3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-05 17:14:07 +00:00

use intervals for tracking bounds on arithmetic variables

leverage interval propagation for bounds.
merge functionality with propagate-ineqs tactic
remove the new propagate-bounds tactic and instead use propagate-ineqs
This commit is contained in:
Nikolaj Bjorner 2023-01-23 14:13:03 -08:00
parent eb751bec4c
commit d9f9cceea4
7 changed files with 444 additions and 764 deletions

View file

@ -14,8 +14,8 @@ Version 4.next
Version 4.12.2
==============
- remove MSF (Microsoft Solver Foundation) plugin
- add bound_simplifier tactic.
It eliminates occurrences of "mod" operators when bounds information
- updated propagate-ineqs tactic and implementing it as a simplifier, bound_simplifier.
It now eliminates occurrences of "mod" operators when bounds information
implies that the modulus is redundant. This tactic is useful for
benchmarks created by converting bit-vector semantics to integer
reasoning.

View file

@ -3,12 +3,35 @@ Copyright (c) 2022 Microsoft Corporation
Module Name:
bounds_simplifier.cpp
bound_simplifier.cpp
Author:
Nikolaj Bjorner (nbjorner) 2023-01-22
Description:
Extract bounds for sub-expressions and use the bounds for propagation and simplification.
It applies the simplificaitons from the bounds_propagator and it applies nested rewriting
of sub-expressions based on bounds information. Initially, rewriting amounts to eliminating
occurrences of mod N.
From the description of propagate_ineqs_tactic:
- Propagate bounds using the bound_propagator.
- Eliminate subsumed inequalities.
For example:
x - y >= 3
can be replaced with true if we know that
x >= 3 and y <= 0
- Convert inequalities of the form p <= k and p >= k into p = k,
where p is a polynomial and k is a constant.
This strategy assumes the input is in arith LHS mode.
This can be achieved by using option :arith-lhs true in the
simplifier.
--*/
@ -17,74 +40,86 @@ Author:
#include "ast/rewriter/rewriter_def.h"
struct bound_simplifier::rw_cfg : public default_rewriter_cfg {
ast_manager& m;
bound_propagator& bp;
bound_simplifier& s;
arith_util a;
rw_cfg(bound_simplifier& s):m(s.m), bp(s.bp), s(s), a(m) {}
rw_cfg(bound_simplifier& s): s(s) {}
br_status reduce_app(func_decl* f, unsigned num_args, expr * const* args, expr_ref& result, proof_ref& pr) {
rational N, hi, lo;
bool strict;
if (a.is_mod(f) && num_args == 2 && a.is_numeral(args[1], N)) {
expr* x = args[0];
if (!s.has_upper(x, hi, strict) || strict)
return BR_FAILED;
if (!s.has_lower(x, lo, strict) || strict)
return BR_FAILED;
if (hi - lo >= N)
return BR_FAILED;
if (N > hi && lo >= 0) {
result = x;
return BR_DONE;
}
if (2*N > hi && lo >= N) {
result = a.mk_sub(x, a.mk_int(N));
s.m_rewriter(result);
return BR_DONE;
}
IF_VERBOSE(2, verbose_stream() << "potentially missed simplification: " << mk_pp(x, m) << " " << lo << " " << hi << " not reduced\n");
}
return BR_FAILED;
return s.reduce_app(f, num_args, args, result, pr);
}
};
struct bound_simplifier::rw : public rewriter_tpl<rw_cfg> {
rw_cfg m_cfg;
rw(bound_simplifier& s):
rewriter_tpl<rw_cfg>(s.m, false, m_cfg),
m_cfg(s) {
}
};
br_status bound_simplifier::reduce_app(func_decl* f, unsigned num_args, expr* const* args, expr_ref& result, proof_ref& pr) {
rational N, hi, lo;
if (a.is_mod(f) && num_args == 2 && a.is_numeral(args[1], N)) {
expr* x = args[0];
auto& im = m_interval;
scoped_dep_interval i(im);
get_bounds(x, i);
if (im.upper_is_inf(i) || im.lower_is_inf(i))
return BR_FAILED;
if (im.upper_is_open(i) || im.lower_is_open(i))
return BR_FAILED;
lo = im.lower(i);
hi = im.upper(i);
if (hi - lo >= N)
return BR_FAILED;
if (N > hi && lo >= 0) {
result = x;
return BR_DONE;
}
if (2 * N > hi && lo >= N) {
result = a.mk_sub(x, a.mk_int(N));
m_rewriter(result);
return BR_DONE;
}
IF_VERBOSE(2, verbose_stream() << "potentially missed simplification: " << mk_pp(x, m) << " " << lo << " " << hi << " not reduced\n");
}
return BR_FAILED;
}
void bound_simplifier::reduce() {
m_updated = true;
for (unsigned i = 0; i < 5 && m_updated; ++i) {
m_updated = false;
bool updated = true, found_bound = false;
for (unsigned i = 0; i < 5 && updated; ++i) {
updated = false;
found_bound = false;
