *u, *v;
|
||||
if (a.is_mul(x, y, z) && a.is_idiv(z, u, v) && v == y && has_lower(y, n, strict) && n > 0 && has_upper(u, n, strict))
|
||||
return true;
|
||||
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_upper(y, n, strict))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
scoped_dep_interval i(m_interval);
|
||||
get_bounds(x, i);
|
||||
if (m_interval.upper_is_inf(i))
|
||||
return false;
|
||||
strict = m_interval.upper_is_open(i);
|
||||
n = m_interval.upper(i);
|
||||
return true;
|
||||
}
|
||||
|
||||
void bound_simplifier::get_bounds(expr* x, scoped_interval& i) {
|
||||
i.m().reset_upper(i);
|
||||
i.m().reset_lower(i);
|
||||
|
||||
void bound_simplifier::get_bounds(expr* x, scoped_dep_interval& i) {
|
||||
auto& im = m_interval;
|
||||
im.reset(i);
|
||||
scoped_dep_interval arg_i(im);
|
||||
rational n;
|
||||
if (a.is_numeral(x, n)) {
|
||||
i.m().set(i, n.to_mpq());
|
||||
im.set_value(i, n);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -311,51 +271,311 @@ void bound_simplifier::get_bounds(expr* x, scoped_interval& i) {
|
|||
unsigned v = to_var(x);
|
||||
bool strict;
|
||||
if (bp.has_upper(v)) {
|
||||
mpq const& q = bp.upper(v, strict);
|
||||
i_cfg.set_upper_is_open(i, strict);
|
||||
i_cfg.set_upper(i, q);
|
||||
im.set_upper(i, bp.upper(v, strict));
|
||||
im.set_upper_is_inf(i, false);
|
||||
im.set_upper_is_open(i, strict);
|
||||
|
||||
}
|
||||
if (bp.has_lower(v)) {
|
||||
mpq const& q = bp.lower(v, strict);
|
||||
i_cfg.set_lower_is_open(i, strict);
|
||||
i_cfg.set_lower(i, q);
|
||||
im.set_lower(i, bp.lower(v, strict));
|
||||
im.set_lower_is_inf(i, false);
|
||||
im.set_lower_is_open(i, strict);
|
||||
}
|
||||
}
|
||||
|
||||
if (a.is_add(x)) {
|
||||
scoped_interval sum_i(i.m());
|
||||
scoped_interval arg_i(i.m());
|
||||
i.m().set(sum_i, mpq(0));
|
||||
scoped_dep_interval tmp_i(im), sum_i(im);
|
||||
im.set_value(sum_i, rational::zero());
|
||||
for (expr* arg : *to_app(x)) {
|
||||
get_bounds(arg, arg_i);
|
||||
i.m().add(sum_i, arg_i, sum_i);
|
||||
im.add(sum_i, arg_i, tmp_i);
|
||||
im.set<dep_intervals::without_deps>(sum_i, tmp_i);
|
||||
}
|
||||
// TODO: intersect
|
||||
i.m().set(i, sum_i);
|
||||
im.intersect <dep_intervals::without_deps>(i, sum_i, i);
|
||||
}
|
||||
|
||||
if (a.is_mul(x)) {
|
||||
scoped_interval mul_i(i.m());
|
||||
scoped_interval arg_i(i.m());
|
||||
i.m().set(mul_i, mpq(1));
|
||||
scoped_dep_interval tmp_i(im);
|
||||
im.set_value(tmp_i, rational::one());
|
||||
for (expr* arg : *to_app(x)) {
|
||||
get_bounds(arg, arg_i);
|
||||
i.m().add(mul_i, arg_i, mul_i);
|
||||
im.mul(tmp_i, arg_i, tmp_i);
|
||||
}
|
||||
// TODO: intersect
|
||||
i.m().set(i, mul_i);
|
||||
im.intersect <dep_intervals::without_deps>(i, tmp_i, i);
|
||||
}
|
||||
|
||||
// etc:
|
||||
// import interval from special case code for lower and upper.
|
||||
|
||||
expr* y, * z, * u, * v;
|
||||
if (a.is_mod(x, y, z) && a.is_numeral(z, n) && n > 0) {
|
||||
scoped_dep_interval tmp_i(im);
|
||||
im.set_lower_is_inf(tmp_i, false);
|
||||
im.set_lower_is_open(tmp_i, false);
|
||||
im.set_lower(tmp_i, mpq(0));
|
||||
im.set_upper_is_inf(tmp_i, false);
|
||||
im.set_upper_is_open(tmp_i, false);
|
||||
im.set_upper(tmp_i, n - 1);
|
||||
im.intersect <dep_intervals::without_deps>(i, tmp_i, i);
|
||||
}
|
||||
|
||||
// x = y*(u div y), y > 0 -> x <= u
|
||||
if (a.is_mul(x, y, z) && a.is_idiv(z, u, v) && v == y) {
|
||||
scoped_dep_interval iy(im), iu(im), tmp_i(im);
|
||||
get_bounds(y, iy);
|
||||
get_bounds(u, iu);
|
||||
if (!im.lower_is_inf(iy) && im.lower(iy) > 0 &&
|
||||
!im.upper_is_inf(iu) && im.upper(iu) >= 0) {
|
||||
im.set_upper_is_inf(tmp_i, false);
|
||||
im.set_upper_is_open(tmp_i, im.upper_is_open(iu));
|
||||
im.set_upper(tmp_i, im.upper(iu));
|
||||
im.intersect<dep_intervals::without_deps>(i, tmp_i, i);
|
||||
}
|
||||
}
|
||||
|
||||
// x = y div z, z > 0 => x <= y
|
||||
if (a.is_idiv(x, y, z)) {
|
||||
scoped_dep_interval iy(im), iz(im), tmp_i(im);
|
||||
get_bounds(y, iy);
|
||||
get_bounds(z, iz);
|
||||
if (!im.lower_is_inf(iz) && im.lower(iz) > 0 &&
|
||||
!im.upper_is_inf(iy) && im.upper(iy) >= 0) {
|
||||
im.set_upper_is_inf(tmp_i, false);
|
||||
im.set_upper_is_open(tmp_i, im.upper_is_open(iy));
|
||||
im.set_upper(tmp_i, im.upper(iy));
|
||||
im.set_lower_is_inf(tmp_i, false);
|
||||
im.set_lower_is_open(tmp_i, false); // TODO - could be refined
|
||||
im.set_lower(tmp_i, rational::zero());
|
||||
im.intersect<dep_intervals::without_deps>(i, tmp_i, i);
|
||||
}
|
||||
}
|
||||
if (a.is_div(x, y, z)) {
|
||||
scoped_dep_interval iy(im), iz(im), tmp_i(im);
|
||||
get_bounds(y, iy);
|
||||
get_bounds(z, iz);
|
||||
im.div<dep_intervals::without_deps>(iy, iz, tmp_i);
|
||||
im.intersect<dep_intervals::without_deps>(i, tmp_i, i);
|
||||
}
|
||||
}
|
||||
|
||||
void bound_simplifier::expr2linear_pol(expr* t, mpq_buffer& as, var_buffer& xs) {
|
||||
scoped_mpq c_mpq_val(nm);
|
||||
if (a.is_add(t)) {
|
||||
rational c_val;
|
||||
for (expr* mon : *to_app(t)) {
|
||||
expr* c, * x;
|
||||
if (a.is_mul(mon, c, x) && a.is_numeral(c, c_val)) {
|
||||
nm.set(c_mpq_val, c_val.to_mpq());
|
||||
as.push_back(c_mpq_val);
|
||||
xs.push_back(to_var(x));
|
||||
}
|
||||
else {
|
||||
as.push_back(mpq(1));
|
||||
xs.push_back(to_var(mon));
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
as.push_back(mpq(1));
|
||||
xs.push_back(to_var(t));
|
||||
}
|
||||
}
|
||||
|
||||
bool bound_simplifier::lower_subsumed(expr* p, mpq const& k, bool strict) {
|
||||
if (!a.is_add(p))
|
||||
return false;
|
||||
m_num_buffer.reset();
|
||||
m_var_buffer.reset();
|
||||
expr2linear_pol(p, m_num_buffer, m_var_buffer);
|
||||
scoped_mpq implied_k(nm);
|
||||
bool implied_strict;
|
||||
return
|
||||
bp.lower(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
|
||||
(nm.gt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
|
||||
}
|
||||
|
||||
bool bound_simplifier::upper_subsumed(expr* p, mpq const& k, bool strict) {
|
||||
if (!a.is_add(p))
|
||||
return false;
|
||||
m_num_buffer.reset();
|
||||
m_var_buffer.reset();
|
||||
expr2linear_pol(p, m_num_buffer, m_var_buffer);
|
||||
scoped_mpq implied_k(nm);
|
||||
bool implied_strict;
|
||||
return
|
||||
bp.upper(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
|
||||
(nm.lt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
|
||||
}
|
||||
|
||||
void bound_simplifier::restore_bounds() {
|
||||
scoped_mpq l(nm), u(nm);
|
||||
bool strict_l, strict_u, has_l, has_u;
|
||||
unsigned ts;
|
||||
unsigned sz = m_var2expr.size();
|
||||
|
||||
rw rw(*this);
|
||||
auto add = [&](expr* fml) {
|
||||
expr_ref tmp(fml, m);
|
||||
rw(tmp, tmp);
|
||||
m_rewriter(tmp);
|
||||
m_fmls.add(dependent_expr(m, tmp, nullptr, nullptr));
|
||||
};
|
||||
|
||||
for (unsigned x = 0; x < sz; x++) {
|
||||
expr* p = m_var2expr.get(x);
|
||||
has_l = bp.lower(x, l, strict_l, ts);
|
||||
has_u = bp.upper(x, u, strict_u, ts);
|
||||
if (!has_l && !has_u)
|
||||
continue;
|
||||
if (has_l && has_u && nm.eq(l, u) && !strict_l && !strict_u) {
|
||||
// l <= p <= l --> p = l
|
||||
add(m.mk_eq(p, a.mk_numeral(rational(l), a.is_int(p))));
|
||||
continue;
|
||||
}
|
||||
if (has_l && !lower_subsumed(p, l, strict_l)) {
|
||||
if (strict_l)
|
||||
add(m.mk_not(a.mk_le(p, a.mk_numeral(rational(l), a.is_int(p)))));
|
||||
else
|
||||
add(a.mk_ge(p, a.mk_numeral(rational(l), a.is_int(p))));
|
||||
}
|
||||
if (has_u && !upper_subsumed(p, u, strict_u)) {
|
||||
if (strict_u)
|
||||
add(m.mk_not(a.mk_ge(p, a.mk_numeral(rational(u), a.is_int(p)))));
|
||||
else
|
||||
add(a.mk_le(p, a.mk_numeral(rational(u), a.is_int(p))));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void bound_simplifier::reset() {
|
||||
bp.reset();
|
||||
m_var2expr.reset();
|
||||
m_expr2var.reset();
|
||||
m_num_vars = 0;
|
||||
}
|
||||
|
||||
#if 0
|
||||
void find_ite_bounds(expr* root) {
|
||||
TRACE("find_ite_bounds_bug", display_bounds(tout););
|
||||
expr* n = root;
|
||||
expr* target = nullptr;
|
||||
expr* c, * t, * e;
|
||||
expr* x, * y;
|
||||
bool has_l, has_u;
|
||||
mpq l_min, u_max;
|
||||
bool l_strict, u_strict;
|
||||
mpq curr;
|
||||
bool curr_strict;
|
||||
while (true) {
|
||||
TRACE("find_ite_bounds_bug", tout << mk_ismt2_pp(n, m) << "\n";);
|
||||
|
||||
if (m.is_ite(n, c, t, e)) {
|
||||
if (is_x_minus_y_eq_0(t, x, y))
|
||||
n = e;
|
||||