reset();
for (unsigned idx : indices())
insert_bound(m_fmls[idx]);
for (unsigned idx : indices()) {
if (insert_bound(m_fmls[idx])) {
m_fmls.update(idx, dependent_expr(m, m.mk_true(), nullptr, nullptr));
found_bound = true;
}
}
if (!found_bound)
break;
for (unsigned idx : indices())
tighten_bound(m_fmls[idx]);
rw rw(*this);
// TODO: take over propagate_ineq:
// bp.propagate();
// serialize bounds
bp.propagate();
proof_ref pr(m);
expr_ref r(m);
rw rw(*this);
for (unsigned idx : indices()) {
auto const& d = m_fmls[idx];
if (d.pr())
continue;
rw(d.fml(), r, pr);
if (r != d.fml()) {
m_fmls.update(idx, dependent_expr(m, r, mp(d.pr(), pr), d.dep()));
m_updated = true;
++m_num_reduced;
updated = true;
}
}
restore_bounds();
}
}
@ -169,19 +204,22 @@ void bound_simplifier::tighten_bound(dependent_expr const& de) {
bool strict;
if (a.is_le(f, x, y)) {
// x <= (x + k) mod N && x >= 0 -> x + k < N
if (a.is_mod(y, z, u) && a.is_numeral(u, n) && has_lower(x, k, strict) && k >= 0 && is_offset(z, x, k) && k > 0 && k < n) {
if (a.is_mod(y, z, u) && a.is_numeral(u, n) && has_lower(x, k, strict) && k >= 0 && is_offset(z, x, k) && k > 0 && k < n)
assert_upper(x, n - k, true);
}
}
// x != k, k <= x -> k < x
if (m.is_not(f, f) && m.is_eq(f, x, y)) {
if (a.is_numeral(x))
std::swap(x, y);
bool strict;
if (a.is_numeral(y, n)) {
if (has_lower(x, k, strict) && !strict && k == n)
assert_lower(x, k, true);
else if (has_upper(x, k, strict) && !strict && k == n)
assert_upper(x, k, true);
scoped_dep_interval i(m_interval);
get_bounds(x, i);
scoped_mpq k(nm);
if (!i.m().lower_is_inf(i) && !i.m().lower_is_open(i) && i.m().lower(i) == n)
assert_lower(x, n, true);
else if (!i.m().upper_is_inf(i) && !i.m().upper_is_open(i) && i.m().upper(i) == n)
assert_upper(x, n, true);
}
}
}
@ -199,111 +237,33 @@ void bound_simplifier::assert_lower(expr* x, rational const& n, bool strict) {
bp.assert_lower(to_var(x), c, strict);
}
//
// TODO: Use math/interval/interval.h
//
bool bound_simplifier::has_lower(expr* x, rational& n, bool& strict) {
if (is_var(x)) {
unsigned v = to_var(x);
if (bp.has_lower(v)) {
mpq const & q = bp.lower(v, strict);
n = rational(q);
return true;
}
}
if (a.is_numeral(x, n)) {
strict = false;
return true;
}
if (a.is_mod(x)) {
n = rational::zero();
strict = false;
return true;
}
expr* y, *z;
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_lower(y, n, strict))
return true;
if (a.is_add(x)) {
rational bound;
strict = false;
n = 0;
bool is_strict;
for (expr* arg : *to_app(x)) {
if (!has_lower(arg, bound, is_strict))
return false;
strict |= is_strict;
n += bound;
}
return true;
}
if (a.is_mul(x, y, z)) {
// TODO: this is done generally using math/interval/interval.h
rational bound1, bound2;
bool strict1, strict2;
if (has_lower(y, bound1, strict1) && !strict1 &&
has_lower(z, bound1, strict2) && !strict2 &&
bound1 >= 0 && bound2 >= 0) {
n = bound1*bound2;
strict = false;
return true;
}
}
return false;
scoped_dep_interval i(m_interval);
get_bounds(x, i);
if (m_interval.lower_is_inf(i))
return false;
strict = m_interval.lower_is_open(i);
n = m_interval.lower(i);
return true;
}
bool bound_simplifier::has_upper(expr* x, rational& n, bool& strict) {
if (is_var(x)) {
unsigned v = to_var(x);
if (bp.has_upper(v)) {
mpq const & q = bp.upper(v, strict);
n = rational(q);
return true;
}
}
// perform light-weight abstract analysis
// y * (u / y) is bounded by u, if y > 0
if (a.is_numeral(x, n)) {
strict = false;
return true;
}
if (a.is_add(x)) {
rational bound;
strict = false;
n = 0;
bool is_strict;
for (expr* arg : *to_app(x)) {
if (!has_upper(arg, bound, is_strict))
return false;
strict |= is_strict;
n += bound;
}
return true;
}
expr* y, *z, *u, *v;
if (a.is_mul(x, y, z) && a.is_idiv(z, u, v) && v == y && has_lower(y, n, strict) && n > 0 && has_upper(u, n, strict))
return true;
if (a.is_idiv(x, y, z) && has_lower(z, n, strict) && n > 0 && has_upper(y, n, strict))
return true;
return false;
scoped_dep_interval i(m_interval);
get_bounds(x, i);
if (m_interval.upper_is_inf(i))
return false;
strict = m_interval.upper_is_open(i);
n = m_interval.upper(i);
return true;
}
void bound_simplifier::get_bounds(expr* x, scoped_interval& i) {
i.m().reset_upper(i);