else if (is_x_minus_y_eq_0(e, x, y))
|
||||
n = t;
|
||||
else
|
||||
break;
|
||||
}
|
||||
else if (is_x_minus_y_eq_0(n, x, y)) {
|
||||
n = nullptr;
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
|
||||
TRACE("find_ite_bounds_bug", tout << "x: " << mk_ismt2_pp(x, m) << ", y: " << mk_ismt2_pp(y, m) << "\n";
|
||||
if (target) {
|
||||
tout << "target: " << mk_ismt2_pp(target, m) << "\n";
|
||||
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " has_u: " << has_u << " " << nm.to_string(u_max) << "\n";
|
||||
});
|
||||
|
||||
if (is_unbounded(y))
|
||||
std::swap(x, y);
|
||||
|
||||
if (!is_unbounded(x)) {
|
||||
TRACE("find_ite_bounds_bug", tout << "x is already bounded\n";);
|
||||
break;
|
||||
}
|
||||
|
||||
if (target == nullptr) {
|
||||
target = x;
|
||||
if (lower(y, curr, curr_strict)) {
|
||||
has_l = true;
|
||||
nm.set(l_min, curr);
|
||||
l_strict = curr_strict;
|
||||
}
|
||||
else {
|
||||
has_l = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
|
||||
}
|
||||
if (upper(y, curr, curr_strict)) {
|
||||
has_u = true;
|
||||
nm.set(u_max, curr);
|
||||
u_strict = curr_strict;
|
||||
}
|
||||
else {
|
||||
has_u = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
|
||||
}
|
||||
}
|
||||
else if (target == x) {
|
||||
if (has_l) {
|
||||
if (lower(y, curr, curr_strict)) {
|
||||
if (nm.lt(curr, l_min) || (!curr_strict && l_strict && nm.eq(curr, l_min))) {
|
||||
nm.set(l_min, curr);
|
||||
l_strict = curr_strict;
|
||||
}
|
||||
}
|
||||
else {
|
||||
has_l = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
|
||||
}
|
||||
}
|
||||
if (has_u) {
|
||||
if (upper(y, curr, curr_strict)) {
|
||||
if (nm.gt(curr, u_max) || (curr_strict && !u_strict && nm.eq(curr, u_max))) {
|
||||
nm.set(u_max, curr);
|
||||
u_strict = curr_strict;
|
||||
}
|
||||
}
|
||||
else {
|
||||
has_u = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
|
||||
if (!has_l && !has_u)
|
||||
break;
|
||||
|
||||
if (n == nullptr) {
|
||||
TRACE("find_ite_bounds", tout << "found bounds for: " << mk_ismt2_pp(target, m) << "\n";
|
||||
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " l_strict: " << l_strict << "\n";
|
||||
tout << "has_u: " << has_u << " " << nm.to_string(u_max) << " u_strict: " << u_strict << "\n";
|
||||
tout << "root:\n" << mk_ismt2_pp(root, m) << "\n";);
|
||||
a_var x = mk_var(target);
|
||||
if (has_l)
|
||||
bp.assert_lower(x, l_min, l_strict);
|
||||
if (has_u)
|
||||
bp.assert_upper(x, u_max, u_strict);
|
||||
break;
|
||||
}
|
||||
}
|
||||
nm.del(l_min);
|
||||
nm.del(u_max);
|
||||
nm.del(curr);
|
||||
}
|
||||
|
||||
void find_ite_bounds() {
|
||||
unsigned sz = m_new_goal->size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
expr* f = m_new_goal->form(i);
|
||||
if (m.is_ite(f))
|
||||
find_ite_bounds(to_app(f));
|
||||
}
|
||||
bp.propagate();
|
||||
TRACE("find_ite_bounds", display_bounds(tout););
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -23,25 +23,26 @@ Description:
|
|||
#include "ast/rewriter/th_rewriter.h"
|
||||
#include "ast/simplifiers/dependent_expr_state.h"
|
||||
#include "ast/simplifiers/bound_propagator.h"
|
||||
#include "math/interval/interval.h"
|
||||
#include "math/interval/dep_intervals.h"
|
||||
|
||||
|
||||
class bound_simplifier : public dependent_expr_simplifier {
|
||||
typedef interval_manager<im_default_config> _interval_manager;
|
||||
typedef _interval_manager::interval interval;
|
||||
typedef _scoped_interval<_interval_manager> scoped_interval;
|
||||
typedef bound_propagator::var a_var;
|
||||
typedef numeral_buffer<mpq, unsynch_mpq_manager> mpq_buffer;
|
||||
typedef svector<a_var> var_buffer;
|
||||
|
||||
arith_util a;
|
||||
params_ref m_params;
|
||||
th_rewriter m_rewriter;
|
||||
unsynch_mpq_manager nm;
|
||||
small_object_allocator m_alloc;
|
||||
bound_propagator bp;
|
||||
im_default_config i_cfg;
|
||||
_interval_manager i_manager;
|
||||
unsigned m_num_vars = 0;
|
||||
dep_intervals m_interval;
|
||||
ptr_vector<expr> m_var2expr;
|
||||
unsigned_vector m_expr2var;
|
||||
bool m_updated = false;
|
||||
mpq_buffer m_num_buffer;
|
||||
var_buffer m_var_buffer;
|
||||
unsigned m_num_reduced = 0;
|
||||
|
||||
struct rw_cfg;