i.m().reset_lower(i);
void bound_simplifier::get_bounds(expr* x, scoped_dep_interval& i) {
auto& im = m_interval;
im.reset(i);
scoped_dep_interval arg_i(im);
rational n;
if (a.is_numeral(x, n)) {
i.m().set(i, n.to_mpq());
im.set_value(i, n);
return;
}
@ -311,51 +271,311 @@ void bound_simplifier::get_bounds(expr* x, scoped_interval& i) {
unsigned v = to_var(x);
bool strict;
if (bp.has_upper(v)) {
mpq const& q = bp.upper(v, strict);
i_cfg.set_upper_is_open(i, strict);
i_cfg.set_upper(i, q);
im.set_upper(i, bp.upper(v, strict));
im.set_upper_is_inf(i, false);
im.set_upper_is_open(i, strict);
}
if (bp.has_lower(v)) {
mpq const& q = bp.lower(v, strict);
i_cfg.set_lower_is_open(i, strict);
i_cfg.set_lower(i, q);
im.set_lower(i, bp.lower(v, strict));
im.set_lower_is_inf(i, false);
im.set_lower_is_open(i, strict);
}
}
if (a.is_add(x)) {
scoped_interval sum_i(i.m());
scoped_interval arg_i(i.m());
i.m().set(sum_i, mpq(0));
scoped_dep_interval tmp_i(im), sum_i(im);
im.set_value(sum_i, rational::zero());
for (expr* arg : *to_app(x)) {
get_bounds(arg, arg_i);
i.m().add(sum_i, arg_i, sum_i);
im.add(sum_i, arg_i, tmp_i);
im.set<dep_intervals::without_deps>(sum_i, tmp_i);
}
// TODO: intersect
i.m().set(i, sum_i);
im.intersect <dep_intervals::without_deps>(i, sum_i, i);
}
if (a.is_mul(x)) {
scoped_interval mul_i(i.m());
scoped_interval arg_i(i.m());
i.m().set(mul_i, mpq(1));
scoped_dep_interval tmp_i(im);
im.set_value(tmp_i, rational::one());
for (expr* arg : *to_app(x)) {
get_bounds(arg, arg_i);
i.m().add(mul_i, arg_i, mul_i);
im.mul(tmp_i, arg_i, tmp_i);
}
// TODO: intersect
i.m().set(i, mul_i);
im.intersect <dep_intervals::without_deps>(i, tmp_i, i);
}
// etc:
// import interval from special case code for lower and upper.
expr* y, * z, * u, * v;
if (a.is_mod(x, y, z) && a.is_numeral(z, n) && n > 0) {
scoped_dep_interval tmp_i(im);
im.set_lower_is_inf(tmp_i, false);
im.set_lower_is_open(tmp_i, false);
im.set_lower(tmp_i, mpq(0));
im.set_upper_is_inf(tmp_i, false);
im.set_upper_is_open(tmp_i, false);
im.set_upper(tmp_i, n - 1);
im.intersect <dep_intervals::without_deps>(i, tmp_i, i);
}
// x = y*(u div y), y > 0 -> x <= u
if (a.is_mul(x, y, z) && a.is_idiv(z, u, v) && v == y) {
scoped_dep_interval iy(im), iu(im), tmp_i(im);
get_bounds(y, iy);
get_bounds(u, iu);
if (!im.lower_is_inf(iy) && im.lower(iy) > 0 &&
!im.upper_is_inf(iu) && im.upper(iu) >= 0) {
im.set_upper_is_inf(tmp_i, false);
im.set_upper_is_open(tmp_i, im.upper_is_open(iu));
im.set_upper(tmp_i, im.upper(iu));
im.intersect<dep_intervals::without_deps>(i, tmp_i, i);
}
}
// x = y div z, z > 0 => x <= y
if (a.is_idiv(x, y, z)) {
scoped_dep_interval iy(im), iz(im), tmp_i(im);
get_bounds(y, iy);
get_bounds(z, iz);
if (!im.lower_is_inf(iz) && im.lower(iz) > 0 &&
!im.upper_is_inf(iy) && im.upper(iy) >= 0) {
im.set_upper_is_inf(tmp_i, false);
im.set_upper_is_open(tmp_i, im.upper_is_open(iy));
im.set_upper(tmp_i, im.upper(iy));
im.set_lower_is_inf(tmp_i, false);
im.set_lower_is_open(tmp_i, false); // TODO - could be refined
im.set_lower(tmp_i, rational::zero());
im.intersect<dep_intervals::without_deps>(i, tmp_i, i);
}
}
if (a.is_div(x, y, z)) {
scoped_dep_interval iy(im), iz(im), tmp_i(im);
get_bounds(y, iy);
get_bounds(z, iz);
im.div<dep_intervals::without_deps>(iy, iz, tmp_i);
im.intersect<dep_intervals::without_deps>(i, tmp_i, i);
}
}
void bound_simplifier::expr2linear_pol(expr* t, mpq_buffer& as, var_buffer& xs) {
scoped_mpq c_mpq_val(nm);
if (a.is_add(t)) {
rational c_val;
for (expr* mon : *to_app(t)) {
expr* c, * x;
if (a.is_mul(mon, c, x) && a.is_numeral(c, c_val)) {
nm.set(c_mpq_val, c_val.to_mpq());
as.push_back(c_mpq_val);
xs.push_back(to_var(x));
}
else {
as.push_back(mpq(1));
xs.push_back(to_var(mon));
}
}
}
else {
as.push_back(mpq(1));
xs.push_back(to_var(t));
}
}
bool bound_simplifier::lower_subsumed(expr* p, mpq const& k, bool strict) {
if (!a.is_add(p))
return false;
m_num_buffer.reset();
m_var_buffer.reset();
expr2linear_pol(p, m_num_buffer, m_var_buffer);
scoped_mpq implied_k(nm);
bool implied_strict;
return
bp.lower(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
(nm.gt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
}