|
||||
struct rw;
|
||||
|
@ -62,20 +63,27 @@ class bound_simplifier : public dependent_expr_simplifier {
|
|||
unsigned to_var(expr* e) {
|
||||
unsigned v = m_expr2var.get(e->get_id(), UINT_MAX);
|
||||
if (v == UINT_MAX) {
|
||||
v = m_num_vars++;
|
||||
v = m_var2expr.size();
|
||||
bp.mk_var(v, a.is_int(e));
|
||||
m_expr2var.setx(e->get_id(), v, UINT_MAX);
|
||||
m_var2expr.setx(v, e, nullptr);
|
||||
m_var2expr.push_back(e);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
br_status reduce_app(func_decl* f, unsigned num_args, expr* const* args, expr_ref& result, proof_ref& pr);
|
||||
|
||||
void assert_lower(expr* x, rational const& n, bool strict);
|
||||
void assert_upper(expr* x, rational const& n, bool strict);
|
||||
|
||||
bool has_upper(expr* x, rational& n, bool& strict);
|
||||
bool has_lower(expr* x, rational& n, bool& strict);
|
||||
void get_bounds(expr* x, scoped_interval&);
|
||||
void get_bounds(expr* x, scoped_dep_interval&);
|
||||
|
||||
void expr2linear_pol(expr* t, mpq_buffer& as, var_buffer& xs);
|
||||
bool lower_subsumed(expr* p, mpq const& k, bool strict);
|
||||
bool upper_subsumed(expr* p, mpq const& k, bool strict);
|
||||
void restore_bounds();
|
||||
|
||||
// e = x + offset
|
||||
bool is_offset(expr* e, expr* x, rational& offset);
|
||||
|
@ -87,14 +95,35 @@ public:
|
|||
a(m),
|
||||
m_rewriter(m),
|
||||
bp(nm, m_alloc, p),
|
||||
i_cfg(nm),
|
||||
i_manager(m.limit(), im_default_config(nm)) {
|
||||
m_interval(m.limit()),
|
||||
m_num_buffer(nm) {
|
||||
updt_params(p);
|
||||
}
|
||||
|
||||
char const* name() const override { return "bounds-simplifier"; }
|
||||
char const* name() const override { return "propagate-ineqs"; }
|
||||
|
||||
bool supports_proofs() const override { return false; }
|
||||
|
||||
void reduce() override;
|
||||
|
||||
void updt_params(params_ref const& p) override {
|
||||
m_params.append(p);
|
||||
bp.updt_params(m_params);
|
||||
}
|
||||
|
||||
void collect_param_descrs(param_descrs & r) override {
|
||||
bound_propagator::get_param_descrs(r);
|
||||
}
|
||||
|
||||
void collect_statistics(statistics& st) const override {
|
||||
st.update("bound-propagations", bp.get_num_propagations());
|
||||
st.update("bound-false-alarms", bp.get_num_false_alarms());
|
||||
st.update("bound-simplifications", m_num_reduced);
|
||||
}
|
||||
|
||||
void reset_statistics() override {
|
||||
m_num_reduced = 0;
|
||||
bp.reset_statistics();
|
||||
}
|
||||
};
|
||||
|
||||
|
|
|
@ -172,6 +172,7 @@ public:
|
|||
void set_upper_is_inf(interval& a, bool inf) const { m_config.set_upper_is_inf(a, inf); }
|
||||
void set_lower_dep(interval& a, u_dependency* d) const { m_config.set_lower_dep(a, d); }
|
||||
void set_upper_dep(interval& a, u_dependency* d) const { m_config.set_upper_dep(a, d); }
|
||||
void reset(interval& a) const { set_lower_is_inf(a, true); set_upper_is_inf(a, true); }
|
||||
void set_value(interval& a, rational const& n) const {
|
||||
set_lower(a, n);
|
||||
set_upper(a, n);
|
||||
|
@ -331,6 +332,7 @@ public:
|
|||
}
|
||||
mpq const& lower(interval const& a) const { return m_config.lower(a); }
|
||||
mpq const& upper(interval const& a) const { return m_config.upper(a); }
|
||||
|
||||
bool is_empty(interval const& a) const;
|
||||
void set_interval_for_scalar(interval&, const rational&);
|
||||
template <typename T>
|
||||
|
|
|
@ -17,7 +17,6 @@ z3_add_component(arith_tactics
|
|||
pb2bv_model_converter.cpp
|
||||
pb2bv_tactic.cpp
|
||||
probe_arith.cpp
|
||||
propagate_ineqs_tactic.cpp
|
||||
purify_arith_tactic.cpp
|
||||
recover_01_tactic.cpp
|
||||
COMPONENT_DEPENDENCIES
|
||||
|
@ -25,7 +24,6 @@ z3_add_component(arith_tactics
|
|||
sat
|
||||
TACTIC_HEADERS
|
||||
add_bounds_tactic.h
|
||||
bound_simplifier_tactic.h
|
||||
card2bv_tactic.h
|
||||
degree_shift_tactic.h
|
||||
diff_neq_tactic.h
|
||||
|
|
|
@ -1,575 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2012 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
propagate_ineqs_tactic.h
|
||||
|
||||
Abstract:
|
||||
|
||||
This tactic performs the following tasks:
|
||||
|
||||
- Propagate bounds using the bound_propagator.
|
||||
- Eliminate subsumed inequalities.