bool bound_simplifier::upper_subsumed(expr* p, mpq const& k, bool strict) {
if (!a.is_add(p))
return false;
m_num_buffer.reset();
m_var_buffer.reset();
expr2linear_pol(p, m_num_buffer, m_var_buffer);
scoped_mpq implied_k(nm);
bool implied_strict;
return
bp.upper(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
(nm.lt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
}
void bound_simplifier::restore_bounds() {
scoped_mpq l(nm), u(nm);
bool strict_l, strict_u, has_l, has_u;
unsigned ts;
unsigned sz = m_var2expr.size();
rw rw(*this);
auto add = [&](expr* fml) {
expr_ref tmp(fml, m);
rw(tmp, tmp);
m_rewriter(tmp);
m_fmls.add(dependent_expr(m, tmp, nullptr, nullptr));
};
for (unsigned x = 0; x < sz; x++) {
expr* p = m_var2expr.get(x);
has_l = bp.lower(x, l, strict_l, ts);
has_u = bp.upper(x, u, strict_u, ts);
if (!has_l && !has_u)
continue;
if (has_l && has_u && nm.eq(l, u) && !strict_l && !strict_u) {
// l <= p <= l --> p = l
add(m.mk_eq(p, a.mk_numeral(rational(l), a.is_int(p))));
continue;
}
if (has_l && !lower_subsumed(p, l, strict_l)) {
if (strict_l)
add(m.mk_not(a.mk_le(p, a.mk_numeral(rational(l), a.is_int(p)))));
else
add(a.mk_ge(p, a.mk_numeral(rational(l), a.is_int(p))));
}
if (has_u && !upper_subsumed(p, u, strict_u)) {
if (strict_u)
add(m.mk_not(a.mk_ge(p, a.mk_numeral(rational(u), a.is_int(p)))));
else
add(a.mk_le(p, a.mk_numeral(rational(u), a.is_int(p))));
}
}
}
void bound_simplifier::reset() {
bp.reset();
m_var2expr.reset();
m_expr2var.reset();
m_num_vars = 0;
}
#if 0
void find_ite_bounds(expr* root) {
TRACE("find_ite_bounds_bug", display_bounds(tout););
expr* n = root;
expr* target = nullptr;
expr* c, * t, * e;
expr* x, * y;
bool has_l, has_u;
mpq l_min, u_max;
bool l_strict, u_strict;
mpq curr;
bool curr_strict;
while (true) {
TRACE("find_ite_bounds_bug", tout << mk_ismt2_pp(n, m) << "\n";);
if (m.is_ite(n, c, t, e)) {
if (is_x_minus_y_eq_0(t, x, y))
n = e;
else if (is_x_minus_y_eq_0(e, x, y))
n = t;
else
break;
}
else if (is_x_minus_y_eq_0(n, x, y)) {
n = nullptr;
}
else {
break;
}
TRACE("find_ite_bounds_bug", tout << "x: " << mk_ismt2_pp(x, m) << ", y: " << mk_ismt2_pp(y, m) << "\n";
if (target) {
tout << "target: " << mk_ismt2_pp(target, m) << "\n";
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " has_u: " << has_u << " " << nm.to_string(u_max) << "\n";
});
if (is_unbounded(y))
std::swap(x, y);
if (!is_unbounded(x)) {
TRACE("find_ite_bounds_bug", tout << "x is already bounded\n";);
break;
}
if (target == nullptr) {
target = x;
if (lower(y, curr, curr_strict)) {
has_l = true;
nm.set(l_min, curr);
l_strict = curr_strict;
}
else {
has_l = false;
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
}
if (upper(y, curr, curr_strict)) {
has_u = true;
nm.set(u_max, curr);
u_strict = curr_strict;
}
else {
has_u = false;
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
}
}
else if (target == x) {
if (has_l) {
if (lower(y, curr, curr_strict)) {
if (nm.lt(curr, l_min) || (!curr_strict && l_strict && nm.eq(curr, l_min))) {
nm.set(l_min, curr);
l_strict = curr_strict;
}
}
else {
has_l = false;
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
}
}
if (has_u) {
if (upper(y, curr, curr_strict)) {
if (nm.gt(curr, u_max) || (curr_strict && !u_strict && nm.eq(curr, u_max))) {
nm.set(u_max, curr);
u_strict = curr_strict;
}
}
else {
has_u = false;
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
}
}
}
else {
break;
}
if (!has_l && !has_u)
break;
if (n == nullptr) {
TRACE("find_ite_bounds", tout << "found bounds for: " << mk_ismt2_pp(target, m) << "\n";
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " l_strict: " << l_strict << "\n";
tout << "has_u: " << has_u << " " << nm.to_string(u_max) << " u_strict: " << u_strict << "\n";
tout << "root:\n" << mk_ismt2_pp(root, m) << "\n";);
a_var x = mk_var(target);
if (has_l)
bp.assert_lower(x, l_min, l_strict);
if (has_u)
bp.assert_upper(x, u_max, u_strict);
break;
}
}
nm.del(l_min);
nm.del(u_max);
nm.del(curr);
}
void find_ite_bounds() {
unsigned sz = m_new_goal->size();
for (unsigned i = 0; i < sz; i++) {
expr* f = m_new_goal->form(i);
if (m.is_ite(f))
find_ite_bounds(to_app(f));
}
bp.propagate();
TRACE("find_ite_bounds", display_bounds(tout););
}
#endif