|
||||
For example:
|
||||
x - y >= 3
|
||||
can be replaced with true if we know that
|
||||
x >= 3 and y <= 0
|
||||
|
||||
- Convert inequalities of the form p <= k and p >= k into p = k,
|
||||
where p is a polynomial and k is a constant.
|
||||
|
||||
This strategy assumes the input is in arith LHS mode.
|
||||
This can be achieved by using option :arith-lhs true in the
|
||||
simplifier.
|
||||
|
||||
Author:
|
||||
|
||||
Leonardo (leonardo) 2012-02-19
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include "tactic/tactical.h"
|
||||
#include "ast/simplifiers/bound_propagator.h"
|
||||
#include "ast/arith_decl_plugin.h"
|
||||
#include "tactic/core/simplify_tactic.h"
|
||||
#include "ast/ast_smt2_pp.h"
|
||||
|
||||
class propagate_ineqs_tactic : public tactic {
|
||||
struct imp;
|
||||
imp * m_imp;
|
||||
params_ref m_params;
|
||||
public:
|
||||
propagate_ineqs_tactic(ast_manager & m, params_ref const & p);
|
||||
|
||||
tactic * translate(ast_manager & m) override {
|
||||
return alloc(propagate_ineqs_tactic, m, m_params);
|
||||
}
|
||||
|
||||
~propagate_ineqs_tactic() override;
|
||||
|
||||
char const* name() const override { return "propagate_ineqs"; }
|
||||
|
||||
void updt_params(params_ref const & p) override;
|
||||
void collect_param_descrs(param_descrs & r) override {}
|
||||
|
||||
void operator()(goal_ref const & g, goal_ref_buffer & result) override;
|
||||
|
||||
void cleanup() override;
|
||||
};
|
||||
|
||||
tactic * mk_propagate_ineqs_tactic(ast_manager & m, params_ref const & p) {
|
||||
return clean(alloc(propagate_ineqs_tactic, m, p));
|
||||
}
|
||||
|
||||
struct propagate_ineqs_tactic::imp {
|
||||
ast_manager & m;
|
||||
unsynch_mpq_manager nm;
|
||||
small_object_allocator m_allocator;
|
||||
bound_propagator bp;
|
||||
arith_util m_util;
|
||||
typedef bound_propagator::var a_var;
|
||||
obj_map<expr, a_var> m_expr2var;
|
||||
expr_ref_vector m_var2expr;
|
||||
|
||||
typedef numeral_buffer<mpq, unsynch_mpq_manager> mpq_buffer;
|
||||
typedef svector<a_var> var_buffer;
|
||||
|
||||
mpq_buffer m_num_buffer;
|
||||
var_buffer m_var_buffer;
|
||||
goal_ref m_new_goal;
|
||||
|
||||
imp(ast_manager & _m, params_ref const & p):
|
||||
m(_m),
|
||||
m_allocator("ineq-simplifier"),
|
||||
bp(nm, m_allocator, p),
|
||||
m_util(m),
|
||||
m_var2expr(m),
|
||||
m_num_buffer(nm) {
|
||||
updt_params_core(p);
|
||||
}
|
||||
|
||||
void updt_params_core(params_ref const & p) {
|
||||
}
|
||||
|
||||
void updt_params(params_ref const & p) {
|
||||
updt_params_core(p);
|
||||
bp.updt_params(p);
|
||||
}
|
||||
|
||||
void display_bounds(std::ostream & out) {
|
||||
unsigned sz = m_var2expr.size();
|
||||
mpq k;
|
||||
bool strict;
|
||||
unsigned ts;
|
||||
for (unsigned x = 0; x < sz; x++) {
|
||||
if (bp.lower(x, k, strict, ts))
|
||||
out << nm.to_string(k) << " " << (strict ? "<" : "<=");
|
||||
else
|
||||
out << "-oo <";
|
||||
out << " " << mk_ismt2_pp(m_var2expr.get(x), m) << " ";
|
||||
if (bp.upper(x, k, strict, ts))
|
||||
out << (strict ? "<" : "<=") << " " << nm.to_string(k);
|
||||
else
|
||||
out << "< oo";
|
||||
out << "\n";
|
||||
}
|
||||
nm.del(k);
|
||||
}
|
||||
|
||||
a_var mk_var(expr * t) {
|
||||
if (m_util.is_to_real(t))
|
||||
t = to_app(t)->get_arg(0);
|
||||
a_var x;
|
||||
if (m_expr2var.find(t, x))
|
||||
return x;
|
||||
x = m_var2expr.size();
|
||||
bp.mk_var(x, m_util.is_int(t));
|
||||
m_var2expr.push_back(t);
|
||||
m_expr2var.insert(t, x);
|
||||
return x;
|
||||
}
|
||||
|
||||
void expr2linear_pol(expr * t, mpq_buffer & as, var_buffer & xs) {
|
||||
mpq c_mpq_val;
|
||||
if (m_util.is_add(t)) {
|
||||
rational c_val;
|
||||
for (expr* mon : *to_app(t)) {
|
||||
expr * c, * x;
|
||||
if (m_util.is_mul(mon, c, x) && m_util.is_numeral(c, c_val)) {
|
||||
nm.set(c_mpq_val, c_val.to_mpq());
|
||||
as.push_back(c_mpq_val);
|
||||
xs.push_back(mk_var(x));
|
||||
}
|
||||
else {
|
||||
as.push_back(mpq(1));
|
||||
xs.push_back(mk_var(mon));
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
as.push_back(mpq(1));
|
||||
xs.push_back(mk_var(t));
|
||||
}
|
||||
nm.del(c_mpq_val);
|
||||
}
|
||||
|
||||
a_var mk_linear_pol(expr * t) {
|
||||
a_var x;
|
||||
if (m_expr2var.find(t, x))
|
||||
return x;
|
||||
x = mk_var(t);
|
||||
if (m_util.is_add(t)) {
|
||||
m_num_buffer.reset();
|
||||
m_var_buffer.reset();
|
||||
expr2linear_pol(t, m_num_buffer, m_var_buffer);
|
||||
m_num_buffer.push_back(mpq(-1));
|
||||
m_var_buffer.push_back(x);
|
||||
bp.mk_eq(m_num_buffer.size(), m_num_buffer.data(), m_var_buffer.data());
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
enum kind { EQ, LE, GE };
|
||||
|
||||
bool process(expr * t) {
|
||||
bool sign = false;
|
||||
while (m.is_not(t, t))
|
||||
sign = !sign;
|
||||
bool strict = false;
|
||||
kind k;
|
||||
if (m.is_eq(t)) {
|
||||
if (sign)
|
||||
return false;
|
||||
k = EQ;
|
||||
}
|
||||
else if (m_util.is_le(t)) {
|
||||
if (sign) {
|
||||
k = GE;
|
||||
strict = true;
|
||||
}
|
||||
else {
|
||||
k = LE;
|
||||
}
|
||||
}
|
||||
else if (m_util.is_ge(t)) {
|
||||
if (sign) {
|
||||
k = LE;
|
||||
strict = true;
|
||||
}
|
||||
else {
|
||||
k = GE;
|
||||
}
|
||||
}
|
||||
else if (m_util.is_lt(t)) {
|
||||
if (sign) {
|
||||
k = GE;
|
||||
strict = false;
|
||||
} else {
|
||||
k = LE;
|
||||
strict = true;
|
||||
}
|
||||
}
|
||||
else if (m_util.is_gt(t)) {
|
||||
//x > y == x <=y, strict = false
|
||||
if (sign) {
|
||||
k = LE;
|
||||
strict = false;
|
||||
} else {
|
||||
k = GE;
|
||||
strict = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
return false;
|
||||
|
||||
expr * lhs = to_app(t)->get_arg(0);
|
||||
expr * rhs = to_app(t)->get_arg(1);
|
||||
expr* a, *b;
|
||||
if (m_util.is_numeral(lhs)) {
|
||||
std::swap(lhs, rhs);
|
||||
if (k == LE)
|
||||
k = GE;
|
||||
else if (k == GE)
|
||||
k = LE;
|
||||
}
|
||||
|
||||
rational c;
|
||||
// x = y mod c => 0 <= x < c
|
||||
if (k == EQ && m_util.is_mod(rhs, a, b) && m_util.is_numeral(b, c) && c > 0) {
|
||||
a_var x = mk_linear_pol(lhs);
|
||||
mpq c_prime;
|
||||
nm.set(c_prime, (c-1).to_mpq());
|
||||
bp.assert_lower(x, mpq(0), false);
|
||||
bp.assert_upper(x, c_prime, false);
|
||||
nm.del(c_prime);
|
||||
return lhs == a;
|
||||
}
|
||||
if (!m_util.is_numeral(rhs, c))
|
||||
return false;
|
||||
a_var x = mk_linear_pol(lhs);
|
||||
mpq c_prime;
|
||||
nm.set(c_prime, c.to_mpq());
|
||||
if (k == EQ) {
|
||||
SASSERT(!strict);
|
||||
bp.assert_lower(x, c_prime, false);
|
||||
bp.assert_upper(x, c_prime, false);
|
||||
}
|
||||
else if (k == LE) {
|
||||
bp.assert_upper(x, c_prime, strict);
|
||||
}
|
||||
else {
|
||||
SASSERT(k == GE);
|
||||
bp.assert_lower(x, c_prime, strict);
|
||||
}
|
||||
nm.del(c_prime);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool collect_bounds(goal const & g) {
|
||||
bool found = false;
|
||||
unsigned sz = g.size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
expr * t = g.form(i);
|
||||
if (process(t))
|
||||
found = true;
|
||||
else
|
||||
m_new_goal->assert_expr(t); // save non-bounds here
|
||||
}
|
||||
return found;
|
||||
}
|
||||
|
||||
bool lower_subsumed(expr * p, mpq const & k, bool strict) {
|
||||
if (!m_util.is_add(p))
|
||||
return false;
|
||||
m_num_buffer.reset();
|
||||
m_var_buffer.reset();
|
||||
expr2linear_pol(p, m_num_buffer, m_var_buffer);
|
||||
mpq implied_k;
|
||||
bool implied_strict;
|
||||
bool result =
|
||||
bp.lower(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
|
||||
(nm.gt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
|
||||
nm.del(implied_k);
|
||||
return result;
|
||||
}
|
||||
|
||||
bool upper_subsumed(expr * p, mpq const & k, bool strict) {
|
||||
if (!m_util.is_add(p))
|
||||
return false;
|
||||
m_num_buffer.reset();
|
||||
m_var_buffer.reset();
|
||||
expr2linear_pol(p, m_num_buffer, m_var_buffer);
|
||||
mpq implied_k;
|
||||
bool implied_strict;
|
||||
bool result =
|
||||
bp.upper(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
|
||||
(nm.lt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
|
||||
nm.del(implied_k);
|
||||
return result;
|
||||
}
|
||||
|
||||
void restore_bounds() {
|
||||
mpq l, u;
|
||||
bool strict_l, strict_u, has_l, has_u;
|
||||
unsigned ts;
|
||||
unsigned sz = m_var2expr.size();
|
||||
for (unsigned x = 0; x < sz; x++) {
|
||||
expr * p = m_var2expr.get(x);
|
||||
has_l = bp.lower(x, l, strict_l, ts);
|
||||
has_u = bp.upper(x, u, strict_u, ts);
|
||||