View file

@ -23,25 +23,26 @@ Description:
#include "ast/rewriter/th_rewriter.h"
#include "ast/simplifiers/dependent_expr_state.h"
#include "ast/simplifiers/bound_propagator.h"
#include "math/interval/interval.h"
#include "math/interval/dep_intervals.h"
class bound_simplifier : public dependent_expr_simplifier {
typedef interval_manager<im_default_config> _interval_manager;
typedef _interval_manager::interval interval;
typedef _scoped_interval<_interval_manager> scoped_interval;
typedef bound_propagator::var a_var;
typedef numeral_buffer<mpq, unsynch_mpq_manager> mpq_buffer;
typedef svector<a_var> var_buffer;
arith_util a;
params_ref m_params;
th_rewriter m_rewriter;
unsynch_mpq_manager nm;
small_object_allocator m_alloc;
bound_propagator bp;
im_default_config i_cfg;
_interval_manager i_manager;
unsigned m_num_vars = 0;
dep_intervals m_interval;
ptr_vector<expr> m_var2expr;
unsigned_vector m_expr2var;
bool m_updated = false;
mpq_buffer m_num_buffer;
var_buffer m_var_buffer;
unsigned m_num_reduced = 0;
struct rw_cfg;
struct rw;
@ -62,20 +63,27 @@ class bound_simplifier : public dependent_expr_simplifier {
unsigned to_var(expr* e) {
unsigned v = m_expr2var.get(e->get_id(), UINT_MAX);
if (v == UINT_MAX) {
v = m_num_vars++;
v = m_var2expr.size();
bp.mk_var(v, a.is_int(e));
m_expr2var.setx(e->get_id(), v, UINT_MAX);
m_var2expr.setx(v, e, nullptr);
m_var2expr.push_back(e);
}
return v;
}
br_status reduce_app(func_decl* f, unsigned num_args, expr* const* args, expr_ref& result, proof_ref& pr);
void assert_lower(expr* x, rational const& n, bool strict);
void assert_upper(expr* x, rational const& n, bool strict);
bool has_upper(expr* x, rational& n, bool& strict);
bool has_lower(expr* x, rational& n, bool& strict);
void get_bounds(expr* x, scoped_interval&);
void get_bounds(expr* x, scoped_dep_interval&);
void expr2linear_pol(expr* t, mpq_buffer& as, var_buffer& xs);
bool lower_subsumed(expr* p, mpq const& k, bool strict);
bool upper_subsumed(expr* p, mpq const& k, bool strict);
void restore_bounds();
// e = x + offset
bool is_offset(expr* e, expr* x, rational& offset);
@ -87,14 +95,35 @@ public:
a(m),
m_rewriter(m),
bp(nm, m_alloc, p),
i_cfg(nm),
i_manager(m.limit(), im_default_config(nm)) {
m_interval(m.limit()),
m_num_buffer(nm) {
updt_params(p);
}
char const* name() const override { return "bounds-simplifier"; }
char const* name() const override { return "propagate-ineqs"; }
bool supports_proofs() const override { return false; }
void reduce() override;
void updt_params(params_ref const& p) override {
m_params.append(p);
bp.updt_params(m_params);
}
void collect_param_descrs(param_descrs & r) override {
bound_propagator::get_param_descrs(r);
}
void collect_statistics(statistics& st) const override {
st.update("bound-propagations", bp.get_num_propagations());
st.update("bound-false-alarms", bp.get_num_false_alarms());
st.update("bound-simplifications", m_num_reduced);
}
void reset_statistics() override {
m_num_reduced = 0;
bp.reset_statistics();
}
};

View file

@ -172,6 +172,7 @@ public:
void set_upper_is_inf(interval& a, bool inf) const { m_config.set_upper_is_inf(a, inf); }
void set_lower_dep(interval& a, u_dependency* d) const { m_config.set_lower_dep(a, d); }
void set_upper_dep(interval& a, u_dependency* d) const { m_config.set_upper_dep(a, d); }
void reset(interval& a) const { set_lower_is_inf(a, true); set_upper_is_inf(a, true); }
void set_value(interval& a, rational const& n) const {
set_lower(a, n);
set_upper(a, n);
@ -331,6 +332,7 @@ public:
}
mpq const& lower(interval const& a) const { return m_config.lower(a); }
mpq const& upper(interval const& a) const { return m_config.upper(a); }
bool is_empty(interval const& a) const;
void set_interval_for_scalar(interval&, const rational&);
template <typename T>

View file

@ -17,7 +17,6 @@ z3_add_component(arith_tactics
pb2bv_model_converter.cpp
pb2bv_tactic.cpp
probe_arith.cpp
propagate_ineqs_tactic.cpp
purify_arith_tactic.cpp
recover_01_tactic.cpp
COMPONENT_DEPENDENCIES
@ -25,7 +24,6 @@ z3_add_component(arith_tactics
sat
TACTIC_HEADERS
add_bounds_tactic.h
bound_simplifier_tactic.h
card2bv_tactic.h
degree_shift_tactic.h
diff_neq_tactic.h