if (!has_l && !has_u)
|
||||
continue;
|
||||
if (has_l && has_u && nm.eq(l, u) && !strict_l && !strict_u) {
|
||||
// l <= p <= l --> p = l
|
||||
m_new_goal->assert_expr(m.mk_eq(p, m_util.mk_numeral(rational(l), m_util.is_int(p))));
|
||||
continue;
|
||||
}
|
||||
if (has_l && !lower_subsumed(p, l, strict_l)) {
|
||||
if (strict_l)
|
||||
m_new_goal->assert_expr(m.mk_not(m_util.mk_le(p, m_util.mk_numeral(rational(l), m_util.is_int(p)))));
|
||||
else
|
||||
m_new_goal->assert_expr(m_util.mk_ge(p, m_util.mk_numeral(rational(l), m_util.is_int(p))));
|
||||
}
|
||||
if (has_u && !upper_subsumed(p, u, strict_u)) {
|
||||
if (strict_u)
|
||||
m_new_goal->assert_expr(m.mk_not(m_util.mk_ge(p, m_util.mk_numeral(rational(u), m_util.is_int(p)))));
|
||||
else
|
||||
m_new_goal->assert_expr(m_util.mk_le(p, m_util.mk_numeral(rational(u), m_util.is_int(p))));
|
||||
}
|
||||
}
|
||||
nm.del(l);
|
||||
nm.del(u);
|
||||
}
|
||||
|
||||
bool is_x_minus_y_eq_0(expr * t, expr * & x, expr * & y) {
|
||||
expr * lhs, * rhs, * m1, * m2;
|
||||
if (m.is_eq(t, lhs, rhs) && m_util.is_zero(rhs) && m_util.is_add(lhs, m1, m2)) {
|
||||
if (m_util.is_times_minus_one(m2, y) && is_uninterp_const(m1)) {
|
||||
x = m1;
|
||||
return true;
|
||||
}
|
||||
if (m_util.is_times_minus_one(m1, y) && is_uninterp_const(m2)) {
|
||||
x = m2;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool is_unbounded(expr * t) {
|
||||
a_var x;
|
||||
if (m_expr2var.find(t, x))
|
||||
return !bp.has_lower(x) && !bp.has_upper(x);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool lower(expr * t, mpq & k, bool & strict) {
|
||||
unsigned ts;
|
||||
a_var x;
|
||||
if (m_expr2var.find(t, x))
|
||||
return bp.lower(x, k, strict, ts);
|
||||
return false;
|
||||
}
|
||||
|
||||
bool upper(expr * t, mpq & k, bool & strict) {
|
||||
unsigned ts;
|
||||
a_var x;
|
||||
if (m_expr2var.find(t, x))
|
||||
return bp.upper(x, k, strict, ts);
|
||||
return false;
|
||||
}
|
||||
|
||||
void find_ite_bounds(expr * root) {
|
||||
TRACE("find_ite_bounds_bug", display_bounds(tout););
|
||||
expr * n = root;
|
||||
expr * target = nullptr;
|
||||
expr * c, * t, * e;
|
||||
expr * x, * y;
|
||||
bool has_l, has_u;
|
||||
mpq l_min, u_max;
|
||||
bool l_strict, u_strict;
|
||||
mpq curr;
|
||||
bool curr_strict;
|
||||
while (true) {
|
||||
TRACE("find_ite_bounds_bug", tout << mk_ismt2_pp(n, m) << "\n";);
|
||||
|
||||
if (m.is_ite(n, c, t, e)) {
|
||||
if (is_x_minus_y_eq_0(t, x, y))
|
||||
n = e;
|
||||
else if (is_x_minus_y_eq_0(e, x, y))
|
||||
n = t;
|
||||
else
|
||||
break;
|
||||
}
|
||||
else if (is_x_minus_y_eq_0(n, x, y)) {
|
||||
n = nullptr;
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
|
||||
TRACE("find_ite_bounds_bug", tout << "x: " << mk_ismt2_pp(x, m) << ", y: " << mk_ismt2_pp(y, m) << "\n";
|
||||
if (target) {
|
||||
tout << "target: " << mk_ismt2_pp(target, m) << "\n";
|
||||
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " has_u: " << has_u << " " << nm.to_string(u_max) << "\n";
|
||||
});
|
||||
|
||||
if (is_unbounded(y))
|
||||
std::swap(x, y);
|
||||
|
||||
if (!is_unbounded(x)) {
|
||||
TRACE("find_ite_bounds_bug", tout << "x is already bounded\n";);
|
||||
break;
|
||||
}
|
||||
|
||||
if (target == nullptr) {
|
||||
target = x;
|
||||
if (lower(y, curr, curr_strict)) {
|
||||
has_l = true;
|
||||
nm.set(l_min, curr);
|
||||
l_strict = curr_strict;
|
||||
}
|
||||
else {
|
||||
has_l = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
|
||||
}
|
||||
if (upper(y, curr, curr_strict)) {
|
||||
has_u = true;
|
||||
nm.set(u_max, curr);
|
||||
u_strict = curr_strict;
|
||||
}
|
||||
else {
|
||||
has_u = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
|
||||
}
|
||||
}
|
||||
else if (target == x) {
|
||||
if (has_l) {
|
||||
if (lower(y, curr, curr_strict)) {
|
||||
if (nm.lt(curr, l_min) || (!curr_strict && l_strict && nm.eq(curr, l_min))) {
|
||||
nm.set(l_min, curr);
|
||||
l_strict = curr_strict;
|
||||
}
|
||||
}
|
||||
else {
|
||||
has_l = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
|
||||
}
|
||||
}
|
||||
if (has_u) {
|
||||
if (upper(y, curr, curr_strict)) {
|
||||
if (nm.gt(curr, u_max) || (curr_strict && !u_strict && nm.eq(curr, u_max))) {