View file

@ -1,575 +0,0 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
propagate_ineqs_tactic.h
Abstract:
This tactic performs the following tasks:
- Propagate bounds using the bound_propagator.
- Eliminate subsumed inequalities.
For example:
x - y >= 3
can be replaced with true if we know that
x >= 3 and y <= 0
- Convert inequalities of the form p <= k and p >= k into p = k,
where p is a polynomial and k is a constant.
This strategy assumes the input is in arith LHS mode.
This can be achieved by using option :arith-lhs true in the
simplifier.
Author:
Leonardo (leonardo) 2012-02-19
Notes:
--*/
#include "tactic/tactical.h"
#include "ast/simplifiers/bound_propagator.h"
#include "ast/arith_decl_plugin.h"
#include "tactic/core/simplify_tactic.h"
#include "ast/ast_smt2_pp.h"
class propagate_ineqs_tactic : public tactic {
struct imp;
imp * m_imp;
params_ref m_params;
public:
propagate_ineqs_tactic(ast_manager & m, params_ref const & p);
tactic * translate(ast_manager & m) override {
return alloc(propagate_ineqs_tactic, m, m_params);
}
~propagate_ineqs_tactic() override;
char const* name() const override { return "propagate_ineqs"; }
void updt_params(params_ref const & p) override;
void collect_param_descrs(param_descrs & r) override {}
void operator()(goal_ref const & g, goal_ref_buffer & result) override;
void cleanup() override;
};
tactic * mk_propagate_ineqs_tactic(ast_manager & m, params_ref const & p) {
return clean(alloc(propagate_ineqs_tactic, m, p));
}
struct propagate_ineqs_tactic::imp {
ast_manager & m;
unsynch_mpq_manager nm;
small_object_allocator m_allocator;
bound_propagator bp;
arith_util m_util;
typedef bound_propagator::var a_var;
obj_map<expr, a_var> m_expr2var;
expr_ref_vector m_var2expr;
typedef numeral_buffer<mpq, unsynch_mpq_manager> mpq_buffer;
typedef svector<a_var> var_buffer;
mpq_buffer m_num_buffer;
var_buffer m_var_buffer;
goal_ref m_new_goal;
imp(ast_manager & _m, params_ref const & p):
m(_m),
m_allocator("ineq-simplifier"),
bp(nm, m_allocator, p),
m_util(m),
m_var2expr(m),
m_num_buffer(nm) {
updt_params_core(p);
}
void updt_params_core(params_ref const & p) {
}
void updt_params(params_ref const & p) {
updt_params_core(p);
bp.updt_params(p);
}
void display_bounds(std::ostream & out) {
unsigned sz = m_var2expr.size();
mpq k;
bool strict;
unsigned ts;
for (unsigned x = 0; x < sz; x++) {
if (bp.lower(x, k, strict, ts))
out << nm.to_string(k) << " " << (strict ? "<" : "<=");
else
out << "-oo <";
out << " " << mk_ismt2_pp(m_var2expr.get(x), m) << " ";
if (bp.upper(x, k, strict, ts))
out << (strict ? "<" : "<=") << " " << nm.to_string(k);
else
out << "< oo";
out << "\n";
}
nm.del(k);
}
a_var mk_var(expr * t) {
if (m_util.is_to_real(t))
t = to_app(t)->get_arg(0);
a_var x;
if (m_expr2var.find(t, x))
return x;
x = m_var2expr.size();
bp.mk_var(x, m_util.is_int(t));
m_var2expr.push_back(t);
m_expr2var.insert(t, x);
return x;
}
void expr2linear_pol(expr * t, mpq_buffer & as, var_buffer & xs) {
mpq c_mpq_val;
if (m_util.is_add(t)) {
rational c_val;
for (expr* mon : *to_app(t)) {
expr * c, * x;
if (m_util.is_mul(mon, c, x) && m_util.is_numeral(c, c_val)) {
nm.set(c_mpq_val, c_val.to_mpq());
as.push_back(c_mpq_val);
xs.push_back(mk_var(x));
}
else {
as.push_back(mpq(1));
xs.push_back(mk_var(mon));
}
}
}
else {
as.push_back(mpq(1));
xs.push_back(mk_var(t));
}
nm.del(c_mpq_val);
}
a_var mk_linear_pol(expr * t) {
a_var x;
if (m_expr2var.find(t, x))
return x;
x = mk_var(t);
if (m_util.is_add(t)) {
m_num_buffer.reset();
m_var_buffer.reset();
expr2linear_pol(t, m_num_buffer, m_var_buffer);
m_num_buffer.push_back(mpq(-1));
m_var_buffer.push_back(x);
bp.mk_eq(m_num_buffer.size(), m_num_buffer.data(), m_var_buffer.data());
}
return x;
}
enum kind { EQ, LE, GE };
bool process(expr * t) {
bool sign = false;
while (m.is_not(t, t))
sign = !sign;
bool strict = false;
kind k;
if (m.is_eq(t)) {
if (sign)
return false;
k = EQ;
}
else if (m_util.is_le(t)) {
if (sign) {
k = GE;
strict = true;
}
else {
k = LE;
}
}
else if (m_util.is_ge(t)) {
if (sign) {
k = LE;
strict = true;
}
else {
k = GE;
}
}
else if (m_util.is_lt(t)) {
if (sign) {
k = GE;
strict = false;
} else {
k = LE;
strict = true;
}
}
else if (m_util.is_gt(t)) {
//x > y == x <=y, strict = false
if (sign) {
k = LE;
strict = false;
} else {
k = GE;
strict = true;
}
}
else
return false;
expr * lhs = to_app(t)->get_arg(0);
expr * rhs = to_app(t)->get_arg(1);
expr* a, *b;
if (m_util.is_numeral(lhs)) {
std::swap(lhs, rhs);
if (k == LE)
k = GE;
else if (k == GE)
k = LE;
}
rational c;
// x = y mod c => 0 <= x < c
if (k == EQ && m_util.is_mod(rhs, a, b) && m_util.is_numeral(b, c) && c > 0) {
a_var x = mk_linear_pol(lhs);
mpq c_prime;
nm.set(c_prime, (c-1).to_mpq());
bp.assert_lower(x, mpq(0), false);
bp.assert_upper(x, c_prime, false);
nm.del(c_prime);
return lhs == a;
}
if (!m_util.is_numeral(rhs, c))
return false;
a_var x = mk_linear_pol(lhs);
mpq c_prime;
nm.set(c_prime, c.to_mpq());
if (k == EQ) {
SASSERT(!strict);
bp.assert_lower(x, c_prime, false);
bp.assert_upper(x, c_prime, false);
}
else if (k == LE) {
bp.assert_upper(x, c_prime, strict);
}
else {
SASSERT(k == GE);
bp.assert_lower(x, c_prime, strict);
}
nm.del(c_prime);
return true;
}
bool collect_bounds(goal const & g) {
bool found = false;
unsigned sz = g.size();
for (unsigned i = 0; i < sz; i++) {
expr * t = g.form(i);
if (process(t))
found = true;
else
m_new_goal->assert_expr(t); // save non-bounds here
}
return found;
}
bool lower_subsumed(expr * p, mpq const & k, bool strict) {
if (!m_util.is_add(p))
return false;
m_num_buffer.reset();
m_var_buffer.reset();
expr2linear_pol(p, m_num_buffer, m_var_buffer);
mpq implied_k;
bool implied_strict;
bool result =
bp.lower(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
(nm.gt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
nm.del(implied_k);
return result;
}
bool upper_subsumed(expr * p, mpq const & k, bool strict) {
if (!m_util.is_add(p))
return false;
m_num_buffer.reset();
m_var_buffer.reset();
expr2linear_pol(p, m_num_buffer, m_var_buffer);
mpq implied_k;
bool implied_strict;
bool result =
bp.upper(m_var_buffer.size(), m_num_buffer.data(), m_var_buffer.data(), implied_k, implied_strict) &&
(nm.lt(implied_k, k) || (nm.eq(implied_k, k) && (!strict || implied_strict)));
nm.del(implied_k);
return result;
}
void restore_bounds() {
mpq l, u;
bool strict_l, strict_u, has_l, has_u;
unsigned ts;
unsigned sz = m_var2expr.size();
for (unsigned x = 0; x < sz; x++) {
expr * p = m_var2expr.get(x);
has_l = bp.lower(x, l, strict_l, ts);
has_u = bp.upper(x, u, strict_u, ts);
if (!has_l && !has_u)
continue;
if (has_l && has_u && nm.eq(l, u) && !strict_l && !strict_u) {
// l <= p <= l --> p = l
m_new_goal->assert_expr(m.mk_eq(p, m_util.mk_numeral(rational(l), m_util.is_int(p))));
continue;
}
if (has_l && !lower_subsumed(p, l, strict_l)) {
if (strict_l)
m_new_goal->assert_expr(m.mk_not(m_util.mk_le(p, m_util.mk_numeral(rational(l), m_util.is_int(p)))));
else
m_new_goal->assert_expr(m_util.mk_ge(p, m_util.mk_numeral(rational(l), m_util.is_int(p))));
}
if (has_u && !upper_subsumed(p, u, strict_u)) {
if (strict_u)
m_new_goal->assert_expr(m.mk_not(m_util.mk_ge(p, m_util.mk_numeral(rational(u), m_util.is_int(p)))));
else
m_new_goal->assert_expr(m_util.mk_le(p, m_util.mk_numeral(rational(u), m_util.is_int(p))));
}
}
nm.del(l);
nm.del(u);
}
bool is_x_minus_y_eq_0(expr * t, expr * & x, expr * & y) {
expr * lhs, * rhs, * m1, * m2;
if (m.is_eq(t, lhs, rhs) && m_util.is_zero(rhs) && m_util.is_add(lhs, m1, m2)) {
if (m_util.is_times_minus_one(m2, y) && is_uninterp_const(m1)) {
x = m1;
return true;
}
if (m_util.is_times_minus_one(m1, y) && is_uninterp_const(m2)) {
x = m2;
return true;
}
}
return false;
}
bool is_unbounded(expr * t) {
a_var x;
if (m_expr2var.find(t, x))
return !bp.has_lower(x) && !bp.has_upper(x);
return true;
}
bool lower(expr * t, mpq & k, bool & strict) {
unsigned ts;
a_var x;
if (m_expr2var.find(t, x))
return bp.lower(x, k, strict, ts);
return false;
}
bool upper(expr * t, mpq & k, bool & strict) {
unsigned ts;
a_var x;
if (m_expr2var.find(t, x))
return bp.upper(x, k, strict, ts);
return false;
}
void find_ite_bounds(expr * root) {
TRACE("find_ite_bounds_bug", display_bounds(tout););
expr * n = root;
expr * target = nullptr;
expr * c, * t, * e;
expr * x, * y;
bool has_l, has_u;
mpq l_min, u_max;
bool l_strict, u_strict;
mpq curr;
bool curr_strict;
while (true) {
TRACE("find_ite_bounds_bug", tout << mk_ismt2_pp(n, m) << "\n";);
if (m.is_ite(n, c, t, e)) {
if (is_x_minus_y_eq_0(t, x, y))
n = e;
else if (is_x_minus_y_eq_0(e, x, y))
n = t;
else
break;
}
else if (is_x_minus_y_eq_0(n, x, y)) {
n = nullptr;
}
else {
break;
}
TRACE("find_ite_bounds_bug", tout << "x: " << mk_ismt2_pp(x, m) << ", y: " << mk_ismt2_pp(y, m) << "\n";
if (target) {
tout << "target: " << mk_ismt2_pp(target, m) << "\n";