|
||||
nm.set(u_max, curr);
|
||||
u_strict = curr_strict;
|
||||
}
|
||||
}
|
||||
else {
|
||||
has_u = false;
|
||||
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
break;
|
||||
}
|
||||
|
||||
if (!has_l && !has_u)
|
||||
break;
|
||||
|
||||
if (n == nullptr) {
|
||||
TRACE("find_ite_bounds", tout << "found bounds for: " << mk_ismt2_pp(target, m) << "\n";
|
||||
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " l_strict: " << l_strict << "\n";
|
||||
tout << "has_u: " << has_u << " " << nm.to_string(u_max) << " u_strict: " << u_strict << "\n";
|
||||
tout << "root:\n" << mk_ismt2_pp(root, m) << "\n";);
|
||||
a_var x = mk_var(target);
|
||||
if (has_l)
|
||||
bp.assert_lower(x, l_min, l_strict);
|
||||
if (has_u)
|
||||
bp.assert_upper(x, u_max, u_strict);
|
||||
break;
|
||||
}
|
||||
}
|
||||
nm.del(l_min);
|
||||
nm.del(u_max);
|
||||
nm.del(curr);
|
||||
}
|
||||
|
||||
void find_ite_bounds() {
|
||||
unsigned sz = m_new_goal->size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
expr * f = m_new_goal->form(i);
|
||||
if (m.is_ite(f))
|
||||
find_ite_bounds(to_app(f));
|
||||
}
|
||||
bp.propagate();
|
||||
TRACE("find_ite_bounds", display_bounds(tout););
|
||||
}
|
||||
|
||||
void operator()(goal * g, goal_ref & r) {
|
||||
tactic_report report("propagate-ineqs", *g);
|
||||
|
||||
m_new_goal = alloc(goal, *g, true);
|
||||
m_new_goal->inc_depth();
|
||||
r = m_new_goal.get();
|
||||
if (!collect_bounds(*g)) {
|
||||
m_new_goal = nullptr;
|
||||
r = g;
|
||||
return; // nothing to be done
|
||||
}
|
||||
|
||||
TRACE("propagate_ineqs_tactic", g->display(tout); display_bounds(tout); tout << "bound propagator:\n"; bp.display(tout););
|
||||
|
||||
bp.propagate();
|
||||
|
||||
report_tactic_progress(":bound-propagations", bp.get_num_propagations());
|
||||
report_tactic_progress(":bound-false-alarms", bp.get_num_false_alarms());
|
||||
|
||||
if (bp.inconsistent()) {
|
||||
r->reset();
|
||||
r->assert_expr(m.mk_false());
|
||||
return;
|
||||
}
|
||||
|
||||
// find_ite_bounds(); // did not help
|
||||
|
||||
restore_bounds();
|
||||
|
||||
TRACE("propagate_ineqs_tactic", tout << "after propagation:\n"; display_bounds(tout); bp.display(tout););
|
||||
TRACE("propagate_ineqs_tactic", r->display(tout););
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
propagate_ineqs_tactic::propagate_ineqs_tactic(ast_manager & m, params_ref const & p):
|
||||
m_params(p) {
|
||||
m_imp = alloc(imp, m, p);
|
||||
}
|
||||
|
||||
propagate_ineqs_tactic::~propagate_ineqs_tactic() {
|
||||
dealloc(m_imp);
|
||||
}
|
||||
|
||||
void propagate_ineqs_tactic::updt_params(params_ref const & p) {
|
||||
m_params.append(p);
|
||||
m_imp->updt_params(m_params);
|
||||
}
|
||||
|
||||
void propagate_ineqs_tactic::operator()(goal_ref const & g,
|
||||
goal_ref_buffer & result) {
|
||||
fail_if_proof_generation("propagate-ineqs", g);
|
||||
fail_if_unsat_core_generation("propagate-ineqs", g);
|
||||
result.reset();
|
||||
goal_ref r;
|
||||
(*m_imp)(g.get(), r);
|
||||
result.push_back(r.get());
|
||||
SASSERT(r->is_well_formed());
|
||||
}
|
||||
|
||||
|
||||
void propagate_ineqs_tactic::cleanup() {
|
||||
imp * d = alloc(imp, m_imp->m, m_params);
|
||||
std::swap(d, m_imp);
|
||||
dealloc(d);
|
||||
}
|
|
@ -51,11 +51,17 @@ This can be achieved by using option :arith-lhs true in the simplifier.
|
|||
--*/
|
||||
#pragma once
|
||||
|
||||
#include "util/params.h"
|
||||
class ast_manager;
|
||||
class tactic;
|
||||
|
||||
tactic * mk_propagate_ineqs_tactic(ast_manager & m, params_ref const & p = params_ref());
|
||||
#include "util/params.h"
|
||||
#include "tactic/tactic.h"
|
||||
#include "tactic/dependent_expr_state_tactic.h"
|
||||
#include "ast/simplifiers/bound_simplifier.h"
|
||||
|
||||
inline tactic* mk_propagate_ineqs_tactic(ast_manager& m, params_ref const& p = params_ref()) {
|
||||
return alloc(dependent_expr_state_tactic, m, p,
|
||||
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(bound_simplifier, m, p, s); });
|
||||
}
|
||||
|
||||
/*
|
||||
ADD_TACTIC("propagate-ineqs", "propagate ineqs/bounds, remove subsumed inequalities.", "mk_propagate_ineqs_tactic(m, p)")
|
||||
*/
|
||||
|
|
Loading…
Reference in a new issue