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " has_u: " << has_u << " " << nm.to_string(u_max) << "\n";
});
if (is_unbounded(y))
std::swap(x, y);
if (!is_unbounded(x)) {
TRACE("find_ite_bounds_bug", tout << "x is already bounded\n";);
break;
}
if (target == nullptr) {
target = x;
if (lower(y, curr, curr_strict)) {
has_l = true;
nm.set(l_min, curr);
l_strict = curr_strict;
}
else {
has_l = false;
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
}
if (upper(y, curr, curr_strict)) {
has_u = true;
nm.set(u_max, curr);
u_strict = curr_strict;
}
else {
has_u = false;
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
}
}
else if (target == x) {
if (has_l) {
if (lower(y, curr, curr_strict)) {
if (nm.lt(curr, l_min) || (!curr_strict && l_strict && nm.eq(curr, l_min))) {
nm.set(l_min, curr);
l_strict = curr_strict;
}
}
else {
has_l = false;
TRACE("find_ite_bounds_bug", tout << "y does not have lower\n";);
}
}
if (has_u) {
if (upper(y, curr, curr_strict)) {
if (nm.gt(curr, u_max) || (curr_strict && !u_strict && nm.eq(curr, u_max))) {
nm.set(u_max, curr);
u_strict = curr_strict;
}
}
else {
has_u = false;
TRACE("find_ite_bounds_bug", tout << "y does not have upper\n";);
}
}
}
else {
break;
}
if (!has_l && !has_u)
break;
if (n == nullptr) {
TRACE("find_ite_bounds", tout << "found bounds for: " << mk_ismt2_pp(target, m) << "\n";
tout << "has_l: " << has_l << " " << nm.to_string(l_min) << " l_strict: " << l_strict << "\n";
tout << "has_u: " << has_u << " " << nm.to_string(u_max) << " u_strict: " << u_strict << "\n";
tout << "root:\n" << mk_ismt2_pp(root, m) << "\n";);
a_var x = mk_var(target);
if (has_l)
bp.assert_lower(x, l_min, l_strict);
if (has_u)
bp.assert_upper(x, u_max, u_strict);
break;
}
}
nm.del(l_min);
nm.del(u_max);
nm.del(curr);
}
void find_ite_bounds() {
unsigned sz = m_new_goal->size();
for (unsigned i = 0; i < sz; i++) {
expr * f = m_new_goal->form(i);
if (m.is_ite(f))
find_ite_bounds(to_app(f));
}
bp.propagate();
TRACE("find_ite_bounds", display_bounds(tout););
}
void operator()(goal * g, goal_ref & r) {
tactic_report report("propagate-ineqs", *g);
m_new_goal = alloc(goal, *g, true);
m_new_goal->inc_depth();
r = m_new_goal.get();
if (!collect_bounds(*g)) {
m_new_goal = nullptr;
r = g;
return; // nothing to be done
}
TRACE("propagate_ineqs_tactic", g->display(tout); display_bounds(tout); tout << "bound propagator:\n"; bp.display(tout););
bp.propagate();
report_tactic_progress(":bound-propagations", bp.get_num_propagations());
report_tactic_progress(":bound-false-alarms", bp.get_num_false_alarms());
if (bp.inconsistent()) {
r->reset();
r->assert_expr(m.mk_false());
return;
}
// find_ite_bounds(); // did not help
restore_bounds();
TRACE("propagate_ineqs_tactic", tout << "after propagation:\n"; display_bounds(tout); bp.display(tout););
TRACE("propagate_ineqs_tactic", r->display(tout););
}
};
propagate_ineqs_tactic::propagate_ineqs_tactic(ast_manager & m, params_ref const & p):
m_params(p) {
m_imp = alloc(imp, m, p);
}
propagate_ineqs_tactic::~propagate_ineqs_tactic() {
dealloc(m_imp);
}
void propagate_ineqs_tactic::updt_params(params_ref const & p) {
m_params.append(p);
m_imp->updt_params(m_params);
}
void propagate_ineqs_tactic::operator()(goal_ref const & g,
goal_ref_buffer & result) {
fail_if_proof_generation("propagate-ineqs", g);
fail_if_unsat_core_generation("propagate-ineqs", g);
result.reset();
goal_ref r;
(*m_imp)(g.get(), r);
result.push_back(r.get());
SASSERT(r->is_well_formed());
}
void propagate_ineqs_tactic::cleanup() {
imp * d = alloc(imp, m_imp->m, m_params);
std::swap(d, m_imp);
dealloc(d);
}

View file

@ -51,11 +51,17 @@ This can be achieved by using option :arith-lhs true in the simplifier.
--*/
#pragma once
#include "util/params.h"
class ast_manager;
class tactic;
tactic * mk_propagate_ineqs_tactic(ast_manager & m, params_ref const & p = params_ref());
#include "util/params.h"
#include "tactic/tactic.h"
#include "tactic/dependent_expr_state_tactic.h"
#include "ast/simplifiers/bound_simplifier.h"
inline tactic* mk_propagate_ineqs_tactic(ast_manager& m, params_ref const& p = params_ref()) {
return alloc(dependent_expr_state_tactic, m, p,
[](auto& m, auto& p, auto &s) -> dependent_expr_simplifier* { return alloc(bound_simplifier, m, p, s); });
}
/*
ADD_TACTIC("propagate-ineqs", "propagate ineqs/bounds, remove subsumed inequalities.", "mk_propagate_ineqs_tactic(m, p)")
*/